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Abstract. p53 is the most frequent target for genetic 
alterations in a wide variety of human cancers. The product 
of the p53 tumor suppressor gene binds to DNA and activates 
transcription from promoters containing its consensus 
binding site. In the accompanying paper we have found that 
P53 tumor suppressor protein recognizes specifically a 
transcriptional element within the human H-ras proto­
oncogene (Spandidos DA, et al, Int J Oncol 7: 1029-1034, 
1995). We transfected Saos-2 cells, which arep53-null cells, 
with plasmids encoding for the wild type (wt) and for one 
'hot spot' mutant (mt) of the p53 gene (H 273). Using the 
resulted nuclear extracts for gel retardation assays, we 
showed binding of both the wild-type and the mutant form of 
p53 to the Η-ras DNA. Furthermore, using nuclear extracts 
from head and neck tumors and from adjacent normal tissues 
in gel retardation assays, we found binding of both the wild-
type and the p53 mutant in the same responsive element of 
the H-ras oncogene. These experimental results suggest a 
direct role of p53 in regulation of Η-ras. Identification of 
cellular proto-oncogenes as mediators of the transcriptional 
effects of wild-type and mutant forms of p53 gene, will be a 
step towards a better understanding of the role of oncogenes 
and onco-suppressor genes in tumor promotion. 

Introduction 

The p53 gene is localized to 17ql3 chromosome and encodes 
a 393 amino-acid protein which functions as a trans-acting 
transcriptional factor controlling the expression of genes 
important in transcription, DNA synthesis and repair (1,2), 
cell differentiation (3) and apoptosis (4). Wild-type p53 
mediates these actions by binding specifically to certain sites 
found in human genomic DNA (5). All of these p53 
responsive elements share a repeat of the loose consensus 
sequence, the ten base pair 5'-(Pu)3C(A/T)(T/A)G(Py)3-3' 
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motif (5,6). Such sites have been located in regulatory 
elements of the gadd45 (7), waf-l/cip-1 (8), and rndm-2 (9) 
genes. In order to bind these regions, oligomerization of the 
P53 protein is required, although monomeric P53 can also 
bind DNA, depending on the protein concentration and the 
nature of the P53 binding site (10,11). 

It is not surprising that such a molecule, which stands in 
the crossroad of so many vital cellular functions is 
inactivated in more than half of all human tumors (12). The 
most important mechanism to overcome the p53 tumor 
supressor barriers is alteration of the gene, mostly via 
mutations, although complex formation of wt p53 with viral 
and cellular gene products also abrogates p53 functions 
(13-16). 

H-ras gene is a member of the family of ras proto-
oncogenes. The gene product of H-ras, p21, is localized in 
the inner side of the cell membrane and acts in the normal 
signal transduction pathway as a GTP-binding protein. Genes 
of the ras family are implicated in human tumorigenesis both 
through mutations and overexpression (17). Since 
overexpression of activated ras genes may cause oncogenic 
transformation (18,19) and expression of the normal H-ras 
gene can act as an onco-supressor (20), it is important to 
understand the regulation of ras genes. It has been shown 
that mutant p53 co-operates with ras for cellular 
transformation (21,22) and that activated H-ras is necessary 
to overcome the onco-supressor function of the wt-p53 
(23,24). 

Previous studies (25) identified within the H-ras gene 
three putative p53 binding half sites, two of which are 
contiguous and contain a ten base core which perfectly 
matches the p53 CON element (6). 

In order to find a direct link between p53 protein forms 
and regulation of H-ras, we examined the binding of the 
'core' H-ras p53 element to: (i) wt p53 (ii) p53 mutant His 
273 and (iii) wt p53 Δ364-393, a truncated protein which is 
activated for DNA binding (10). We showed that all three 
forms of p53 bind the H-ras-p53 element. Binding of the p53 
to the same sequence of the H-ras oncogene has been 
successfully tested in nuclear extracts from head and neck 
tumors, as well. These results indicate that p53 could also 
function through the transcriptional regulation of the H-ras 
oncogene. 
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Materials and methods 

Recombinant plasmids. Plasmid pSV2hp53B encoding full-
length human wild-type p53 contains the EcoRI-Hindlll 
fragment of pGEM53wtB (26), blunt-ended and cloned in 
pSV2 vector cut with Sall-Bglll. Plasmid pSV2hp53BHis273 
was derived by site-directed mutagenesis (27) from 
pSV2hp53B and encodes full-length P53 protein with single 
point mutation; Arg 273 to His. Plasmid pGEMhp53BA364-
393 encodes human P53 protein with a deletion spanning 
residues 364-393. 

Cell culture and transfection. Human osteosarcoma (Saos-2) 
cells were propagated in RPMI medium containing 10% fetal 
calf serum, supplemented with 100 U/ml penicillin and 
100 μg/ml streptomycin, in a humidified atmosphere of 95% 
air and 5% C0 2 at 37°C. Transfections were performed using 
the calcium phosphate technique (28), as modified (29). 
Briefly, semi-confluent exponentially growing cells were 
transfected with 40 μg of plasmid DNA. Cells were collected 
by scraping 2-3 days later and used for preparation of nuclear 
extracts. 

Preparation of nuclear extracts. Nuclear extracts were 
prepared from biopsy material obtained from patients who 
had undergone head and neck surgery at the Hippokration 
Hospital, Athens, Greece, and from transfected and 
untransfected Saos-2 cells. The above tissues and cells were 
homogenized in hypotonic buffer (25 mM Tris HCl pH 7.5, 5 
niM KCl, 0.5 mM MgCl2, 0.5 mM DTT, 0.5 mM PMSF). 
The nuclei were pelleted, washed with isotonic buffer (25 
mM Tris HCl, pH 7.5, 5 mM KCl, 0.5 mM MgCl2, 0.5 mM 
DTT, 1 mM PMSF, 0.2 mM sucrose) and lysed with an 
extraction buffer (25 mM Tris HCl, pH 7.5, 1 mM EDTA, 
0.1% Triton, 0.5 mM DTT, 0.5 mM PMSF). Nuclear debris 
was removed by centrifugation at 25,000 rpm for 1 h at 4"C. 
The protein concentration of the supernatant was measured 
by the method of Bradford (30). 

Oligonucleotides and labelling. Oligonucleotide BC contains 
the optimal p53 binding site: 5'-CC-GGGCA-TGTCC-
GGGCA-TGTCC-GGGCATGT-3' (26). Oligonucleotide 
BC-S21 contains 21 spacers between the p53 half sites: 5'-
TAT-GGGCA-TGTCC- TATATATATGCGTATATAT 
AT-GGGCA-TGTCC-TAT-3' (26). Eras 2HS probe contains 
the two contiguous half sites with Hindlll compatible ends: 
5'-AGCTTGGCAC-TAGCC-TGCCC-GGGCA-CGCCG-
TGGCGA-3'. MDM-2 oligonucleotide contains the p53 
binding element 5'-GGCT-GGTCA-AGTTG-CGTCC 
G G C G T C G G C T G T C G G A G - G A G C T - A - A G T C C 
TGACA-TGTCT-CCAG-3' of mdm-2 gene (31). The 
pentanucleotide p53 binding repeats are underlined. SP-1 
oligonucleotide was used as a p53-unrelated oligonucleotide 
competitor (32). Radioactive end labelling was performed 
using T4 polynucleotide kinase (Boehringer) and [γ-32Ρ]-ΑΤΡ 
(33). 

DNA binding assay. DNA binding reactions were carried out 
as described (31) with modifications (10). The samples were 
electrophoresed on 6% Polyacrylamide gels. Gels were dried 

and exposed to X-ray film (RX Fuji) at -70°C. A 50 fold 
molar excess of unlabelled oligonucleotides, or 0.4 μg of 
anti-p53 antibody pAb 1801 (Oncogene Science, Inc., 
Manhasset, NY), or 0.4 μg of anti-p53 antibody DO-1 
(kindly provided by Dr D.P. Lane, Dundee, UK) were 
included prior to the addition of the radiolabelled probe in the 
reaction mixture, where indicated, and incubated at 0°C for 
10 min. 

Western blotting. Western blotting was performed using 0.5 μg 
anti-p53 DO-1 antibody at a dilution of 1:200, using the ECL 
kit (Amersham), following the instructions of the 
manufacturer. 

DNA extraction, LOH, PCR-SSCP analysis. Genomic DNA 
from head and neck tumors and adjacent normal tissues was 
extracted by methods previously described (33). The three 
microsatelite primers (D17578, TP53 and CHRNB1) and 
PCR conditions, used for loss of heterozygosity (LOH) 
studies on 17 chromosome have been previously described 
(34). The fragment of the p53 gene, containing exons 4 to 9 
(2.9 kb), was amplified by the polymerase chain reaction 
(PCR), using primers and conditions as described previously 
(35,36). The first PCR product (amplified DNA size, 2.9 kb) 
was used for the nested PCR-SSCP analysis. Briefly, two 
microliters of the 2.9 kb product were combined with 5 μΐ 
10X buffer, 1 μΐ dNTP mixture and 0.4 μΜ of both primers 
in a final volume of 50 μΐ (35,36). Five μΐ of the PCR-
amplified product was added to an equal volume of stop 
solution (95% formamide, 20 mM EDTA, 0.05% 
bromophenol blue, and 0.05% xylene cyanol) (United States 
Biochemicals, Ohio). Samples were denaturated at 95°C for 
10 min, placed immediately on ice and run on an 8% 
Polyacrylamide nondenaturing gel. DNA was electrophoresed 
in 0.5X TBE running buffer at 12 to 15 W at room temperature. 
Gels were visualized using the silver staining technique (37). 

Results 

A computer search revealed that the human c-H-ras gene 
contains two contiguous putative p53 half sites (6,25). 
Transient transfection assays were used in this study to 
examine DNA binding activity of wild-type and mutated 
forms of P53 protein in the H-ras element. Endogenously 
produced wild-type and mutant p53 from head and neck 
tumors and adjacent normal tissue were also analysed for in 
vivo DNA binding. 

Human osteosarcoma (Saos-2) cells, which have deleted 
endogenous p53 alleles (38), were transfected with plasmids 
coding the full length wild-type p53, wild-type p53 with a 
deletion which spans the last 30 amino-acid residues (Δ364-
393), and full-length p53 protein with single point mutation: 
Arg 273 to His (His 273). The resulted nuclear extracts were 
tested for p53 expression with immunoblotting, using anti-
p53 antibody DO-1 (Fig. 1). Extract from untransfected 
Saos-2 cells was used as negative control (lane 1). Extracts 
containing full-sequence wild-type and (Δ364-393) p53 
(lanes 2 and 3), as well as mutant form H273 of the protein 
(lane 4), showed a detectable amount of P53 protein. 

H-rai-p53 element was then tested for binding of the 
wild-type P53 protein. In Fig. 2, the control BC probe (lane 1) 
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Figure 1. Western blot analysis of p53 expression. Nuclear extracts were 

prepared after transient transfection of Saos-2 cells with plasmids encoding 

full length wild-type p53 (lane 2), (Δ364-393) p53 (lane 3) and mutant His 

273 (lane 4) Extract from untransfected Saos-2 cells was used as negative 

control (lane 1). Thirty μg of total protein were subjected to immunoblotting 

in each lane. Anti-p53 DO-1 antibody was used for immunoblotting, as 

described in Materials and methods. 
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Figure 3. Sequence specific binding of mutant form of p53 protein His 273 

to the H-ras DNA. His 273 p53 mutant, was analyzed after transfection of 

Saos-2 cells. Binding reaction mixture contained 20 μg of total protein, 0.01 

pmoles of 32P-labelled probes BC (lanes 1-4 ), Eras 2HS (lanes 5-8) and a 

50 fold molar excess over the labelled probe of unlabelled competitors 

(lanes 2-4 and 6-8 respectively). Protein-DNA complexes were separated as 

indicated in Fig. 2 legend. p53/DNA complex is indicated by an arrow. 
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Figure 2. Sequence specific binding of wild-type p53 protein to the H-ras 

element. After transfection of Saos-2 cells, full length (lanes 1-6) and 

truncated (lanes 7-10) forms of p53 protein were used in DNA binding 

assay. Binding reaction mixture contained 20 μg of total protein, 0.01 

pmoles of 32P-labelled probes BC (lanes 1-3 and 7-8) and Era« 2HS (lanes 

4-6, 9-10), 0.4 μg anti-p53 antibody (lanes 2, 5, 8, 10) and a 50 fold molar 

excess over the labelled probe of unlabelled competitors (lanes 3, 6). 

Protein-DNA complexes were separated by Polyacrylamide gel 

electrophoresis and visualized by autoradiography. p53/DNA complex is 

indicated by an arrow. 

and the radiolabeled Eras 2HS probe (lane 2) were 
incubated with wild-type P53 protein. A common retarded 
band was observed, indicating binding of the protein to the 
probe. This band was supershifted/or abolished when anti-
p53 DO-1 antibody was included in the reaction mixture 
(lanes 2 and 5) and abolished with competition of the probes 
with a molar excess of unlabelled oligonucleotides (lanes 3 
and 6). Activated, truncated P53 protein ρ53Δ364-393 also 

reacted with BC (lane 7) and Eras 2HS probe (lane 9) and 
the P53/DNA complex was abolished by DO-1 antibody 
(lanes 8 and 10). 

His 273 'hot spot' mutant was also tested for binding 
H-rai-p53 element The p53 mutant was incubated with 
control BC (Fig. 3, lane 1) and Eras 2HS (lane 5) probes, 
indicating binding of mutated P53 protein. The retarded band 
in both control and Eras 2HS probes was abolished in the 
presence of molar excess of p53-related oligonucleotide 
competitors BC-S21 (lanes 2 and 6), MDM2 (lanes 3 and 7), 
Eras 2HS (lane 4) and BC (lane 8), implying the specificity 
of the p53-DNA complex. 

Having established that all of the examined head and neck 
tumors and adjacent normal tissues had detectable P53 
protein by Western blot analysis (data not shown), we tested 
the samples for binding to H-ras p53 element. Indicatively, 
five head and neck tumors and adjacent normal tissues were 
analysed. As shown in Fig. 4, a common retarded band was 
observed in the majority of the examined cases, indicating 
binding of the p53 protein to the H-ras responsive element. 
In all normal tissue samples we observed binding of p53 to 
the H-rfli-p53 sequence. In contrast, 2 of the 5 tumor 
samples (Nos. 4 and 5) contained no p53 binding activity. 

Specificity of the p53/rai DNA complex was shown by 
competition experiments, using nuclear extracts from tumor 
and normal tissue of patient No. 1 (Figs. 5 and 6, 
respectively). The labelled control BC-S21 (lanes 1-3) and 
Eras 2HS oligos (lanes 4-6), were incubated with a molar 
excess of unlabelled oligonucleotide competitors: with each 
other (Fig. 5, lanes 2,5) and with unrelated SP-1 oligo­
nucleotide (lanes 3,6). Binding of p53 on Eras 2HS probe 
was abolished in the presence of excess BC-S21 competitor, 
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Table I. Loss of heterozygosity analysis of five head and 
neck tumors in chromosome 17 using PCR microsatellite 
primers. 
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but was unaffected by the unrelated SP-1 competitor. 
Equivalent results were observed from the control BC-S21 
probe. 

We subsequently studied the formation of the DNA-
protein complex between Eras 2HS or BC-S21 and the p53 
nuclear extracts from head and neck normal tissue (Fig. 6, 
lanes 1 and 3). Inclusion of the anti p53 1801 antibody into 
the reaction mixture led to the disapperance of the specific 
retarded band (Fig. 6, lanes 2 and 4). 
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Figure 5. Effect of competitor sequences on gel electrophoretic mobility 
assay. Nuclear extracts from head and neck tumor tissue (patient No. 1) 
were incubated with y32P-end labelled BC-S21 and Eras 2HS 
oligonucleotide hybrids. In competition assays, 50-fold molar excess of cold 
competitor oligonucleotides Eras· 2HS, SP-1 (lanes 2, 3) and BC-S21, SP-1 
(lanes 5, 6) respectively, were incubated with the nuclear extracts before 
addition of the probes. Protein-DNA complexes were separated as indicated 
in Fig. 2 legend. Specific retarded bands of interest are shown. 

Furthermore, we have analyzed five head and neck tumor 
tissues for loss of heterozygosity (LOH) in chromosome 17. 
The results are summarized in Table I. Also we analyzed the 
same samples for mutations in exons 4 to 9 of the p53 gene, 
as the majority of previous studies have shown that the p53 
mutations in human tumors are found in this region (12). We 
first determined the optimal conditions for PCR amplification 
of the 2.9 kb p53 gene fragment. In order to exclude 
mutations caused by Taq polymerase the SSCP analysis was 
carried out on two different occasions for each tumor sample. 
The SSCP results are shown in Fig. 7. Three of the tumor 
samples (patient Nos. 1, 4 and 5) showed different pattern of 
bands in comparison with corresponding normal samples. No 
mutations were found by this method in two other samples 
(patient Nos. 2 and 3). 

Discussion 

In this study we examined the responsiveness of a p53 
binding element, located in the Η-ras gene, to the wild-type, 
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Figure 6. Effect of anti-p53 1801 antibody p53-ra,v DNA complex in 
electrophoretic gel mobility shift assay. Nuclear extracts from head and neck 
normal tissue (patient No. 1) were incubated with Eras· 2HS oligonucleotide 
(lane 1) and BC-S21 oligonucleotide (lane 3). The anti-p53 antibody 1801 
and nuclear extracts were incubated with Era.? 2HS (lane 2) and BC-S21 
(lane 4), respectively. Protein-DNA complexes were separated as indicated 
in Fig. 2 legend. Absence of the retarded band is shown. DNA-p53 complex 
is indicated by the arrow. 

a mutant and a truncated form of P53 protein. This element 
consists of two contiguous p53 half sites (1216-1235) at the 
3' end of the first intron of the H-ras gene (25). 

In order to examine the responsiveness of the element to 
each wild-type, mutant and truncated p53 protein, we 
transfected plasmids encoding wild-type p53, the mutant His 
273 and the truncated (Δ364-393) form of p53 protein into 
p53-null Saos-2 cells. Nuclear extracts from the tranfectants 
were used in DNA binding experiments. Furthermore, we 
extended our studies in vivo using nuclear extracts from 5 
head and neck tumors. Three of them possessed a mutant 
p53, two of which were accompanied by a deletion in the 
remaining allele. 

Successful transfection was determined by immuno-blot 
analysis. Electrophoretic mobility shift assays with wild-type 
and truncated p53 transfected extracts, revealed specific 
binding of P53 protein to the H-ras element, without adding 
monoclonal antibody PAb421 into the reaction mixture. 
Other groups have already shown that wild-type p53 can bind 
to certain DNAs (6,26,39). 

In addition, deletion of residues 364-393 has a similar 
effect in protein conformation as PAb421, because a negative 
regulatory element of the protein is removed, shifting the 
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Figure 7. SSCP analysis of exons 6, 5 and 7 of p53 gene in head and neck 
specimens. Aliquots of 5 μΐ of the PCR amplified samples were loaded on 
an 8% Polyacrylamide nondenaturing gel. DNA was electrophoresed 
according to the conditions described in Materials and methods. PCR 
products from tumor DNA (A, exon 6; B, exon 5; C, exon 7) gave different 
patterns compared to normal DNA. PN, patient number; N, normal, T, 
tumor; ds, double stranded; ss, single stranded. Arrows indicate the different 
bands. 

conformation to the active state (26,40). The specificity of 
the retarded band, was confirmed by supershifting and/or 
abolishing when DO-1 antibody was included in the reaction. 
Furthermore, competition with molar excess of unlabelled 
related oligonucleotides abolished it. 

Based on recent reports providing evidence for specific 
DNA binding of p53 mutants (39,41-47), we examined the 
binding of His 273 mutant, which is known to be a 'gain of 
function' mutant, to the Η-ras DNA (43,46,48). Arg 273 is 
located in the loop sheet helix 2 motif which interacts with 
the major DNA groove and is primarily involved in DNA 
backbone contacts with phoshate groups (49). DNA binding 
experiments with His 273, revealed a retarded band similar to 
that of wild type and truncated (Δ364-393) p53, which was 
abolished when Η-ras RE competed with p53 related 
oligonucleotides. The discrepancy between these results and 
earlier studies (25) may relate to the levels of P53 protein 
and/or the presence of cellular proteins in the nuclear extracts 
derived from tumor cells. It is possible that cellular factors 
induce DNA binding of the p53 mutant. 

These experiments established this region of the H-ras 
gene as a specific p53 binding site and led us to a series of 
experiments focusing on the reaction of nuclear extracts 
derived from human tumors with H-rai-p53 RE. We 
examined five head and neck tumors, two of which (patient 
Nos. 4 and 5) had mutations in exons 5 and 7, respectively, 
accompanied by LOH in the p53 locus. Sample 1 (patient 
No. 1) had a mutation in exon 6 without LOH and the 
remaining two (patient Nos. 2 and 3) had no obvious p53 
gene alterations. 

DNA binding experiments revealed a retarded band, 
similar to that previously described in tumors 1, 2 and 3 and 
in all normal tissues, while in tumors 4 and 5 there was no 
indication of band shift. The P53-specific antibody PAb 1801 
inhibited DNA binding confirming the identity of the DNA 
binding protein as P53. The ability of PAb 1801 to suppress 
DNA binding of P53 has been documented previously (6). 
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The biological explanation of these findings rely on the 

nature of the P53 protein in each of these tumors. In case 1 

(patient No. 1), one p53 allele is mutant while the other is 

intact. Enhanced binding of P53 to the H-ras-p53 RE in this 

tumor sample probably relates to overexpression of the 

mutant P53 protein, combined with expression of wild-type 

P53. Probably the p53 mutant in this tumor retains its 

ability to bind DNA. In cases 2 and 3 (patient Nos. 2 and 3), 

p53 alleles are intact thus wt p53 binds the element. Finally, 

in cases 4 and 5 (patient Nos. 4 and 5), where one allele is 

lost, the remaining mt p53 is not capable of binding the 

consensus. The latter is enforced by the fact that in these 

specimens mutations were located in exons 5 and 7. Exons 5 

and 7 form the L2 Hl L3 motif which interacts with the minor 

groove of the DNA. Mutations in these exons are considered 

to be among the most disruptive to p53 binding function. 

Binding of the p53 to Η-ras responsive element has been 

found with nuclear extracts from lung tumors, as well 

(Zoumpourlis et al, unpublished data). 

In conclusion, we showed that the K-ras gene possesses a 

p53 responsive element which interacts with wt and mutant 

forms of P53 protein in human tumors. Regulation of K-ras 

cellular oncogene by p53 opens new perspectives in 

understanding normal signal transduction pathway and its 

altered pathways in carcinogenesis. 
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