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When an atom or a molecule is exposed to an electric field, the discrete electronic spectrum turns into
a spectrum of resonances with complex energies due to the mixing of the bound wave function of each
unperturbed stationary state with the asymptotic form of the Airy function. The complex energies are
eigenvalues of a non-Hermitian Schrodinger equation whose solutions have a special outgoing-wave
asymptotic form, which is derived rigorously. At least three coordinate transfarmations (rotation,
translation, and a combinatian of these) regularize the dc-field-induced resonance function, the most
efficient one being the long-honored rotation, f (x)=xe', which causes the function to dissipate asymp-

3/2
totically as e ~" . This finding, obtained from first principles, explains previous results that have been
obtained either via trial computations or via elaborate mathematical analyses of the spectrum. The
theory is further developed toward the efficient computation af such resonances with X' functions.
Starting from the resonance-wave-function form +"'=a+0+bX s, the computation of the localized 00 is
carried out on the real axis, and only the free-electron function belonging ta X„is rotated and optimized
in the complex plane. Two applications are presented. The first involves a numerically solvable one-
dimensional model of a shape resonance in a dc field for a large range of field strengths. The second in-

volves the hydrogen atom in its graund as well as in its first excited state. In the first example, %0 is ob-
tained numerically in an explicitly constructed effective potential containing partly the effect of the field.

To this "dressed" %0, the asymptotic part X is then added as a sum of an only ten back-rotated com-

plex Slater-type orbitals (STO s), whose coefficients and nonlinear parameter are optimized from the di-

agonalization of the full Hamiltonian until stability of the complex eigenvalue is achieved. In the second
example, %'0 was chosen as the exact 1s for the ground state and as the two roots 2s+2po of the total
Hamiltonian for the excited state. X„was expressed in terms of angular momentum symmetry blocks

up to I =8, with each symmetry expanded in terms af ten complex STO's. No optimization of 8 or other
nonlinear parameters was done. Comparison with the exact results for the model potential and with

published ones for the H atom shows very good agreement, thereby demonstrating the efficiency and re-

liability of the theory as well as its potential for treating ¹lectron systems.

PACS number(s): 32.60.+i, 32.70.Jz

I. INTRODUCTION

The phenomenon of the broadening and shifting of the
energy of an atomic state when perturbed by an external
dc field —the LoSurdo-Stark efFect [1,2]—has led over
the years to a variety of theoretical investigations as re-
gards the resulting spectrum and its computation [2—20].

The mixing of the initially bound stationary states with
the electronic continuum through the dc-field interaction,
V(z)= eFz, gives rise—to nonstationary states (reso-
nances) with complex energies (see below). In the 1970s,
a series of publications initiated the interest in the use of
complex scaling in the Hamiltonian coordinates, p =re',
for the computation of resonances using square-
integrable basis sets [21—26,5,6]. The mathematical
prerequisite for the rigorous application of this approach
was that the potential V(x) is "dilationally analytic, " a
property which follows only if V(x) =0. Thus the un-

bounded linear potential —eEz, giving rise to the dc-
field-induced resonances of the LoSurdo-Stark effect, is
not included in the original theory of the spectrum of ro-
tated Hamiltonians. Yet, computational experimentation

by Reinhardt [5] (see also Ref. [6]), following the method
of Doolen [25], showed that converged results were ob-
tained when the complex-scaled hydrogen atom plus dc-
field Hamiltonian was diagonalized and the complex en-

ergy was stabilized as a function of 8 or of the number of
basis functions. Reinhardt [5] and Cerjan et al. [6] com-
mented on this fact and emphasized the need for an ex-
planation of the numerical results.

Given this situation, a series of rather esoteric
mathematical analyses was published [9—12] which
justified a posteriori the validity of the complex-
coordinate-rotation (CCR) method. In the meantime, the
coordinate translation, x ~x +iq, was also found to yield
the resonances created by the linear potential [6—8]. In
fact, Cerjan et al. [6] applied both methods to a model
one-dimensional potential (their Eq. 4.1) and found that
with the same basis the convergence of the coordinate ro-
tation method was better.

Although the mathematical papers [7—12] seem to
offer a justification for the effect of coordinate rotation
and translation on the spectrum of the atom-plus-field
Hamiltonian, it is desirable to have an alternative theory
of LoSurdo-Stark resonances, written in the language of
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the physicist, which offers a simple yet rigorous explana-
tion of the relevance of the aforementioned coordinate
transformations while allowing for the development of
efficient computational methods. The purpose of this pa-
per is to present such a theory and to demonstrate it by
applying it to a model problem of a shape resonance in a
dc field [27] as well as to the hydrogen atom in its ground
and first excited states. It is shown how the complex-
eigenvalue resonance spectrum is created and how these
coordinate transformations emerge as a necessity for the
regularization of the resonance wave function, thereby al-
lowing the definition and solution of the problem in the
space of two sets of state-specific X functions, optimized
separately on the real coordinate axis and in the complex
plane.

II. DERIVATION OF THE COMPLEX-EIGENVALUE
SCHRODINGER EQUATION

FOR THE LoSURDO-STARK RESONANCES

The problem of the LoSurdo-Stark resonance states
can be treated in terms of a theory whose foundations in-
volve the concepts of dynamic localization (represented
by the square-integrable wave function %0), of the pertur-
bation of the asymptotic boundary conditions (yielding
effective Hermitian or non-Hermitian operators, depend-
ing on the function space), and of the exact form of the
resonance function specific to the problem of interest
[Ref. (28), Eqs. (1)-(14) and related discussion, and Refs.
[29—34] ].

The turning on of the external dc field transforms each
stationary and localized atomic or molecular state %'o of
real energy Eo into a nonstationary one, which decays by
emitting an electron. In the energy-dependent picture,
the exact scattering function in the vicinity of an isolated
decaying state (resonance) is a mixture of a bound com-
ponent %v with unbound ones, U(r;E }, which is written
as [35]

V(x)= Fx . — (5)

The well-known energy-normalized asymptotic solution
corresponding to V(x) of Eq. (5} is the asymptotic form
of the Airy function

U(k )— 2

mk

k m.
sin +—+5 (6)

where E is a real number on the positive energy axis and
not an eigenvalue.

Is there a time-independent eigenvalue equation that is
satisfied on resonance? In order to answer this question
we must impose the boundary conditions which a decay-
ing state must satisfy. Thus we start from Eq. (lb) and
seek to determine its asymptotic form pertaining to each
nonstationary situation under study. To achieve this, we
must know the corresponding asymptotic expression for
the basis functions U(r;E). Nicolaides, Komninos, and
Mercouris [31] and Komninos and Nicolaides [32] have
already done this in the case of atomic resonances for a
short-range potential (negative ions} as well as for the
long-range Coulomb potential. As is well known, the
short-range potential was considered by Siegert [37] in
his S-matrix treatment of nuclear resonances and led to
the outgoing boundary conditions with complex momen-
ta, previously introduced ad hoc by Gamow [38].

The Siegert-type treatment is rather alien to the prob-
lem of showing the emergence of the resonance spectrum
of the I.oSurdo-Stark effect. On the contrary, the present
physically motivated theory is general, requiring only the
appropriate restructuring of Eq. (1) by incorporating ex-
plicitly the asymptotic form of the U(r;E) for each %0
representing a localized state of the unperturbed spec-
trum.

In the case of the LoSurdo-Stark problem, the atom-
plus-field potential in the asymptotic region is dominated
by

4'(r; E)=a(E)it&+ fdE'bz (E)U(r;E')

=a(E) %0+PfdE', U(r;E')

(la) The term kil3F+nl4 is the usual J~KB phase [20]
x' 2 E+Fx' +m 4, wit t e JWKB local momen-

tum k(x ) given by

where

+A(E) Vo@U(r'E) (lb)

Let

k =2(E+Fx )—(2F) ~
g, F is real,

x+—(2F)'~, F is the field strength .F

(7)

Ho+o Eo+o Ho H —V

V„=(U(r;E)(H~q, ),
E =ED+ PfdE', +A,(E ) [ Vv@ i

(2a)

(2b)

(3)

k m+—+5
3F 4

Substituting Eq. (6) in (lb) we obtained
' 1/2

(H E)%(r;E }=0— (4)

Equation (3) constitutes the definition of the function
A,(E} whose value is fixed by the asymptotic boundary
conditions of the problem [36].

Equation (1) contains all the information on and off
resonance. %(E),being a scattering state, satisfies

P(x) ——n Va
2

+~ co m.k
A,(E )

e
17T

+ I+A(E) e IL-
l&

(10)

On resonance, the coefficient of the incoming wave
must be zero, so that



45 THEORY OF THE RESONANCES OF THE LoSURDO-STARK EFFECT 351

A, {E)= —i m. on resonance .

Therefore on resonance the energy of Eq. (4} becomes
complex,

E z0 =E0+P dE', —z~ P0~

=E +b, ——r.0 (12b)

In lowest order, h=b(Eo) and I =I'(Eo). In general,
the extent of energy dependence of b and I depends on
the characteristics of the nonstationary state, on the
strength of the efFective perturbation, and on the func-
tions used in actual computations to represent the local-
ized and the asymptotic components [30].

According to Eq. (7), the momentum also becomes
complex

perturbed boundary condition, Eq. (13), and 8 is the per-
turbed one, defined operationally by restricting the func-
tion space to that of square-integrable functions. This
changes the form of the Hamiltonian. Considered in Hil-
bert space, the difference between the old and the new
forms constitutes the perturbation that causes the decay
(Ref. [30],pp. 481 —483).

The choice f(r)=p=re' for the regularization of res-
onances of short-range potentials —also valid for the
Coulomb potential —was introduced by Dykhne and
Chaplik [40]. In the present case, the potential in the
asymptotic region does not die out but instead it grows
linearly with x [Eq. (5)]. Let us then consider the ex-
ponential form of Eq. (13}which determines the conver-
gence properties of the LoSurdo-Stark resonance

ia(z +Fx)
(16)

k =2(zo+Fx) on resonance . (7') where a is a real constant. It is shown in the Appendix
that the transformations

Given Eqs. (10)—(12), the exact asymptotic form of the
resonance function for the dc-field-induced nonstationary
state is

If, (x)=x+iq, q & (17a)

%„,(k ) ——n. Va
g~ oo

' 1/2
2

~k
k

exp i +—+5

(13)

f2(x)=xe', 0&8& 2'
3

ZQ 2'f (x)=xe' —,0&8&3 F 3

(17b)

(17c)

(H —zo )4""=0 (14)

[whose asymptotic solution 4';,' is given by Eq. (13)]
which is satisfied by the eigenfunctions of nonstationary
states created by the presence of the dc field correspond-
ing to each %o. In other words, for any atom or molecule
the electronic discrete spectrum turns into a resonance
spectrum [39]. The solution 4"' is not square integrable
and its explicit asymptotic form is given by Eq. (13).

III. COORDINATE TRANSFORMATIONS
EMERGING FROM THE REGULARIZATION OF %"

The solution of the CESE, Eq. (14), is facilitated if the
norm problem is circumvented. This is possible if an ap-
propriate coordinate transformation is found which
effects a perturbation of boundary conditions in the
asymptotic region such that the CESE of Eq. (14) can
turn into an equivalent CESE whose solution is square in-
tegrable, with real or complex functions, while the Ham-
iltonian becomes non-Hermitian with the same complex
eigenvalue. In other words, we should search for a trans-
formation, f(x), such that the diff'erential equation is
satisfied for two nearly equal boundary conditions, 8&
and B,

Bo(f(x ))=8(x ) {15)

[Eq. (5.22} of Ref. [30] ] where Bo is the asymptotic un-

V and a are evaluated at E0 or in its neighborhood.
Thus it follows from the above development that by

imposing the correct boundary conditions, Eq. (4) is
transformed into a complex eigenvalue -Schrodinger equa
tion {CESE)

make 4"' square integrable.
Thus, given the equivalence between transformed

Hamiltonians with X bases and untransformed Hamil-
tonians with complex functions (e.g. , Refs. [24] and [30],
Secs. 5 and 7), these results explain the previous numeri-
cal and mathematical findings [5-12] in a simple and
physically meaningful way and, of course, they are appl-
icable to any one-electron or ¹lectron atomic state.

Furthermore, for the first time a formal understanding
as to the computational characteristics of these two
transformations emerges: By comparing Eqs. (A12) and
(A18), which show the rate of exponential convergence to
zero for transformations f, (x) and fz(x) corresponding-
ly, we see that the complex rotation converges faster.
This is in agreement with the numerical findings of Cer-
jan et al. [6] on their model potential (see their Table VI).
Since this is a general result, we conclude that the com-
plex rotation [Eq. (17b)] is indeed a computationally con-
venient transformation with good convergence properties
for the dc- as well as the ac-field problem (in the Floquet
framework). This fact is in accordance with the numeri-
cal results demonstrating the reasonably efficient repre-
sentation of the outgoing orbitals in terms of back-
rotated Slater-type orbitals in the many-electron, many-
photon theory (MEMPT) of ac-field-induced energy
widths and shifts [41—43].

IV. THEORY FOR THE SOLUTION OF THE CESE

The theory of the previous sections allows the under-
taking of well-defined computational steps in order to
treat realistic problems in conjunction with efficient
methods for computing the relevant function spaces.
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The very derivation of the CESE, Eq. (14},shows that
the resonance N-particle wave function should have the
form

GTO's of real coordinates. Thus

g'(p)~ ga„P'„(r) (24)

0 =a%0+bX„

where

(18)

. . rN 1}g—N(rN}1 (19)

A is the antisymmetrizer, X„„represents the bound part
of the ionized system, and gN( rN ) is the unbound orbital
with

g~(0)=0, gN(re) —outgoing wave [Eq.(13)] .

(20)

For reasons given above, we consider the rotation trans-
formation. Equation (16) becomes

ill(p) =«()}'pa(p)+b(~)X (p} la I'+ lb I'=1 . (21)

This form is a basic feature of the present theory, making
possible the efficient solution of Eq. (14) for a variety of
resonance problems [29—32,41 —45]. The choice and
computation of %0 depends on the state under considera-
tion and is in accordance with the notion of dynamic lo-
calization and of the boundary conditions of square in-
tegrability on the real axis.

The corresponding non-Hermitian energy matrix,
E(8), contains the matrix elements (%0(p),H(p), %'0(p) ),
(+o(p),H(p), X„(p)), (X„(p),H(p), X„(p)). Appli
tion of mathematical analysis applicable to integrals of
analytic functions [29] as well as explicit demonstration
on solvable bound-state systems such as the hydrogen
atom and the harmonic oscillator, and on the usual ma-
trix elements with Slater-type orbitals (STO's) and
Gaussian-type orbitals (GTO's), led to the conclusion
[29—31] that for the bound function %0 the following in-
variance property holds:

(%'0(p), H(p), %'0(p) ) = (0'0(r ),H(r ), %0(r ) ) =ED . (22)

Equations (21) and (22} imply that the energy matrjx E(e)
can be written as

E,
(23)

whose size depends only on the size of the expansions of
the unbound orbitals gs, (pz) for each channel, since both
%0 and X„„(N—1) and their expectation values are
fixed from previous calculations on the real axis. The
actual computation of the matrix elements
(%0(p),H(p), X (p)) and (X~(p),H(p), X (p)) can be
carried out over complex coordinates or over real and
complex coordinates, depending on the type of square-
integrable basis sets used to expand the rotated orbital
g~(pN) [29—31,41—45]. A choice of g~(p~} which is
convenient for use with numerical (and therefore accu-
rate) zeroth-order bound orbitals belonging to %0 or to
X„„(N 1) is to expand th—e square-integrable gz(pz}
for each channel i in terms of Sturmians, of STO's, or of

where the g' are coupled to the symmetry adapted core
X „(N 1)—to form angular momentum states. When
the back rotation [Eq. (22)] is applied to the two matrix
elements, for the bound functions %0 and X„„aswell as
for the Hamiltonian, p is replaced by r while for the basis
set of Eq. (24) r is replaced by p' =re

How is the optimization of the various g' achieved
when the basis set expansion, Eq. (24}, is used and the y„
are made functions of p'=re ' ? For this work, two cri-
teria have been used. The first refers to the identification
of the correct solution from the diagonalized complex
matrix. The state-specific construction of 0 and the ac-
curate description of the localized wave function %0 are
features which allow the search for that root which is
closest to the pair (%0 ED) with

7
2 =E+5——I0 0 2

(ql, +0) =max for all values of F .

(25)

The second criterion concerns the stabilization of the
complex eigenvalue as a function of nonlinear parameters
(e,ai, a2, . . . , ) or as a function of the size of the ((|}„)
set [24,25,41 —45].

V. APPLICATION TO A MODEL
OF A SHAPE RESONANCE IN A dc FIELD

V(x;F)=7.5x e " Fx, x &0 . — (27)

The physics implied by V(x;F} is interesting in general,
since one has to define a physically meaningful square-
integrable 'kp. For example, in the case of autoionizing
or predissociating resonances, criteria for choosing %0 in-
clude the state-specific self-consistent calculation, the sa-
tisfaction of the virial theorem (which is an index of lo-
calization} and the existence of the correct number of

The work from this institute on a variety of resonance
states using complex scaling has aimed at the eScient
solution of many-electron problems (e.g., [30,41 —45,34],
and references therein). However, given the general in-
terest in model potentials for studying resonances (e.g. ,
[24,6, 18,33,46-55]), in this section we exhibit the im-
plementation of the theory on a model of a shape reso-
nance in a dc field. We had two reasons for choosing this
model. The first is that it can be solved exactly by nu-
merical integration and, therefore, provide a rigorous
check for the more general expansion method. The
second is that by choosing a shape resonance as the un-
perturbed state, the opportunity is given for underlining
concepts of imposed boundary conditions in the choice of
%0 and of the explicit construction of the related field-
dressed effective Hamiltonian.

We have considered the exponential potential
V(x ) =7.5x e ", first used by Bain et al. [24], which has
been a favorite test case for application of theories of res-
onances (e.g., [24,33,47—50]). The full potential is
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nodes in the zeroth-order function [28,30,34]. For
many-electron atoms and diatomics, these are made pos-
sible by the computation of a numerical multi-
conifiguration Hartree-Fock (MCHF) zeroth-order func-
tion [28,30,34,44).

In the present case of the local potential, the appropri-
ate choice of 4'o is achieved by introducing an effective
potential Vp(x F),

V(x;F), x ~xo
Vo(X~F) V( F) (28)

where xo is the value of x for which V(x;F) acquires its
maximum value [56].

The corresponding +o is computed via numerical in-

tegration on the real axis. The resulting "dressed" local-
ized function depends intrinsically on the external field
strength F and constitutes a very good approximation to
the resonance function.

As regards the description of the asymptotic part X„,
we used back-rotated Slater-type orbitals

ip„(p')-p" e (29}

HC=zoSC (30)

on the function space [%0 (numerical); ip„(analytic)].
The optimization of the calculation was carried out using
the stability criteria

=0,
z=zo

=0 (31)

while the number of STO's for all values of the field
strength —from 0.00 to 1 a.u.—was kept small (ten} and
constant. This was done in order to demonstrate the
efficiency of the theory and the importance of separating
%' and choosing a physically relevant %'0 on the real axis
[29,30]. In order to test the accuracy of this theoretical
approach comparison was made with exact answers, ob-
tained by numerically integrating in the complex plane

These were not orthogonalized on 40 or among them-
selves so that the complex energy zo is found from the
solution of the generalized non-Hermitian eigenvalue
problem

the Schrodinger equation for H(8), 9=0.7 rad.
The results are shown in Table I. The agreement be-

tween the variational results and the exact ones is very
good for real and imaginary parts over the entire range of
field strengths.

VI. APPLICATION TO THE GROUND
AND THE FIRST EXCITED STATE

OF THE HYDROGEN ATOM

The LoSurdo-Stark resonances of the hydrogen atom
in its ground or excited states have been computed by a
number of theories which obtain complex energies (e.g. ,
see Refs. [2—6, 12—20]). We have treated this problem in
spherical coordinates (in which it is not separable), since
this coordinate system is suitable for the treatment of N-
electron atomic states. The perturbed Hamiltonian is

H=h+Fr cosa, (32)

h is the free hydrogen Hamiltonian, and a is the angle be-
tween the field and the radius vector.

For the ground state, %0 was chosen as the exact 1s
function. For the excited state, two %'0's were employed,
the 2s+2po as obtained from the diagonalization of the
atom-field interaction. In this case, the field dependence
of %'0 is only through the mixing coefficients of the hydro-
genic 2s and 2po functions and not through the radial
function, as in the model problem of Sec. V. As regards
the choice of X„,we opted for a systematic increase of
the number of angular momentum blocks until stability is
reached. Thus, I blocks up to I =8 were used, each of
which had a radial expansion of ten back-rotated com-

n+1
plex STO's of the form p' e ~, n=0, . . . , 9. The
values of 8 and of a were fixed at 8=0.4 and a = 1. Their
optimization would reduce the size of the overall expan-
sion or the detailed accuracy of the calculation. Howev-
er, given the demonstration of the theory and its good
convergence (see below and Tables II and III},we did not
spend time with the optimization of the nonlinear param-
eters or with different choices of back-rotated basis func-
tions. It appears that this expansion spans the perturbed
inner and outer regions of these resonances sufficiently
well.

The results for a range of field strengths are presented

TABLE I. Real and imaginary parts (in a.u.) of the complex eigenvalue of the Hamiltonian with
V(x;F) given by Eq. (27), as a function of the field strength F (in a.u.). The exact results are obtained

by numerical integration of the rotated Hamiltonian. The expansion-based results are obtained with a
numerical bio corresponding to Vo(x;F} of Eq. (28) and an optimized set of ten $„[Eq. (24)]. The
values of the nonlinear parameters (H, a } are chosen according to the stability criteria [Eq. (31)].

0.00
0.01
0.02
0.05
0.10
0.20
0.50
1.00

2.10
2.12
2.20
2.16
1.99
1.58
2.23
1.75

0.149
0.149
0.150
0.150
0.150
0.150
0.150
0.185

ReE

3.4266
3.4168
3.4069
3.3772
3.3255
3.2252
2.9132
2.3997

ImE

0.0127
0.0136
0.0150
0.0165
0.0200
0.0308
0.0746
0.2004

ReE (ex)

3.4264
3.4165
3.4066
3.3768
3.3267
3.2257
2.9174
2.4020

ImE (ex)

0.0128
0.0134
0.0150
0.0163
0.0203
0.0302
0.0751
0.1974
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in Tables II and III for the ground state and for the two
excited states, respectively. There are many published re-
sults on the complex eigenvalues of the H atom in a dc
field, especially for the ground state. Most of them have
been cited here and in the papers by Silverman and
Nicolaides [19]. The accuracy of some of them is ex-
tremely high, as concluded from the large number of
significant digits [2,12,19]. However, in the present work
such accuracy was deemed unnecessary. Rather, we
wanted to see whether reasonable accuracies can be ob-
tained for a range of field strengths with only small and
even unoptimized expansions.

Thus, for the sake of comparison, we chose two sets
from two different theories. For the ground state, we

compare (Table II) with the results of Ref. [19],obtained
from a variationally implemented large-order perturba-
tion theory coupled with analytic continuation tech-
niques to account for the complex eigenvalue (see also
Refs. [15] and [2]). For the two excited states, we com-
pare with the pioneering results of Cerjan et al. [6] ob-
tained with the CCR method (see also Ref. [12] for re-
sults with additional significant digits and Ref. [19] for
results on high-n states). Both comparisons exhibit good
agreement.

VII. CONCLUSION

such applications have already been made on the ground
state of negative ions [41—43].

Furthermore, we have considered the case where part
of the effect of the field is incorporated in the radial
characteristics of O0. In the case of nonstationary states
of the field-free Hamiltonian, such as autoionizing or
predissociating, the strength of the interactions is fixed
and 4'0 is computed once from an internally consistent ei-
genvalue equation for the effective Hamiltonian QHQ,
where the projection operator Q= ~%0)(%'o~ [28,30,34].
In the case of field-induced resonances, the interaction is
field-strength dependent. Therefore an optimal represen-
tation of %'0 in principle ought to take this fact into ac-
count, especially when the state of interest is affected by a
strong field. In the present model study of Sec. V, this is
achieved by computing an intrinsically field-dependent
q'0 by first identifying QHQ with Vo(x, F), the effective
potential of Eq. (28). The use of "field-dressed" %0 will
probably prove necessary for the many-electron, many-
photon treatment of atoms and molecules in intense ac
fields (see Sec. I of Ref. [57]).

APPENDIX

We wish to find transformations f(x) which render the
unnormalizable function [Eq. (16)] a square-integrable
one. Let

The theory of this paper shows how the resonances of
the LoSurdo-Stark effect emerge as states of a CESE with
special asymptotic boundary conditions, [Eq. (14)], how
their wave functions can be regularized, and how they
can be computed efFiciently and accurately in terms of
separately optimized X2 functions representing %0 and
X„[Eq.(18)).

As regards applications, of special importance is the
state-specific calculation of the localized +0, which con-
stitutes the part of the resonance function defined on the
real coordinate axis. In the present calculations on the H
atom, spherical coordinates were employed and 'k0 was
chosen as the hydrogenic function for the ls state and as
the dc-field diagonalized (2s+2po) functions for the first
excited state. These prototype calculations show how the
theory can be applied for the systematic and economic
treatment of X-electron states in dc fields. For example,

where

(E+Fx) + I
2

'2 1/2

t -1 r
2(E+Fx )

Then

3ip4" (x,zo) —exp ia
~
w

~
cos

Q —+ oo 2

3/2Xexp —a~w~ sin
2

l
w = ~w ~e'~=z +Fx =E— I'+Fx—0 (A la)

(A lb)

(A lc)

(A2)

TABLE II. Complex eigenvalues for the ground state of hydrogen in a dc field {in a.u.). See text.

F {a.u. )

This work

—iI /2

Ref. [19]

—iI /2

0.04
0.07
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.70
1.00

0.503 772
0.513077
0.527 419
0.551 067
0.570 145
0.585 028
0.596 701
0.613 369
0.623 068
0.631 312
0.626 772

0. 194X 10
0.923 58 X 10
0.726 83 x 10-'
0.300 20x 10-'
0.60600x 10-'
0.947 89 X 10
0.13059
0.204 69
0.280 22
0.428 45
0.653 32

0.503 772
0.513077
0.527 418
0.551 031
0.570 181
0.585 270
0.596 723
0.613 141
0.623 068
0.630 712
0.624 337

0. 194x 10-'
0.923 68 X 10
0.72690X 10
0.30019x10 '

0.606 15 X 10
0.948 24X 10
0.13067
0.204 75
0.279 74
0.428 83
0.646 82
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TABLE III. {a) Complex eigenvalues for the first excited state, 2s+2po, in a dc field {in a.u.). See
text. {b) Complex eigenvalues for the first excited state, 2s —2po, in a dc field {in a.u.). See text.

{a)

F {a.u. ) —E'0

This work

—E —iI /2

Ref. [6]

—iI /2

0.005
0.010
0.015
0.020
0.025
0.030
0.035

0. 139981
0. 154 917
0. 169 811
0.184 649
0.199425
0.214 131
0.228 754

0. 142 624
0. 166088
0. 187 636
0.206 667
0.223 978
0.240435
0.255 222

0.5262 x 10-'
0.5448 x 10-'
0. 1688x 10-'
0.3041x10-'
0.4480 x 10-'
0.5984x10-'
0.7525X 10

0. 142 62
0. 16609
0. 187 62
0.206 68
0.22404
0.240 15
0.255 29

0.5297 x 10-'
0.5442 x 10-'
0.1689x 10-'
0.3039x 10-'
0.4483 x 10-'
0.5983X 10
0.7522X 10

F {a.u. ) E a

This work

—E

{b)

—i /2I

Ref. [6]

—i /2I

0.005
0.010
0.015
0.020
0.025
0.030
0.035

0. 109982
0.094 931
0.079 851
0.064 744
0.049 614
0.034462
0.019291

0. 112063
0. 103 888
0.096 899
0.088 966
0.080 177
0.069 980
0.060240

0.2537 x 10-'
0.1632x 10-'
0.7566 X 10
0. 1539x 10-'
0.2434X 10
0.3279x 10-'
0.4181x 10-'

0. 120 62
0. 103 89
0.096 945
0.088 941
0.080011
0.070 490
0.060 629

0.2860x 10-'
0. 1637x 10
0.7537x 10-'
0. 1549x 10-'
0.2422 X 10
0.3321x 10-'
0.4222 x 10-'

2 X 2 diagonalization of the Hamiltonian in the basis 2s, 2po.

3 1
sin

2 zoot} x
(A3)

Since ~w ~
-x, it follows from (A2) and (A3) that %(x,zp)

diverges as

SZ'/'
%(x,zp) —e ", 5&0 . (A4)

Now consider a transformation x ~f(x). Then,

It is the second term which must be regularized. We
have for x~00

The quantity E+Fx is positive for x ~ 00. Thus, if

(A 10)

then yI —1/x,

sin—
2 x

(A 1 1)

Combining Eqs. (A7)-(Al 1) we see that indeed condition
(A6) is satisfied:

w w'=~w'(e'~ =E P+Ff(x—), —
2

Imw'
y' =argw' =tan

Rew'

and 4"' becomes square integrable if

3 I

~w'~ sin + —Lx", y&0, A, &0.
2 z —moo

Let

(A5a)

(Asb)

(A6)

~w', ~sin —X,x'", A, , &0.
2 z~co

Now, let

f2(x ) =xe'8 .

Then,
I

iew = )w' )e '=E+Fxe' —1—
2 2 2

(A12}

(A13)

(A14)

f)(x)=x+iq .

Then

(A7) T

Fx sin6I —I /2
yz =tan

Fx cos8+E (A15b}

lw2 I

= [(E+Fx cosa) +(Fx sine —I /2) ]', (A15a)

rE+Fx +i Fq ——
2

(Ag) Asx~~

so that, as x ~ 00,

Fq —I /2
~wI ~

—x, y', =tan
z~co E+Fx (A9)

/w, /

—x,
I g

Therefore 4"'(f2(x },zp) is square integrable if

(A16a)

(A16b)
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3'Pz . 38
sin =sin )0

2 2
~w ~

sin —A x )( &0.2 2 2 ' 2 (A18)

or, if Finally, the combination of rotation with translation

0&0& 277

3

in which case

(A17)
ZQf (x)=xe'—

3 I
is also a regularizing transformation.

(A19)
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