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The interaction of helium with a metal surface can be obtained by calculating both the change of the ada-
tom orbital energies and the energy associated with the orthogonalization process which take place during
physisorption. The present approach uses the nonlocal expression in order to describe the contribution of
the exchange energy in the He-metal interaction, but it does not employ the perturbation series expansion
in the He pseudopotential. It is shown that by imposing the condition of self-consistency, a more repulsive
expression for the helium interaction is obtained as compared to that of first-order pseudopotentiaI theory.
The condition of self-consistency accounts for the major part of the contribution of the higher than first-
order terms of the perturbation series in the helium pseudopotential.

In a recent Rapid Communication, Manninen, Nerskov,
Puska, and Umrigar' discussed the Esbjerg and N@rskov
(EN) equation2 in connection with the problem of the in-
teraction of helium with a metal surface. In its corrected
form, the EN equation states that the repulsive interaction
EaN(r) between the He atom and a metal surface is propor-
tional to the (unperturbed) electron density of the substrate
p(r), i.e. ,

pseudopotential approach) that the presence of the He atom
in the substrate region has the effect of forcing the single-
electron wave functions of the substrate to become orthogo-
nal to the adatom (He) orbitals. Thus, it is assumed that
the single-electron wave functions lk) of the substrate in
the presence of the adatom are given with respect to a pseu-
do wave function I k„)=

I ko), where I ko) are the single-
electron wave functions of the free substrate, i.e.,

EEN(r) = ~,ffp(r)

where the proportionality constant a,ff depends on the sub-
strate.

Values for a,ff obtained with various calculational
methods are quite different. ' Of particular interest are the
values of n, ff obtained within the local-density approxima-
tion (LDA) method2~ (to the exchange and correlation ef-
fects of the He-substrate system) and the values obtained
by a method which takes into account the nonlocality of the
exchange effects but ignores correlation effects in the He-
metal interaction. The values of n, ff obtained within the
nonlocal scheme are much greater than those obtained
within the LDA method. It was then argued' that this
discrepancy may be due either to the neglect of the correla-
tion effects in the nonlocal approach, or to the problem of
convergence associated with the perturbation series expan-
sion in the He pseudopotential which is present in the non-
local approach. 5 6

In this Brief Report, we show that one of the two reasons
the mentioned discrepancy is associated with may be
eliminated. In particular, it is shown that the perturbation
series expansion may be replaced by a new expression
which, in addition, satisfies the condition of self-
consistency. Our proof is based on the assumption (of the

Ik) = lko) X(~ lko) l~)

Hlk) = (Ho+ Vt) lk) = eklk)

aolko) = t"Iko) . (4)

Similarly, for the free and physisorbed adatom it is assumed
that

H. l~o& = e.'" l~o&,

(0 + v2)l~& =e l~&

where 0 is the free-adatom Hamiltonian and V2 its pertur-
bation when the adatom is in the presence of the substrate.

where the tilde indicates that the summation does not in-
clude spin, Iu) denotes the adatom orbitals, and the sum is
over these orbitals. The coefficient (n lko) is the overlap
S q. It is apparent that (alk) =0 as both the basis sets
(lko)} and (Ia)I are assumed to be orthonormal. Our pro-
cedure is not based on building up a pseudopotential. In-
stead, we proceed as follows.

Let Vq be the perturbation, introduced in the Hamiltonian
of the free substrate Ho, and assume
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For completeness we define V~ and V2.'

qf (0) (r') qf +(0)(r') qf (0) (r )
V&qr&(0) —Vp) ~(0) X dr' ( V(A) + V(1) )@(0)

Ir —r'I

~ @~(0)(r~) ~(0) (r~) @(0)(r)
V2qr(0) —VgA qr(0) X

" dr' ( V(M) + V(2))qp(0)
k r —r' (8)

in terms of the Coulomb potential V(b ) and Vg) due to the
free substrate and the free adatom, respectively, and in
terms of V„' and V„, the corresponding exchange interac-
tion terms. The notation Wk and %" is used instead of
lkp) and Iap). Finally the upper indices M and A refer to
the metal and the atom, respectively. It is noted that

X(k()l v„"'Ik()) = X(nl v„(2)ln)

and that

X&~I vhÃ l~& = X&kol V$",) Ik()) +A V(g~ (z,), (10)

I

where A denotes the atomic number of the adatom which is
assumed located at the position z& from the surface of the
substrate.

Multiplying by (kpl both sides of Eq. (3) from the left, it
is easily proved that Eqs. (2), (3), and (4) lead to

X( „(0))1 XIS „I2
k a

(

= X &kol V) lko) —X S g&kol. V)I()'0) (11)
k a, k

On the one hand, the first term of the right-hand side
(RHS) of Eq. (11) is rewritten [using Eqs. (9) and (10)] as

X ("oI V) lko) = X (ko I Vg I "o) + X (ko I V ' lko)

—X(~ I
v(2)l ) + X( I

v(M)
I ) A V)M) (

a a

=xs..-AV(b) (z, )

(12a)

=Ec"F(z,) Ep,F, —A V—$, ) (z,), (i2b)

where 5~ is the perturbation of the eigenvalues of the free
adatom upon physisorption. It is also assumed that the
difference of the total Hartree-Fock (HF) energies,
E "F(z() and EP,"„ofthe physisorbed adatom (coupled HF)
and the free adatom, respectively, may be approximated as a
summation over the difference of the orbital eigenvalues.
On the other hand, the last term of the RHS of Eq. (11)
can be rewritten as (by adding and subtracting Hp to V&)

/

X(k()l V(la)S ), = X[—ef, '+ V«(zi)+e'"}IS ) I', (l3)

where V,«(z) is the single-electron potential for the sub-
strate. s Thus Eq. (11) becomes [omitting the factor
(i —X.ls.,l') }

X(~„—.(')) = E'""(z,) —Ep,F, —A V„(z,)

+ X [&g Veff(z() & }I Saki' . (14)
a, k

A numerical calculation of the term 1 —X IS ), I2 indicates
that the omission of this term introduces a maximum error
of k2% in the value of X„(6k tk ) [at Z(=S.O a.u. from
the Al(100) surface}.

Equation (14) is the one obtained by Harris and Liebsch5
within the first-order perturbation term introduced by the
pseudopotential of helium.

The three first terms of the RHS of Eq. (14) represent an
energy term, AEq, which is approximately due to the ex-
change interaction V„as it is directly verified from Eq.
(12a) as the term

X (& I
V(M) I~ )

—A V@8 (z)

The fourth term of the RHS of Eq. (14), denoted by b, E2, is
due to the orthogonalization procedure, Although not ex-
plicitly shown, the AEi term is also proportional to the
overlap square IS,), l2=

I (kplap& I'.
Application of Eq. (14) may lead to unphysical results.

The term AE~ will appear strongly attractive as this term is
proportional to the overlap square IS,kl2. This is mainly
due to the fact that the use of an exchange interaction of
the form

(,)
~ e„(r)e (r)e (r')+„(r')

(k V(') k) =—,dr dr'X
Ir —r'I

(is)

presupposes the orthonormality of the total set (Wk, W,} of
the single-electron wave functions, a condition which is not
tnet in the set IW),0, 'p(0 }. In order to eliminate this draw-
back one can use the wave functions lk), as obtained using
Eq. (2) in evaluating the exchange term (kol V(') lkp). This
substitution has approximately the result of doubling the
AE2 term.

This observation indicates the importance of self-
consistency in evaluating the repulsive interaction AE

„(ek—e), ) upon physisorption. A more accurate ex-
pression can be obtained by multiplying both sides of Eq.
(3) (from the left) with the wave function (kl (instead of
multiplying by (kpl). Following the same procedure we ob-
tain, for the case of He, a repulsive interaction AE,

b.E'=X(e),—ek ) =E ""(z)—EP" —A Vcb(z()

+ /is. „l2(- v,«-..),
a, k
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which is more repulsive than the expression given by Eq.
(14); it is approximately 10% more repulsive in the case of
He/Al(100). This is due to the fact the ak term which is
present in the last term of the RHS of Eq. (14), does not
appear in the corresponding term of Eq. (16).

Equation (16) is consistent with the restrictions in the use
of the nonlocal expression [given by Eq. (15)] for the ex-
change energy contribution to the He-metal interaction.
Furthermore, it is noted, that by imposing the condition of
self-consistency, we allow changes to the' unperturbed states
~ka) which take place during physisorption. Thus, within
the approximation described by Eq. (2), Eq. (16) contains
most of the contribution of the higher (than the first) terms
of the perturbation series in the helium pseudopotential.
This is true, in particular, in the case of simple metal sub-
strates for which the approximation ~k„) = ~ko) is well jus-
tified. A small error may be assigned to the fact that within
the approximation of Eq. (2) the single-electron states ~k)
of the perturbed substrate are not any longer orthogonal to
each other. This will have the effect of introducing an error
in calculating the exchange energy contribution to the total
energy of the perturbed substrate.

The repulsive interaction we calculated for the
He/Al(100) system according to Eq. (16) and using exact
wave functions

~ ko) for the substratea and employing the
coupled Hartree-Pock method9 to evaluate the term
E HF(zi), results in a proportionality constant u, ir
=860 eVai). This constant refers to the regions where the
free-electron density p(z) of the substrate is very small
[p(z) 0]. At higher free-electron densities this constant
gets smaller. '

The value of Q.,ff found hei'e is approximately of the same
magnitude as that found by Harris and Liebsch. 5 Therefore,
the remaining discrepancy between the values of o,,ff found
within the present approach and the one found within the
LDA method, cannot be attributed to the problems of con-
vergence of the perturbation series in the helium pseudopo-
tential; it may be attributed to the omission of the correla-

tion effects from the attractive term HEI. Other reasons for
this discrepancy are discussed in Ref. 10.

In our case hEI is less negative as compared with the cor-
responding term of Harris and Liebsch. 5 This is due to the
approximation

—EcHF(z ) EPF (17)

It is also noted that the calculation of E HF(z&) is very sensi-
tive to the approximation used in evaluating the exchange
integrals. 9 The approximation used in Ref. 9 may overesti-
mate' the pole p =p' in the exchange integrals, in particu-
lar, in the case of diffusive Gaussian basis functions. This
overestimation makes the RHS of Eq. (17) more negative.
However, this is avoided here by using a slightly different
approximation which is described in detail elsewhere. '

In concluding, it is emphasized in this Brief Report that
self-consistency is a very important factor in calculating the
energy change /J. E= $i, (ai, —aq+) ) upon physisorption. This
energy change can be obtained as follows.

(i) Calculating the change of the orbital energies of the
adatom due to physisorption.

(ii) Calculating the energy change associated with the
orthogonalization procedure which takes place during phy-
sisorpiion.

(iii) Directly calculating the difference (ak —ak ) rather
than independently calculating the eigenvalues ek and/or
~(0)

It is understood that the above discussion is based on the
assumption that the single-electron wave functions of the
substrate undergo a change (during He physisorption) which
is described within the zeroth order to the He disturbance
(pseudopotential). This assumption, however, is expected
to approximate quite well the interaction of the noble gases
with metal surfaces which are described within the jellium
approximation.
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