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A recent paper by Luken and Sinanoglu (Phys. Rev. A 13 1293, 1976) has criticized some of our work
and contains material on excited states and oscillator strengths. We suggest that satisfaction of upper
boundedness via the Hylleraas-Undheim-MacDonald theorem is neither a sufficient nor a necessary condition
for obtaining reasonably accurate oscillator strengths. Our method for truncated Hamiltonian matrices which
chooses the root which minimizes the energy as well as the correlation overlap (X/X) in fact yielded
upper bounds and did not suffer a "variational collapse. " We point out that for excited valence states
embedded in Rydberg or continuum series, the f values are very sensitive to (a) choice of basis sets and (b)
Relative position of diagonal matrix elements. The Nl S' —+2s2IP" P, Bl P'~2s2p S, Cl 2p'
'P-+2s2p 'P' transitions serve as examples.

I. INTRODUCTION

In a recent paper, '1'1 Luken and SinanoNlu dis-
cussed and criticized our previous work" on
calculations of excited states and oscillator
strengths. The purpose of this article is to offer
our opinion on this subject. Certain aspects of
the theory of excited states are reviewed and new
results are presented which may be helpful to
current research on excited-state wave functions
and photoabsorption cross sections.

Embedded in or apart from the criticism, there
are two main themes in the Luken-Sinanoglu pa-
pers.

(a) A discussion of states having lower states of
the same symmetry a,nd the application of the
Hylleraas-Undheim-MacDonald (HUM) theorem
to obtain wave functions which avoid "variational
collapse" arid are therefore suitable for the calcula-
tiori of oscillator strengths. For example, in Hef.
1(b), p. 1495, third paragraph, they write: 'In
the calculations of Nicolaides such "variational
collapse" has occurred as first noted in print by
Hibbert, and confirmed in another paper in which
the problem is analyzed and proper application of
earzational th'eory making use of the Hylleraas
Undheim-MacDonald (HUM) theorem is indicated.
The f values of Nicolaides have shown serious
discrepancies with experimental values and this
is due to variational collapse. In the present
work we calculate the variationally correct NCMET
charge wave functions for states not lowest of
their symmetry for the first time. '

(b) NCMET as "the new atomic structure theory"
applied to the calculation of accurate oscillator
strengths. For example, in Ref. (a), p. 1293,
they write: "Sinanolslu showed in the non-closed

shell generalization of his MET, which we refer
to as NCMET, that electronic charge distributions,
p(r), and the resulting "charge-like properties, "
like electronic quadrupole moments, hyperfine
constants, form factors, also transition densities
p„(r) and the resulting oscillator strengths, etc.
should be given to high accuracy just from what
he called the "charge distribution wave function
4 cD,

" or the "charge wave function 4 c" for
short. "

The present paper suggests, with detailed ar-
guments and concrete numerical examples, that
(i) the Luken-Sinanoglu discussion and sweeping
statements on these topics and the emphasis on
certain points pertaining to variational theory,
the calculation of wave functions, energies and
transition probabilities are, to a large extent,
debatable. (ii) Their "new" computational pro-
cedures for the accurate calculation of oscillator
strengths contain worrisome approximations. (iii)
The calculated electronic structure of valence
states and perturbed continuum and discrete
series is very sensitive to the details of quantum-
mechanical computations, regardless of whether
the HUM theorem is satisfied or not.

II. THE 1972 NICOLAIDES-BECK VPGRK ON VALENCE

EXCITED STATES

Our calculations of Ref. 2 have not suffered from
a "variational'collapse, " as it is claimed in Ref.

The reasons for the discrepancy between
theoretical and experimental f values presented
in Ref. 3 is due mainly to inefficiency of basis
functions and is briefly analyzed below. We recall
the following definition: Let E„be the exact energy
(i.e., an eigenvalue of Schrodinger's equation) of
the nth quantum state of a given system, with
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E„&E„,& ~ ~ ~ &E,. Consider a trial function $„
such that

Then we say that E„ is an upper bound of the exact
energy E„and no variational collapse has oc-
curred. Our calculations' satisfied E„&E„ in
all cases.

Also, if one insists (incorrectly') that there is
such a thing as a "partial variational collapse'"
for truncated Hamiltonian matrices, then, a look
at Table III of Ref. 1(a), which states that our
results are not "variational bounds on the energies
of the states indicated here, " shows that out
of the six examples chosen to be shown by Luken
and Sinanoglu, in three cases their ~..ergies have
gone &close ours and therefore their calculations
should also suffer from "partial variational
collapse" t

In our early work on excited states, "the types
of correlation and basis functions were chosen
according to the NCMET classification scheme.
The problem of lower states, within the NCMKT
scheme, was pointed out for the first time and
we discussed how it could be treated according
to the separation theorem of eigenvalues [Ref. 2,
Sec, 3. Also compare Eq. ll of Ref. 2 with the
discussion of L-S Ref. 1(a), p. 1302 on the BI 'S
state. ] On the other hand, it was also pointed
out that, due to the smallness of the set of basis
functions employed (in the spirit of NCMET""),
the matrix representation of the Hamiltonian with-
in this set did not correspond to the real spectrum
and an alternative approach was taken: the de-
sired solution was chosen as the vector with the
largest coefficient in the H-F function represen-
ting the configuration of interest (i.e., for svhich

energy as smell as correlation is minimized). %'e

remarked how the choice of the basis functions
may result in multiple minima and root crossings
and affect the mixing coefficients. In fact our
calculations indicated that the flexibiLity of one
optimized STO in describing complete sets of H-F
orbitals is limited in cases where there is
strong valence-Rydberg mixing. [We point out
that similar situations may occur in multi-
configurational Hartree-Fock (MCHF) calculations
in excited states (e.g. , Ref. 6). A related
discussion has been given recently by Grein and
Banerjee (Ref. 6, see their Sec. 3).]

In the calculations of the oscillator strengths"
we did not use the "charge-distribution" arguments
[Ref. 1(a),p. 1293], which we feel are unsub-
stantiated. Instead, we wrote (4'~„„,1D14~„,)
=(4'&'D 1D1%rcn) (Eq. 1 of Ref. 3 and Eq. 13 of Ref.
2) and worked within this scheme. We found out

that for states in neutrals and some singly
ionized atoms, regardless of whether they had
lower states of the same symmetry or not, the
types of correlation effects and the basis sets
were clearly not flexible enough to account for
details of configuration iriteraction and their effect
on oscillator strengths (see Ref. 3 abstract and
p. 243). Our emphasis on the above equation,
i.e., on the characteristics of the amptitude
rather than on the characteristics of the suave

function, eventually resulted ina first-order theory
of oscillator strengths, ' "FOTOS, which uses
flexible basis sets and appears to be a valid theory
of photoabsorption. '

III. THE OKSUZ-WESTHAUS-LUKEN-SINANOGLU NCMET

CALCULATIONS

The early Westhaus-Nicolaides-Sinanoglu cal-
culations of oscillator strengths" "were carried
out using NCMET" wave functions obtained by
Oks'uz and Sinanoglu" for studies of energetics.
The use of such wave functions was based on
practical reasons, i.e., availability. This is why
no results for other types of transitions (e.g. ,
shell jumps) were reported. Thus, these cal-
culations might be considered as not a result of
any theory of oscillator strengths.

The relative success of the %esthaus NCMET
calculations was really observed only in ions of
first row atoms. The only calculation on a neutral,
NI 48'-4P, was not accurate.

The reason for such discrepancies is to be
found in the characteristics of the wave functions
employed and their ability to describe the tran-
sition amplitude correctly. By now, it is es-
tablished that in ionized species, this can be done
routinely using limited configuration-interaction
or low-order perturbation theory. However, for
states in neutrals and for a few singly or even
doubly ionized species, whether they are the
Lowest of their symmetry or not, there is strong
mixing of certain configurations and the choice
of the basis sets is very crucial and still not
understood completely.

The new NCMET calculations of Ref. 1 have
employed wave functions of the excited state with
a slightly expanded basis set (i.e. , they have
added one orbital of l symmetry, where l is the
symmetry of the Rydberg orbitals belonging to
the series which interacts with the valence con-
figuration). Thus, what Luken and Sinanog'lu
have essentially done in the four papers of Ref.

is to use the same ground-state wave functions'
while to the excited-state functions of Ref. 2 they
added a vector corresponding to the Rydberg
configuration (thus changing the basis set), and
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diagonalized.
However, there is no guarantee that their choice

of the basis functions is the correct one. Neutral
and singly ionized systems may often exhibit sub-
stantial nonorthonormality effects (between initial
and final states) irrespective of whether the states
involved are of the lowest energy for their sym-
metry or not, which requires' the presence of
certain bivirtual configurations, none of which are
present in the I -S work.

Furthermore, they partially neglect the effect
of nonorthonormality among Hartree-Fock orbitals
corresponding to valence and Rydberg configura-
tions used in the Hamiltonian matrix (e.g. , the
SCF-HF 2P from OI 1s'2s2P "Po and the SCF-HF
222 from 0 I 1s~2s'2P'Ss 'P' do not satisfy (2p/2p)
=1). They use an orthonormal basis set con-
structed from the lowest Rydberg member which
is not of primary interest to them (see Ref. 1(a),
P 1301). This arbitrary choice should be par-
ticularly worrisome because it is highly unlikely
that the inherent error is corrected sufficiently by
the use of a sj.ngle polarization function of each
symmetry, taken one at a time (e.g. , they neglect
pair excitations which are needed simply be-
cause a common orthonormal set is used). In
this regard, one may suspect both their eriergy

. results (L-S Table III), which will have ~bF~ in-
creased by the missing effects, and the oscillator
strengths.

Finally, for states very sensitive to positioning,
as are the OI 'P states, the failure to include
certain pair bivirtual correlations (beyond those
required for nonorthonormality reasons) which
would affect the relative positions of the valence
and Rydberg vectors differently, gives rise to
further uncertainties.

We close by commenting on the footnote c of
Table II of I S.

The claim that the restriction (3g $3p (3g 3

g&, is sufficient to prevent variational collapse,
is incomprehensible to us. Given a system in
which there is heavy Rydberg- valence configuration
interaction, the sequence of the eigenvalues of
the diagonalized matrix often depends exclusively
on the characteristics of the virtual orbitals
describing the Rydberg series orbitals. Thus a
particular choice of that orbital may result in
one sequence and another one in an inverted one
(i.e., there is root crossing as a function of the
parameters of the virtual orbital). The require-
ments that one places on the virtual orbitals of
other symmetries is immaterial.

This choice by Oksuz and Sinanoglu, "which
was applied to calculations of ground as well as
excited states with lower-lying states (e.g. , Nil
2s2p' 'P', NI2s2p"P, OII 2s2p"P and OI 2s2p"-

'P' —Table 5 of Ref. 14) seems to have been just
a calculational recipe for computations which
always chose the lowest root of the diagonalized
matrix as the desired solution regardless of the
actual position of these states in the real spectrum.
This is confirmed by a related statement on
p. 48 of Ref. 14 and the footnote of Table 5, Ref.
14.

IV. A COMMENT OF THE HYLLERAAS-UNDHESf-

MacDONALD THEOREM AND OSCILLATOR STRENGTHS

The HUM theorem provides upper bounds to the
corresponding exact energies. It says nothing
about how close the approximate solutions are
to the real ones. It simply says that if one keeps
on adding terms, there is uniform convergence
for states lying below. Furthermore, the ropt
ordering depends on the choice of the basis func-
tions.

Even if the root ordering is correct, the cor-
responding wave functions may be so inaccurate
as to be worthless. For example, from an M
xl8 matrix HF calculation of unperturbed Rydberg
states of the N-electron system, one may obtain
bounds to the first M states. But, such additional
solutions are characteristic of the N+1 electron
system and are thus unlikely to yield "good"
(i.e., SCF-HF) f values. The same goes for
many-electron, correlated functions. Upper
bounds may be obta, ined but the accuracy of the
resulting f values is another matter. Hence,
the HUM theorem is by no means a sufficient con-
dition for accurate fvalues. Is it a necessary
oneV We think not. For example, a di, rect nu-
merical HF solution of a high-lying Rydberg
state, in which no lower states are explicitly
represented, may yield reasonable results (e.g. ,
energy differences between Rydberg members,
f values, etc.). Furthermore, in cases of cal-
culations of highly excited state wave function@, "
one may be able to remove configurations of lower
energy which are far from the interaction region,
providing they do not possess a large f value.

The carbon example discussed in Sec. VBoffers
further support to the conclusion that HUM may
not be necessary.

V. EXAMPLES FROM MANY-BODY CALCULATIONS

A. The N i 1s2 2s2p4 4P state

This state offers a good opportunity to sub-
stantiate arguments made in this paper. It is very
cIose to the Nt 1s 2s'2p'ns and nd series and its
lifetime has been measured accurately. "'7

We have performed a series of relatively large
configuration-interaction calculations on this
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TABLE I. Effect of basis set on N I 2p S 2s 2p
4Pf value (length form).

Calculation type H-F coefficient

A
gb
Cc

Experiment

0.910
0.716
0.975
0.754

0.084
0.002
0.145
0,035
0.0.82, 0.85

A FOTOS calculation (Ref. 7) using 3s and 3d H-F
functions. "2sP+ " was the second root.

Same basis as A except the 3s was replaced by an
STO from earlier (Ref. 2) work. Again "2s2$4" was the
second root. Little variation in energies between A
and B was found.

'References 11 and 14. The "2s 2p4" was the lowest
root, contrary to the experimental ordering.

From L-S, Table II.
'Barry et a&. , Ref. 16.
~Kernahan et al, , Ref. 17.

state. In calculation A, the 3s, and 3d functions
were H-F functions calculated numerically using
Froese-Fisher's code. The ordering of the roots
were as observed experimentally, i.e., the lowest
had the largest coefficient in front of the
1s~2s~2P23s 4P H-F vector, the second lowest in
front of the 1s'2s2P44P H-F vector.

The mixing coefficients were such that we ob-
tained oscillator strengths in good agreement with
experiment (see Table I).

In calculation 8 we changed only the 3s function
and instead of a HF 3s we used an STO. Every-
thing else. remained the same. The energy po-
sition hardly changed. The root ordering re-
ma, ined the same. However, the coefficient of the
H-F vector of the second root was different and
consequently the f - value was changed drastically.
This calculation has not suffered a variational
collapse. Simply, the basis set is such that it
yields the wrong mixing coefficients.

Calculation C is the Westhaus-Qksuz-Sinanoglu" ' "
calculation. No multidimensional optimization
was carried out. The 2s2p"P root was the los@est,

contrary to the experimental spectrum. However,
the H-F coefficient resembled the true one more
than that of calculation B. Thus, agreement of
the f value with ex-periment is better even though
the root ordering is wrong.

Calculation D is as described in L-S.

B. The C I 2s2p P state

In order to reinforce thepoint made in Sec. 7 A, we
note that our old, without HUM, C I 'P -'P' f
value' (f= 0.093), is in excellent agreement with
Weiss's very large CI calculation" (f= 0.097),

which disagrees with that of L-S (f= 0.'038),
although both satisfied HUM'S theorem. A recent
phase-shift experiment" has yielded f= 0.063.

C. The Bi "2s2p " S state

This state is embedded between the n=6 and
n= 7 members of the ls'2s'ns'S Bydberg series. "
Our "HUM-less" calculations" yielded an fi,
value of f0.083. Nesbet's recent calculations, "
v hi.ch included a large number of Rydberg orbitals,
yielded fi, =0.0004. FOTOS" yields f~ = 0.0&4.
The experimental value" is f= 0.035. This
example demonstrates once again how sensitive
such f values are to basis sets and the relative
positions of the diagonal matrix elements.

In our computations of transition probabilities
to energy regions of valence-Rydberg configuration
mixing, '"'" the excited states of interest are
represented in zeroth order by SCF-HF functions.
As for the relative positions of the diagonal
matrix elements, these are obtained by a straight-
forward effective Hamiltonian approach'" which
essentially accounts for the difference in the
types of correlation present in the valence and
Rydberg states.

VI. CONCI. USION

The energies computed in Ref. 2 are uPPer
bounds to the exact energies.

The variational-collapse arguments put forth by
Luken and Sinanoglu are irrelevant. Rather, in
most excited-state calcula, tions of the variational
configura, tion-interaction type with H-F zeroth-
order functions, it is the flexibility of the basis
functions which is the determining factor, in the
following sense.

(a) If the flexibility is such that it allows a one-
to-one correspondence between roots of the
diagonalized matrix and the physical spectrum,
then the HUM applies directly and the desired
solution for the nth state is obtained by choosing
the nth root. For the nth root, (X~X) = min (svhere
X is the correlation function) if the zeroth order-
choice is H-F. It does not ho&eever necessarily
mean that the ivave function corresponding to this
root is a good representation of the exact ivave
function, expecially in cases of near- degeneracies
of the diagonal matrix elements.

(b) If the basis set is such that it does not allow
the direct application of the separation theorem,
then the choice of the desired vector according
to the prescription: Energy= min, (X~X)=min,
was suggested as a reasonable alternative. "

Due to the Physical basis of the independent-
particle approximation no variational collapse
occurs. If the Qex&bility of the STO's describing
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Rydberg (continuum) series into which a valence
configuration is embedded and the corresponding
diagonal energies happen to be good (we currently
always include H-F functions surrounding the
valence state while in cases of serious near-
degeneracies, the diagonal matrix elements are
adjusted semiempirically by the down-shift
model" ) then the mixing coefficients of the most
important vectors are reasonably accurate and
good oscillator strengths can be obtained.

To clarify the point further in order to avoid
possible misunderstandings: satisfaction of the
HUM theorem by inclusion of the necessary con-
figurations, presupposes an analogous flexibility
of basis sets. For example, take the N I 1s'2s2p"P
state. For the semi-internal correlation we have
the vectors ls'2s'2p'f, and 1s'2s'2P'f„. Now, if
we approximate f,= 3s STO, f~= 3d STO (see Ref.
14, p. 48) then the CI matrix contains only three
configurations: 1s'2s2p', ls'2s'2p"'3s",
].s 2s 2p"'sd". 0 the semj. -internal orbitals are

made more flexible and instead of one STO we
expand them in terms of three STO's, then: e.g. ,
f, =3s+4s+ 5s, f, =3d+4d+ 5d, and we have a
7x 7 Cj:, i.e., flexibility of orbital basis sets and
number of configurations is the same thing.

However, satisfaction of HUM's theorem has
nothing to do with the accuracy of oscillator-
strength calculations directly. Only indirectly it
may have, since one is forced to increase the
flexibility of the basis set describing Rydberg,
continuum series. Yet, it is not at all clear that,
given a highly excited valence state, "far away"
Rydberg states need to be included, even though
they may be lower.

Our old calculations, '"which were carried out
within the NCMET classification scheme, may,
in some cases, suffer from lack of flexibility of
the basis functions in spite of the multi dimensional
optimization procedures. ' These problems may
exist for levels lowest of their symmetry ' as well
as for levels which are not the lowest.
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