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Computation of resonances by two methods involving the use of complex coordinates
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We have studied two different systems producing resonances, a highly excited multielectron Coulom-
bic negative ion (the He 2s2p P state) and a hydrogen atom in a magnetic field, via the complex-
coordinate rotation (CCR) and the state-specific complex-eigenvalue Schrodinger equation (CESE) ap-
proaches. For the He 2s2p P resonance, a series of large CCR calculations, up to 353 basis functions
with explicit r;, dependence, were carried out to serve as benchmarks. For the magnetic-field problem,
the CCR results were taken from the literature. Comparison shows that the state-specific CESE theory
allows the physics of the problem to be incorporated systematically while keeping the overall size of the
computation tractable regardless of the number of electrons.

PACS number(s): 31.50.+w, 32.60.+ i, 32.80.Dz

I. FOUNDATIONS AND CHARACTERISTICS
OF TWO METHODS FOR THE AS INITIO

COMPUTATION OF RESONANCES

In this paper we present results from the application of
two computational strategies to the determination of en-
ergies and widths of resonances. The first is the
complex-coordinate rotation (CCR) method, whose valid-
ity and practice are justified as follows: if the transforma-
tion p=re' is applied to the coordinates of a number of
real or model Hamiltonians, H(r), the non-Hermitian
property of the new, rotated Hamiltonian, H(p), leads,
upon its diagonalization in a complete space of X func-
tions, to complex eigenvalues which are independent of 0
beyond a critical value and correspond to resonances
(e.g. , [1—7]). The identification of these complex eigen-
values with physical resonance states was initially based
on various mathematical arguments from the spectral
theory of classes of Hamiltonian operators ([3,7], and
references therein). In the CCR method [1—6], H(p) is
diagonalized repeatedly in a given L space of real func-
tions as a function of 0, until a region of relative stability
of the looked-for complex eigenvalue is reached.

The CCR method is conceptually simple, but not gen-
eral enough to allow certain physically observable quanti-
ties such as partial widths, to be computed. Further-
more, it is limited because it is very demanding in terms
of the size of the X function space required for reliable
convergence to occur. This was concluded already in the
1970s [1—5], and will be discussed again here. It was
recognized [8,9] that its slow convergence was due, to a
large extent, to the use of only a single set of basis func-
tions which is not necessarily appropriate for describing
simultaneously the interactions leading to the position as
well as those leading to the width of the resonance. This
realization has been incorporated in a general theory of
multielectron, multichannel, rnultiphoton resonances
[9—15], which is the second approach used here, whose
aim is the state-specific solution of the complex eigenval-
ue Schrodinger equation (CESE).

The state-specific CESE theory has its origin in the

recognition of the following: (1) The problem can be un-
derstood in terms of the concept of perturbation of the
asymptotic boundary conditions [9,13,16,17]. (2) Given
the localized part of the resonance, %'0, which is the
square-integrable projection of the resonance function, %',
on the real axis [9,18], the rotated 'Il(p) has the form
[9,13]

ql(p)=a(8)+o(p)+b(8)y„(p), ~a~ + b~ =1

where g„represents the contributions of the continuum
component on resonance. (3) Using %(p) of Eq. (1) and
the rotated H(p), in practice matrix elements involving
%0 or final-state bound orbitals remain 0 independent,
while only configurations containing the square-
integrable Gamow orbital give rise to complex integrals.
In this way, the Hamiltonian need not be rotated (see also
Ref. [4]), and the question of the spectrum of H(p) is re-
placed by the question of the appropriate coordinate
transformation which will regularize its nonsquare-
integrable eigenfunction [9,16,17], as was done for the
short-range potential by Dykhne and Chaplik [19].

The above observations were then incorporated into
the state-specific electronic structure theory of reso-
nances and autoionizing states ([12—18] and references
therein) with the result that properties such as partial and
total energy shifts and widths of simple as well as corn-
plex polyelectronic systems can be analyzed and calculat-
ed systematically and without unreasonable computation-
al requirements.

The comparative results presented here have been ob-
tained from the application of the aforementioned two
methods, the state-specific CESE and the CCR, to two
problems. The first is the computation of the position
and width of the He 2s2p P resonance by the CCR
method. For this state results obtained from very small
computations in the context of the state specific CESE
theory, have already been published [20]. The second is
the computation of resonances of the hydrogen atom in a
magnetic field by the CESE method. This case has al-
ready been treated by the CCR method [21—23].
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For both problems, the efficiency and physical tran-
sparency of the CESE approach is superior.

II. MANY-ELECTRON AUTOIONIZING RESONANCES:
THE 2s 2P P STATE OF He

The CCR method has allowed the accurate computa-
tion of resonances of two-electron atoms [2—5]. Howev-
er, an early attempt by Bain et al. [1] to use this method
for computation of the three-electron ls2s S resonance
in He failed to produce a converged complex energy.
This state was recomputed recently by the CCR method
using a larger space [24]. A basis of 184 configurational
functions containing explicitly interelectronic distances
resulted in a position of 19.367 eV above the ground level
of He, and a width of 8.6 meV. To further test conver-
gence, we repeated this calculation using the same
method and a basis of 579 functions with r," factors. We
obtained essentially the same results: E= 19.370 eV and
I =8.8 meV.

In order to test the application of the CCR method to
a three-electron resonance with intrashell correlation,
now we have computed the He 2s2p I' state which de-
cays into the 1s2p I' open channel. We used basis sets
of two types. One of them contained only configurations
constructed from one-electron orbitals. In the other basis
we also included functions containing interelectronic dis-
tances r,". These computations were carried out as in the
previous CCR work [24] using the techniques developed
by Woznicki [25] for real Hamiltonians.

In Table I we show the rate of convergence of our
CCR calculations. Results of three series of calculations
are presented from which conclusions can be drawn as to

the particulars of radial and angular correlation and as to
the importance of the r; factors. Each of these series was
carried out in such a way that the basis used in one calcu-
lation was included in a larger basis of subsequent calcu-
lations. In the first series of computations we used only
orbital sets. We observed that when enlarging the basis
set the energy of the resonance converges monotonically
to the value 57.454 eV above the He ground level. On the
other hand, the width of the resonance does not converge
so smoothly. The addition of a few configurations of a
new angular type changes the width significantly, e.g. , the
addition of only 9 sdd configurations to the spp-type basis
set changes the value of width from 9.8 to 17.7 meV (al-
most twice the original value). However, adding more ra-
dial terms of the same angular type brings the width close
to the value of 11 meV. This suggests that the sudden
jump of the width is not a physical effect of a particular
angular term, but rather a disturbance caused by lack of
radial correlation. The radial correlation also affected
the stabilization property of 0 trajectories. We observed
that adding more and more radial terms of a given angu-
lar type stabilized the complex energy of the resonance,
whereas the addition of a few terms of a new angular type
destabilized it. Finally, our largest orbital configuration
interaction (CI) (208 configurations) gave I = 10.9 meV.

In the next series of computations we used r;-
correlated basis sets which account for the angular corre-
lation better. However, we used a relatively small num-
ber of radial terms. The position of the resonance con-
verged, again monotonically, but faster than in the orbit-
al CI computation, to the value 57.420 eV. The width
was found in the range 10—11 meV, but without conver-
gence because of the lack of radial correlation. In the

TABLE I. CCR calculation of the 2s2p P resonance of He . The energy E is given in eV, above
the He ground level, and the width I in meV (1 a.u. =27.211 65 eV).

Type of functions

spp

+sdd

+pp (P)d

+pp (D)d

pp +( 12+ 23)
+sdd + rip
+ppd + r»

spp r&2
+spp rp3

+sdd + r 12

+ppd + r12

Number of functions

Orbital basis sets
69

115
146
155
164
173
180
187
194
201
208

r;~-correlated basis sets'
136
153
173

Enlarged r;J -correlated basis sets'
225
258
303
353

(eV)

57.690
57.689
57.668
57.581
57.574
57.574
57.474
57.474
57.474
57.455
57.454

57.430
57.424
57.420

57.552
57.430
57.423
57.420

r
(meV)

11.0
10.3
9.8

17.7
11.9
1 1.0
12.9
10.8
11.0
9.7

10.9

10.8
11.2
9.8

10.0
10.3
10.3
10.4

'Only terms that are linear with respect to r;~ were used.
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III. AUTOIONIZING STATES OF A HYDROGEN ATOM
IN A MAGNETIC FIELD

The system of a hydrogen atom in a strong uniform
magnetic field can be described by the nonrelativistic
single-particle Hamiltonian (in a.u. )

2 2
H= ——+~m+ (x +y ),

2 r 2 8
(2)

where y is the magnetic-field strength in a.u. (y=B/Bo,
Bo =2.35 X 10 T) and m is the z component of angular
momentum parallel to the magnetic field. The symmetry
is cylindrical so the states of the system can be classified
according to a given m and z parity m (parity with respect
to the z =0 plain).

The wave function of the system, g ', can be expand-
ed in Landau states

(p, cp)f (z),
N

(3)

where (p, y, z) are cylindrical coordinates and @&(p,y)

third series of computations we included more radial
terms and obtained converged results: E =57.420 eV (in
agreement with previous real energy calculations
[20,26,27]) and I =10.4 meV. The total number of basis
functions was 353.

We now turn to the calculation from the state-specific
CESE theory. It has been argued repeatedly (e.g. ,
[13,14,20]) that the correlated wave functions of multiply
excited states (MES), such as the He 2s2p P state, are
computable very efficiently and accurately within the
multiconfigurational Hartree-Fock (MCHF) approxima-
tion with suitably selected few configurations. Thus, a
three-term MCHF calculation (2s2p, 2p 3d, 2s2d ) with
the 2s orbital kept orthogonal to the He+ 1s, yields
EMcHI;=57. 648 eV above the He ground state, which is
only about 0.25 eV above the previously mentioned accu-
rate values. Using this approximate +o and ten "asymp-
totic" configurations (ls2p P ) "8"p, with ten complex
Slater-type orbitals (STO's) "e"p, results in only an
11X 11 complex Hamiltonian matrix whose diagonaliza-
tion gave I =0.015 eV and the energy shift 6=0.027 eV
[20]. Given the very small size of this computation, the
predicted width is in very satisfactory agreement with the
present CCR results.

A better total energy can be obtained trivially by aug-
menting slightly the Fermi sea to include the 3s and 3p
orbitals. Thus, just a five-term self-consistent solution
gives

@McHi;( P) =0.982(2s2p )+0.100(2p 3d )

—0.097(2s3p )
—0.087(2s3d )

+0.088(2p 3s3p),

with EMcH„= —0.79209 a.u. = 57.461 eV above He 'S.
Finally, a 14-configuration MCHF solution gives
EO=57.408 eV. If we add 6=0.027 eV obtained earlier
[20], then E=57.435 eV, in very good agreement with
the results of the large CCR calculations.

g,"(z)—:z "exp( —P, ~z~ ) . (4)

Since the resonance under consideration is the lowest one
of I m =0, vr =0] symmetry, it does not have nodes in the
z direction. Therefore, we used only nodeless, n =0, z-
STO's to represent the localized part of the wave func-
tion. Their nonlinear parameters were chosen to form a
geometrical sequence and were optimized in a one-
Landau-channel (adiabatic) calculation. In the many-
Landau-channel calculation they were used unchanged.
We found that 7 or 9 z-STO's are enough to obtain a con-
verged value of the energy, for y =2000 or y = 10, respec-
tively. (The stronger the field is the more compact the
wave function is. )

The ground Landau state constitutes the only open
channel for the decay of the resonance. Thus, the asymp-
totic part of the wave function is

y„=g @o(p,p)g,". (ze '
) .

Asymptotically free motion in the z direction is described
by a basis consisting of one nodeless z-STO and several
(14 in the final calculation) n =2 z-STO's. Their depen-
dence on ze ', instead of z itself, is a consequence of reg-
ularization of the unbound asymptotic function. The ex-
ponents P of those z-STO's also formed a geometrical
progression and were chosen so that the z-STO's covered
the region where the localized part +o took non-
negligible values (the most difFused z-STO was peaked
beyond the average value of z resulting from %0).

are Landau orbitals, which are the transversal eigenstates
of the Hamiltonian (2) without the 1/r term, i.e., in the
absence of the nucleus. For strong fields (y ~ 1, when the
separation of consecutive Landau energy levels is larger
than the Rydberg energy), use of this expansion leads to
fast convergence. Many authors have used it to calculate
energies of bound states [28—30] and binding energies
and widths of autoionizing resonances associated with ex-
cited Landau states [21,22,31,32]. The coefficient func-
tions f (z) in Eq. (3) can be found by numerical integra-
tion of coupled integral equations [29] or from a varia-
tional calculation using basis sets [21,22,30].

In this work, we consider only the lowest m =0, even
z-parity resonance. We have chosen this state because
Bhattacharya and Chu [21] reported it as the most slowly
convergent one in their CCR calculation.

Since this state had already been investigated by the
CCR method [21,22], we performed only a state-specific
CESE calculation. This implies a choice of basis sets
which are specific to the state under consideration. Our
resonance is associated with the first excited Landau
state. Therefore, we used the adiabatic approximation,
i.e., we took only the N= 1 term in Eq. (3), as a zero-
order description of the localized part, %0, Eq. (1). Go-
ing beyond the adiabatic approximation, we improved +o
by including the N = 1, .. . , 8 Landau terms (closed chan-
nels only).

Following Vincke and Baye [22,30], we expanded the
coefficients f (z) of Eq. (3) in a basis of one-dimensional
Slater-type orbitals (z-STO's) of the form
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TABLE II. Binding energy Ez (in Ry) and width I (in 10 Ry) of the lowest m =0 even z-parity
autoionizing resonance of a hydrogen atom in a strong magnetic field.

Chu and Friedrich This work' Vincke and Baye Bhattacharya and Chu

E I /2 I /2 E I /2 E I /2

10 2.32

100 5.34

500 9.16

1000

2000 14.01

4.22

2.37

1.59

1.33

1 ~ 12

2.249 3.83
2 339 5.06
5.342 2.51
5.398 2.72
9.161 1.69
9.197 1.75

11.378 1.40
11.408 1.43
14.005 1.14
14.029 1.16

2.337

5.396

11.408

4.67

2.65

1.40

2.294

5.370

9.174

4.35

2.58

1.71

'The upper values were obtained by using the adiabatic approximation for the localized part of the
wave function, Vo, and the lower ones by using and eight-Landau-channel localized part.
The width values recovered from the formula I =0.15y ' given by Chu and Friedrich [32].

In Table II we compare our results, obtained for
several values of the field strength, with results of other
authors. Our results obtained with the adiabatic %'o func-
tion for y ~ 100, agree very well with the results obtained
by Chu and Friedrich [32]. For these strengths of the
field they used a two-lowest-Landau-channel expansion.
We also used the same two Landau channels: the first ex-
cited one in the adiabatic Vo and the ground one in the
asymptotic part. On the other hand, our results obtained
by using many-Landau-channel 40 agree very well with
the Vincke and Baye [22] results from the CCR method.
In this case, the Landau channel expansion was of similar
size in both calculations.

Similar size of the Landau-channel expansion does not
mean, however, that the two calculations were of the
same size and cost. In Table III we give characteristics
of these two computations. Although we used nine Lan-
dau channels instead of eight, as used by Vincke and
Baye [22], our computation was more economical. This
is because of the following three reasons.

(i) Using nine z-STO's per Landau channel was enough
in our calculation to obtain converged results. For the
type of calculations done by Vincke and Baye [22], 18 z-
STO's per Landau channel were needed.

(ii) The number of complex integrals which had to be
evaluated for each value of complex rotation angle was
much smaller in the CESE calculation than in the CCR
one. This was so, not only because the smaller number of

z-STO's led to a smaller Hamiltonian matrix, but mainly
because in the CESE method only (y„H+o) and
(y„Hy„) blocks of the Hamiltonian matrix are com-
plex. The large (72X72) (~lioH+o) block is real and
does not change with variation of the rotation angle. Let
us stress that the Coulomb interaction integrals had to be
computed numerically in both methods, which is time
consuming.

(iii) Since the linear coefficients of the 4o part of the
wave function were found in the real energy computa-
tion, the Hamiltonian matrix was contracted before the
diagonalization. Only a small, 16X16, complex matrix
was diagonalized.

The convergence of our computation with respect to
the asymptotic part representation is illustrated in Fig. 1.
For the six-z-STO representation of the continuum, a
reasonable result was obtained. The complex energy of
the resonance is converged for ten z-STO's with the accu-
racy of four significant figures for the real part and three
figures for the width. With such accuracy, the stabiliza-
tion is obtained in the range 0=0.8 —1.3. Starting from
14 z-STO s in the asymptotic part, the stabilization range
is 0.5 —1.4. The convergence and stabilization were also
the same in our many-Landau-channel calculation for all
the values of the field strength. Let us note that the sta-
bilization range of 9 in the larger size Vincke and Baye
[22] and Bhattacharya and Chu [21] calculations was
smaller (respectively 0.4—0.7 and 0.3 —0.5).

TABLE III. Computational effort in the CCR calculation [22] and in the present CESE calculation.

CCR CESE

Number of Landau channels
Number of z-STO's per channel
Number of independent
complex matrix elements
Size of the Hamiltonian matrix
Size of the complex diagonalization

8
18

20736

144X 144
144X 144

9
9(15)'
1200

95 X95
16X16

'Nine z-STO's per each of the eight closed Landau channels and 15 for the open Landau channel (i.e.,
for the asymptotic part).
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0.005

0.025—

Hamiltonian, in the CCR method. It would not be the
case if one had rotated all the coordinates in the Hamil-
tonian as was done by Delande, Bommier, and Gay [23].
In that case the Landau states would get an oscillating
character and the fast convergence of the landau expan-
sion, Eq. (3), would be lost.

IV. CONCLUSION

0.045—

0 065 I I I I

2.275 2.255 2.235
binding energy (Ry)

2.21 5

We have also investigated the convergence of the reso-
nance parameters with respect to the number of Landau
channels. The nine-Landau-channel results presented in
Table II are converged in this sense. We do not discuss
details of' this convergence because it should be the same
in all the calculations quoted in present paper. This is be-
cause in the CCR calculation of Bhattacharya and Chu
[21] and Vincke and Baye [22], as well as in ours, the
Landau states were not aftected by complex rotation.
Only the z coordinate was rotated either in the asymptot-
ic function equation (5), in the CESE method, or in the

FIG. 1. Convergence and stabilization of the two-Landau-
channel calculation at y=10. 0 trajectories for various num-
bers of z-STO's representing the asymptotic part of the wave
function: e, 6z-STO s; o, 8;, 10; A, 12; Q, 14; +, 16; X, 18.
Each 0 trajectory consists of 14 points corresponding to
0=0.1,0.2, ... , 1.4. The arrows show the direction of increasing
0.

We have compared two approaches to the computation
of resonances which employ complex coordinates. The
first uses the transformation p=re' in the Hamiltonian
which then becomes non-Hermitian with complex eigen-
values representing the position and the total width of the
resonances. The corresponding CCR computational
method is formally rigorous, since it aims at the complete
diagonalization of H(p), just like the standard case of
Hermitian Hamiltonians and their real eigenvalues.
However, the present results, as well as previously pub-
lished ones, show that the completeness requirements on
the basis sets are overwhelming, especially for polyelect-
ronic systems. Furthermore, partial widths cannot be ob-
tained by the CCR method.

The second approach draws from the theory of elec-
tronic structure of excited states and aims at the state-
specific analysis and solution of the complex eigenvalue
Schrodinger equation which emerges for each system of
interest after the regularizing transformation is applied to
the asymptotic boundary conditions, i.e., to the unbound
function of the emitted particle [9,16,17]. In this way
seemingly large computational problems involving non-
stationary states can be reduced to problems which can
be described by physically meaningful wave functions al-
lowing very efficient and systematic computation. Apart
from the polyelectronic Coulomb and the magnetic-field
problems studied here, similar results have been obtained
for problems of predissociation and of polyelectronic
atomic states in external dc or ac fields.

*On leave from Institute of Physics, Nicholas Copernicus
University, Grudziydzka 5, 87-100 Torun, Poland.
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