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Preface

Immuno-model is a model invented to study the immune system. This book describes the
computational and experimental models that help researchers understand the responses of
the immune system in cancer and test experimental immuno-oncology approaches.

Macrophages can adapt to different phenotypes in response to signals from the micro-
environment. This book on immuno-model describes methods to profile polarization in
macrophages using ELISA. ELISA is widely used in immunology to detect proteins, anti-
bodies, antigens, or hormones in a sample, including immune checkpoint inhibitors.
Immune checkpoints are regulatory molecules that control the activation and intensity of
immune responses. Glycosylation is the addition of carbohydrate groups to the proteins.
Glycosylation of the immune checkpoint proteins not only promotes immune evasion in
tumor cells but also holds therapeutic implications. New immune checkpoint inhibitors are
warranted for better cancer treatment. One of the chapters evaluates immune checkpoint
inhibitors. One of the most studied immune checkpoints is PD-1/PD-L1. There is one
chapter detailing the interaction of PD-1/PD-L1 and T cells. Immune checkpoint inhibi-
tors have significantly improved survival rates in cancers but there are patients who do not
respond to these treatments. Induction of immunogenic cell death is another therapeutic
option for cancer patients.

A lot of research is underway to study tumor immune microenvironment. There are
several well-established in vitro models to study interaction between immune cells and
cancer cells and these in vitro models are still evolving. Cells can be co-cultured using cell
culture inserts or can be grown as 3D spheroids. 3D co-culture model can be used to study
the interaction of immune cells and cancer cells to mimic the in vitro microenvironment.
Cells can be grown in 3D using different techniques, and one of the techniques is using
scaffolds derived from cancer patients. One of the chapters explores immunocompetent
preclinical mouse models to study primary and metastatic brain cancer. CAR T-cell therapy is
still evolving, and one of the chapters describes the method to generate CAR T-cells.

Bioinformatics has vast applications and plays a central role in immunology by enabling
the analysis of large-scale datasets. Deconvolution analysis can be used to study the epige-
netic dysregulation in human tumors and the tumor ecosystem. Computational methods
can also be used to study the mutated peptides called neoantigens. Bioinformatics allows us
to identify therapeutic targets and develop precision immunotherapies.

Waterford, Cork, Iveland Sweta Rani
Krakow, Poland Lukasz Skalnink
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Computational Methods for Cancer Neoantigen Prediction

Andrea Moreno-Manuel, Sotiris Ouzounis, Marius Eidsaa,

Roberto Fornelino-Gonzalez, Pilar Ballesteros-Cuartero,

Daniel Gomez-Garrido, Esteban Veiga-Chacon, Theodora Katsila,
Maurizio Callari, Arrate Munoz-Barrutia, and Rebeca Sanz-Pamplona

Abstract

Neoantigens are mutated peptides arising from tumor genomic alterations, which can be recognized and
attacked by the immune system, leading to antitumor immune responses. In the last decades, many
immunotherapeutic strategies have been developed, which has increased the interest in neoantigens. This
led to the development of computational tools that facilitate neoantigen identification and prioritization,
prior to their validation using experimental approaches. This chapter aims at explaining the key steps that
need to be conducted to identify potential neoantigens in silico, including an example of the most
frequently used tools. This is followed by a description and comparison of the cutting-edge tools and
pipelines for neoantigen prediction both for human and mouse. The last aim of this chapter is to depict the
technical challenges that limit neoantigen prediction using bioinformatics, as well as the expected improve-
ments, given the current revolution of artificial intelligence, which is implemented in most of the
neoantigen-related tools. As exposed in this book chapter, we believe that advances in immunomics and
computational biology will be key to implement personalized cancer immunotherapy in the clinical practice,
to improve outcomes of cancer patients.

Key words Neoantigen prediction, Bioinformatics, HLA-binding affinity, MHC, Mice, Immu-
nomics, Immune microenvironment, Cancer

1 Introduction

Over the last decades, the emergence of immunotherapy has revo-
lutionized cancer treatment and has offered new opportunities for
precise and personalized interventions. Among others, one immu-
notherapy strategy is the identification and targeting of tumor-
specific antigens (TSAs) including neoantigens, which are peptides
resulting from genetic alterations. Aberrant proteins in tumors are
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degraded by the proteasome and resulting peptides are transported
to the endoplasmic reticulum (ER), where they are subsequently
loaded onto major histocompatibility complex (MHC) molecules,
known as human leukocyte antigens (HLAs) in humans [1]. There
are a variety of sources of neoantigens. Although somatic muta-
tions, especially missense (which change the amino acid codon), are
the most studied; increasing evidence supports that neoantigens
can also be derived from other events such as insertion /deletions of
nucleotides (INDELSs), frameshift mutations (insertion or deletion
of a number of nucleotides not multiple of three, thus disrupting
the reading frame), gene fusions (caused by joining parts of two
different genes, leading to a new protein), endogenous retroviruses
(ERVs) (ERV transcripts can be a source of tumor-specific neoanti-
gens), RNA splicing anomalies (alternative splicing consists of dif-
ferent exon combinations, leading to proteins with different
structure and function), post-transcriptional frameshift (e.g., ribo-
somal slippage) or post-translational frameshift (e.g., protein splic-
ing) [2]. In fact, the more different the neoantigen versus the wild
type, the more immunogenic [3].

Neoantigens are expressed in tumors but not in healthy tissues,
thus they induce stronger effector responses than tumor-associated
antigens (TAAs), which are overexpressed in tumor cells but also
present at a lesser extent in nonmalignant cells [4]. To trigger
antitumor immune responses, neoantigens need to be presented
by MHC molecules. MHC Class I molecules primarily exhibits
small protein fragments derived from degraded intracellular pro-
teins, and its role in cancer neoantigen presentation is well estab-
lished. On the contraryy, MHC Class II molecules exhibit
extracellular antigens typically captured by antigen-presenting
cells (APCs). However, MHC class II pathway is also essential for
effective immune responses against neoantigens since APCs can
uptake neoantigens from dying cancer cells [5, 6]. Hence, the
resulting neoantigen-MHC complexes are formed and transported
to the surface of cancer cells to be recognized as nonself by T-cell
receptor (TCR), leading to antitumor immune responses. This
specific recognition allows the elimination of malignant cells with-
out affecting healthy tissue [7] (Fig. 1a).

Traditionally, the discovery of neoantigens has relied on exper-
imental approaches, which make the process tedious, thus offering
limited results. However, the advances in computational biology
and bioinformatics, such as the use of artificial intelligence and deep
learning algorithms on next-generation sequencing (NGS) data,
enable a possible strategy to predict potential neoantigens faster
with high accuracy [4] (Fig. 1b). Optimal pipelines discussed below
not only take into account the binding capacity of peptides to
MHC but also the expression levels of the antigen of interest by
tumor cells [8, 9].
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Fig. 1 (a) Key steps of neoantigens origin and processing until loaded in MHC molecules for their recognition
by T cells: mutations can occur at a genomic level of the malignant cell (1), where they are transcribed (2) and
spliced to form mRNA (3). During this process, alternative splicing can also produce splice variant mRNA.
Translation of these variant mRNAs then leads to the synthesis of variant proteins (4). At this stage, post-
transcriptional frameshifts, such as those caused by ribosomal slippage, can also produce variant proteins.
These variant proteins can then undergo proteasomal degradation (5) and be transported to the endoplasmic
reticulum (ER) (6), where they are subsequently loaded onto major histocompatibility complexes (MHCs) (7).
After being loaded, the resulting neoantigen-MHC complexes can be transported to the cell surface (8), where
they are exposed to recognition by the T-cell receptor (TCR) of lymphocytes. (b) Schematic representation of
the overall process of identification of new neoantigens: Tumor samples are obtained and used to identify
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Thus, the prediction of neoantigens is a critical process in the
pursuit of truly personalized cancer immunotherapies, relying on
advanced bioinformatics tools to integrate high-quality patient data
with a rapidly expanding body of immunological knowledge. The
overarching goal is to predict if patient-specific cancerous muta-
tions can stimulate the immune system to target and eliminate the
patient’s own tumor.

In Subheading 2, an overview of the key steps in neoantigen
prediction using NGS will be provided. Subheading 3 shows an
example of neoantigenicity prediction comparing different meth-
ods over the same peptides. Afterwards, the available pipelines for
neoantigen prediction and their characteristics will be listed in
Subheading 4 for humans and in Subheading 5 for mouse models.
Lastly, technical challenges and future improvements will be dis-
cussed in Subheading 6.

2 Key Steps of Neoantigen Prediction

The complex, multi-step process of neoantigen prediction involves
several stages, each contributing to the final prediction. As
explained before, the MHC Class I pathway is involved in present-
ing antigens originating from the inside of cells, for example,
stemming from viruses and mutations, inducing CD8+ cytotoxic
T cells. Traditionally, the MHC Class I antigen-presentation path-
way has been recognized as the most restrictive, and consequently,
the most predictive pathway for neoantigen prediction [10] and
will thus be the main focus of this section. The key parts of neoanti-
gen prediction process can be split into the following steps (Fig. 2):

2.1 Sample This is the initial, and arguably the most important, step in the
Collection process since all downstream results inadvertently depend on it. It
involves obtaining high-quality patient samples from both tumor
and representative normal tissues and comparing them to identify
unique genetic alterations in the cancer cells that are not present in
normal (germline) cells [11, 12]. These somatic mutations can
potentially give rise to neoantigens, forming the basis for all down-
stream investigations. However, the mutations must be identified

A
Y

Fig. 1 (continued) individualized neoantigens via RNA sequencing (RNAseq) or whole genome/exome
sequencing (1). In parallel, HLA typing prediction is performed (2). Then a neoantigen-MHC complex binding
prediction is evaluated (3). Once a suitable neoantigen-MHC complex is identified, the T-cell recognition via
TCR is evaluated to check that a proper immune response can be triggered (4). In that case, the neoantigen
discovered is classified as useful for therapeutic approaches. SNV single nucleotide variant, /INDEL insertion/
deletion, ERV endogenous retroviruses, DNA deoxyribonucleic acid, MHC major histocompatibility complex, ER
endoplasmic reticulum, TCR T-cell receptor, RNA ribonucleic acid, HLA human leukocyte antigen. (Images
created with BioRender)



Computational Methods for Cancer Neoantigen Prediction

Variant Calling

Sequence reads —® Quality control — Genome alignment — Variant calling

Tool Method
GATK Toolkit for high - throughput sequencing data
FreeBayes Bayesian genetic variant detector for SNPs and indels

U

HLA Typing
HLA Class | HLA Class Il
HLA - A HLA - DR
HLA-B HLA - DQ
HLA-C HLA - DP

U

HLA Binding Affinity

Tool Method
NetMHCpan 4.1  Predicts T-cell epitopes that bind to MHC class |,
using the NNAlign_MA method

U

Neoantigen prioritization & selection

Key parameters:
1.  Expression levels of neoantigen

257

Fig. 2 Representation of a typical computational workflow integrating all the steps required for neoantigen
prediction. Step 1 corresponds to variant calling where input data are processed to identify variants and
annotate tumor-specific mutations. Step 2 refers to HLA typing where both Class | and Class Il HLA alleles of
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2.2 Sequencing

2.3 Somatic Variant
Calling

2.4 In Silico Peptide
Generation

2.5 Antigen
Processing

first, which requires the patient samples to be collected and stored
in a manner that preserves the integrity of their genetic material.

These high-quality normal and tumor tissue samples are then typi-
cally sequenced using NGS techniques such as whole exome
sequencing (WES) or whole genome sequencing (WGS). NGS
can also be used for sequencing RNA, providing information on
the expression level of specific somatic mutations [13].

The sequenced reads from normal and tumor tissues are aligned to
a reference genome, and the differences between them are identi-
fied. Specialized bioinformatics tools are used to perform this vari-
ant calling [ 14 ], and the identified somatic mutations are annotated
and stored in variant call format (VCF) files, which contain essential
details on each mutation. This includes information regarding
nucleotide and amino acid changes, their genomic location, and
additional annotations useful for downstream analyses and filtering,
for example, variant allele frequency (VAF) scores, denoting the
specific variant’s prevalence.

Following the identification of patient-specific somatic variants,
typically contained in VCF files, the next step is to construct all
relevant peptides capable of containing these variants in silico. This
involves using bioinformatics tools for transforming genomic
nucleotide sequences into translated amino acid chains, constitut-
ing the proteins altered by the cancer. The subsequent splitting of
proteins into mutation-containing peptides has no associated stan-
dard tool, but peptides of 8—12 amino-acid length, with a prefer-
ence for 9-mers, are typically constructed for HLA Class 1
[15]. Longer peptides are constructed for HLA Class II, although
the indicated range of relevant peptides can vary between studies,
for example, 13-19 and 12-24 [16, 17].

The natural process emulated by in silico peptide generation occurs
when proteins are damaged or decommissioned, and subsequently
chopped up by proteasome enzymes into fragments. These peptide
fragments are transported to the endoplasmic reticulum via trans-
porter associated with antigen processing (TAP) proteins, where
they can be further modified and finally loaded onto MHC mole-
cules. This process is not random, however, and the uniformity

A
Y

Fig. 2 (continued) patients are determined. Step 3 includes HLA binding affinity and stability prediction where
in silico tools quantify the linkage among peptides-HLA alleles. Step 4 consists of neoantigen prioritization and
selection aiming to facilitate the identification of immunogenic neoepitopes for personalized cancer immuno-
therapy. SNP single nucleotide polymorphism, HLA human leukocyte antigen, NGS next-generation sequenc-
ing, MHC major histocompatibility complex, MS mass spectrometry, TCR T-cell receptor, ML machine
learning, TAP transporter associated with antigen processing
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assumption of the in silico peptide generation needs modification.
Computational immunology tools can help assess peptides, and
their contextual flanking amino acids, by providing scores indicat-
ing the likelihood of, for example, cleavage sites and TAP compati-

bility [18, 19].

The antigen-presentation pathway ultimately hinges on peptides
binding to HLA molecules. Although in humans it is known as
HLA, it is worth mentioning that the terms “MHC” and “HLA”
are often used interchangeably. Thus, the patient’s HLA alleles
must be determined or typed [20]. There are three major HLA
Class I genes: HLA-A, HLA-B, and HLA-C, with up to two alleles
per gene, one from each biological parent. There are also several
HLA Class II genes, which, unlike Class I, act as pairs forming
heterodimer MHC molecules. HLA typing is performed by dedi-
cated bioinformatics tools, providing allele identifiers denoting the
amino acid composition of the resulting MHC molecules, and
potentially also information affecting translation of the gene. The
HLA genes are very polymorphic, and there are currently registered
more than 27,000 Class I and 11,000 Class II allele variants ([21],
v.3.50).

The aim of HLA-binding prediction is estimating the binding
affinity between all permutations of pairwise peptides and HLA
alleles. This is a crucial step, since only peptides binding to HLA
have a chance to be presented to the immune system. Machine
learning, and neural networks in particular, have proven to be
effective at this task, with well-known examples such as NetMHC-
pan [22] and MHCAlurry [23]. These models are trained on large
datasets of HLA-peptide pairs with associated experimentally deter-
mined binding affinities, typically given as half-maximal inhibitory
concentration (IC50) values [24]. In the case of a competitive
binding assay, an IC50 value represents the concentration of a
candidate peptide required to outcompete a high-affinity reference
peptide until only half of them remain bound to the HLA allele.
There is a gradual transition from HLA-peptide pairs with strong
binding affinities (small IC50 values) to weak binding affinities
(large IC50 values), but a threshold of IC50 < 500 is often
employed to denote Class I HLA-peptide pairs to be binders [25].

Similarly, measurements and predictions can be performed to assess
the stability of HLA-peptide complexes. While closely related to
HLA binding, stability revolves around measuring the
HLA-peptide complex’ ability to stay bound under perturbations,
through, for example, thermal and kinetic stability assays
[26]. Such stability assays work by subjecting the HLA-peptide
complex to varying conditions and measuring how long it remains
intact, providing valuable information about its durability. So,
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2.9 Antigen
Presentation

2.10 T-Cell
Recognition and
Immunogenicity

2.11 Neoantigen
Prioritization

while HLA binding assesses the potential of a peptide to bind to an
HLA allele, HLA-peptide stability assesses the half-life of an
HLA-peptide complex. A more stable complex might have a higher
chance of being recognized by T cells, potentially leading to a
stronger immune response [27].

In the context of the HLA-peptide complexes, the affinity/
stability for the HLA is defined in its majority as the anchor residues
of the peptides. These residues are buried within the HLA pocket
and create bonds with the residues within it to stabilize the dock-
ing. In 9-mer peptides, the anchoring residues can normally be
found at positions 2 and 9, although peptides of different lengths
can have anchor residues in different positions [28].

Somatic mutations capable of navigating through the above steps,
forming stable HLA-peptide complexes, are then transported to
the surface of the cell for subsequent inspection by the immune
system. In essence, this is the first main goal of neoantigen predic-
tion: predict the somatic mutations with the right characteristics to
be transported as peptides to the cell surface. Mass spectrometry
techniques can be used to discover these presented peptides, or
eluted ligands, but cannot ascertain which HLA allele it was bound
to [29]. It provides verification that a peptide indeed was presented.
There are several ways this information could be used to increase
predictive power, such as reinforcing HILA binding scoring
(22, 30].

Once the HLA-peptide complexes are presented on the cell surface,
they can be recognized by T cells, each carrying a unique T-cell
receptor (TCR) capable of recognizing a few specific HLA-peptide
complexes [31]. If a TCR binds to an HLA-peptide complex con-
taining a somatic mutation, it triggers a signaling cascade that can
initiate an immune response against these cells. This is the second
main goal of neoantigen prediction: to predict which of the pre-
sented peptides will likely trigger an immune response. Predicting
T-cell recognition is a huge challenge; however, the TCR diversity
is vast, and the rules governing TCR-peptide-HLA interaction are
not fully understood [31]. Some bioinformatics tools attempt to
predict T-cell recognition by modeling TCR-peptide-MHC inter-
actions [ 32 ], and while predictive power is steadily increasing, these
predictions are often uncertain and require experimental validation
[10, 33]. Laboratory experiments can be performed to validate that
the neoantigens can elicit an immune response, with assays such as
ELISA and intracellular cytokine staining [34].

Following the above steps, there are several predictions, scores, and
potential immune-response measurements associated with each
neoantigen candidate. Ranking and prioritizing these candidates
by their overall potential for inducing an immune response is
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challenging, and typically involves combining predictions of anti-
gen processing, HLA binding and immunogenicity with gene
expression and other relevant information into a single, combined
score per neoantigen [ 10]. Recent advances within single-cell tech-
nologies and cutting-edge machine learning approaches are pre-
sumed to provide valuable insights for the future [35].

In conclusion, neoantigen prediction is a complex, multistep
process that integrates numerous bioinformatics tools and data
types in elaborated pipelines. There are several factors omitted in
this section that could further increase the complexity, such as HLA
Class 11, posttranslational modifications, immune escape, mutated
HLA genes, and alternative sequencing methods [7, 34,
36]. Despite the challenges, neoantigen prediction holds great
promise for the transition toward truly personalized cancer
immunotherapies.

3 Examples of Neoantigen Prediction Applying Different Tools to Cancer Driver
Mutations

In order to illustrate the key steps described in the previous section
and show how different tools perform on neoantigen prediction, an
example using driver mutations will be developed in this section.

A variety of tools including those predicting binding affinity,
stability, peptide cleavage, and TAP transportation will be tested.
Although many tools focus on predicting HLA-binding affinity of
mutated peptides, the two considered as gold standard will be used
(NetMHCpan and MHCAlurry, as discussed below) [22, 23]. The
other tested tools focus on prediction of binding stability of the
peptide-MHC complex (netMHCstabpan) [37], prediction of
cleavage sites (netChop 3.1) [38], and TAP transport of the
chopped peptides (TAP) [39]. Three well-known mutations have
been selected: KRAS p.G12C, TP53 p.H179R, and GNAQ p.
Q209L. For the sake of clarity, only one allele (HLA-A*03-01)
will be tested.

First, the mutated peptides (17-mers) need to be generated and
written in FASTA format:

> sp|/P01116 |RASK_HUMAN - G12C
YKLVVVGACGVGKSALT

> sp|P04637|P53_HUMAN TP53 - H179R
EVVRRCPHRERCSDSDG

> sp|P50148|GNAQ_HUMAN Q209L
FRMVDVGGLRSERRKWT
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3.1 Predicting
Affinity and Stability

3.1.1 NetMHCpan 4.1

Many deep learning-based tools have been developed over the last
years, but they all share the main functionality of predicting the
HLA-binding affinity.

A work by Zhao et al. tested 18 antigen prediction tools and
compared their capacity to accurately find binders by testing pep-
tides of different lengths in a variety of HLAs [40]. In summary,
MHCAlurry and NetMHCpan outperformed other tools in
peptide-MHC-binding prediction. Both tools are based on artificial
neural networks (ANN) and exhibited superior performance in
binary classification compared to logistic regression-based meth-
ods. This is because ANN-based approaches are favored for their
ability to capture complex interactions between MHC-binding
residues and for better regularization, reducing overfitting.
MHCAlurry consistently demonstrated robust performance in
binder prediction. Moreover, MHCflurry was superior in three-
class classification, suggesting its efficacy not only in identifying
MHC binders but also in distinguishing strong binders. Neverthe-
less, one of the downsides of using this type of tools is the available
data used for their training. The performance of Al-based tools
largely depends on the quality and comprehensiveness of their
training data. These tools use both quantitative (binding affinity)
and qualitative (eluted ligand) assays. The latter yield binary out-
comes, indicating only whether a peptide binds or not, without
quantifying the strength of that binding in traditional affinity units
such as nM. This poses a challenge for prediction tools like
MHCAlurry and NetMHCpan, which predict affinity values. The
researchers who developed the tools came up with different strate-
gies to assign affinity values to data lacking precise measurements,
but these estimates may not always align with reality. Despite these
shortcomings, NetMHCpan 4.1 and MHCAlurry are still consid-
ered the gold standard in the field. Both tools can predict the
affinity between the peptides and HLA allele input, among other
neoantigen presentation related scores. They also have a very useful
teature which is the splitting of protein sequences in all the possible
peptides of a specified length. For these reasons, the examples
below will focus on these tools.

NetMHCpan is one of the most well-known tools for MHC affinity
predictions. It allows the user to predict the affinity of peptides for
the different existing HLAs in different scores. In netMHCpan, the
important information to define a binder or not, and to distinguish
between strong and weak binders, comes from the predicted bind-
ing affinity and eluted ligand score. Apart from the raw score
NetMHCpan provides %Rank scores, which indicate whether a
predicted binding score stands relative to a set of random natural
peptides. Unlike some scoring methods that can be skewed by the
tendency of certain molecules to generally have higher or lower
predicted affinities, the rank values are designed to be bias-free,
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3 HLA-A*@3:01 LVVWVGACGV LWVGACGV @ © © @ @ LVVVGACGV sp_P81116_RASK_ ©.8000440 46.000 ©.057037 27.701 26974.59
2 HLA-A"03:01 KLVWGACG KLVWGACG 8 © © 8 @ KLVWWGACG sp_P81116_RASK_ ©.800039¢ 48.000 ©.057684  27.301 26786.42
8 HLA-A%@3:01 ACGVGKSAL ACGVGKSAL @ © © @ @ ACGVGKSAL sp_P01116_RASK_ ©.0000240 56.429 0.016001 84.254 42051.54
9 HLA-A*@3:81 CGVGKSALT CGVGKSALT @ © © 0 @ CGVGKSALT sp_P@1116_RASK_ ©.0000080 75.000 0.026008 64.019 37736.29
4 HLA-A*@3:81 VWGACGVG VWGACGVG @8 @ © 8 @ VVWVGACGVG sp_P81116_RASK_ ©.8000060 80.000 ©.839669 43.898 32551.18
6 HLA-A*@3:01 VGACGVGKS VGACGVGKS @ © © 8 @ VGACGVGKS sp_P81116_RASK_ ©.8000050 82.500 ©.823438 69.833 38800.35
1 HLA-A%@3:01 YKLVWGAC YKLVWGAC @ © © @ @ YKLVWVGAC sp_P01116_RASK_ ©.0000030 87.500 9.012605 99.642 43625.40

Protein sp_P01116_RASK_. Allele HLA-A*83:01. Number of high binders @. Number of weak binders 1. Number of peptides 9

c) Link to Allele Frequencies in Worldwide Populations HLA-203:01

# Rank Threshold for Strong binding peptides @.500
# Rank Threshold for Weak binding peptides  2.000

1 HLA-A*@3:01 EVVRRCPHR EVWRRCPHR © @ © © @ EVVRRCPHR sp_PB4637_PS3_H 0.0043080 7.830 0.105705  11.974 15931.82
3 HLA-A*@3:01 VRRCPHRER VRRCPHRER © © © @ @ VRRCPHRER sp_P@4637 P53 H ©.001295@ 12.585 0.060651  25.541 25940.17
2 HLA-A%@3:01 VVRRCPHRE VVRRCPHRE © © © @ @ VVRRCPHRE sp_P84637_P53_H ©.000877@ 14.665 0.074188 19.439 22485.92
4 HLA-A*03:01 RRCPHRERC RRCPHRERC © © © 0 © RRCPHRERC sp_PO4637_P53_H 0.000117¢  32.€00 0.022652 70.604 39131.71
S HLA-A*@3:01 RCPHRERCS RCPHRERCS © @ © @ @ RCPHRERCS sp_P@4637 P53 H 0,000003@ 87.500 0.009742 95.€93 44997.93
6 HLA-A*@3:01 CPHRERCSD CPHRERCSD © @ © @ @ CPHRERCSD sp_PO4637_P53_H 0.0000020 90.200 0.015796 84.670 42144.90
9 HLA-A®03:01 RERCSDSDG RERCSDSDG © @ © © o RERCSOSDG sp_P@4637_PS3_H ©.0000010  95.200 0.014771  86.637 42614.91
8 HLA-A*@3:01 HRERCSDSD HRERCSDSD © © © @ @ HRERCSDSD sp_P@84637_P53_H ©.0000000 100.200 0.006069 96.943 46822.21
7 HLA-A%@3:01 PHRERCSDS PHRERCSDS © © © © © PHRERCSDS sp_PO4637_P53_H 0.0000000 100.200 0.007033  96.457 46336.39

Protein sp_Pe4637_P53_H. Allele HLA-A©3:@1. Number of high binders ©. Number of weak binders ©. Number of peptides 9

D Link to Allele Frequencies in Worldwide Populations HLA-A@3:01
) # Rank Threshold for Strong binding peptides @.500
# Rank Threshold for Weak binding peptides o0

Core Of Gp G1 Ip I1 Icore Identity Score_EL XRank_EL Score_BA XRank_BA Aff(nM) BindLevel

Pos
2 HLA-A*@3:01 RMVOVGGLR RMVDVGGLR © @ © © @ RMVDVGGLR sp_PS8148_GNAQ_ ©.2605480 ©8.973 0.438447 1.128 474.58 <= WB
7 HLA-A%@3:01 GGLRSERRK GGLRSERRK © © © @ o GGLRSERRK sp_P50148_GNAQ_ ©.0129680 4.960 0.138485 8.905 12184.98
8 HLA-A%@3:01 GLRSERRKW GLRSERRKW © @ © 0@ @ GLRSERRKW sp_P50148_GNAQ_ ©.021794¢ 11.e83 0.851454 31.588 28654.26
5 HLA-A*@3:01 DVGGLRSER DVGGLRSER © @ © @ @ DVGGLRSER sp_PS50148 _GNAQ ©.00172680 11.264 0.055181  28.868 27521.75
6 HLA-A*@3:01 VGGLRSERR VGGLRSERR © © © @ @ VGGLRSERR sp_P50148_GNAQ_ ©.8@9251@  23.862 ©.841453  41.e45 31928.87
3 HLA-A*@3:01 MVDVGGLRS MVDVGGLRS @ @ © @ @ MVDVGGLRS sp_PS50148_GNAQ  ©.0222340 24.520 0.057349 27.508 26883.68
1 HLA-A*@3:01 FRMVDVGGL FRMVDVGGL © © © © © FRMVDVGGL sp_P50148_GNAQ ©.0000298 53.125 ©.027184 61.868 37259.17
4 HLA-A%@3:01 VDVGGLRSE VDVGGLRSE © @ © @ © VDVGGLRSE sp_P50148_GNAQ_ ©.022823@ 57.143 0.013562 88.933 43176.e0
9 HLA-A*@3:01 LRSERRKWI LRSERRKWI © @ © 0 o LRSERRKWI sp_PS0148 _GNAQ ©.0000120 68.750 0.018759 78.617 4@815.20

Protein sp_PS@148 GNAQ . Allele HLA-A*03:@1. Number of high binders ©. Nusber of weak binders 1. Number of peptides 9

Fig. 3 (a) User interface for the NetMHCpan tool for MHC affinity prediction. Input box to enter the full protein
sequence containing the neoantigen of interest as FASTA, or directly input the peptide, to select peptide length
and HLA alleles, as well as other filters and optional settings for the output. (b—d) Predictions from mutated
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3.1.2  MHCflurry 2.0

A

ensuring an accurate comparison across different peptides. If the %
Rank score for either binding affinity or eluted ligand is above 2.0,
the peptide is considered a non-binder. If the score falls between
2.0 and 0.5 (exclusive), the peptide is classified as a weak binder. If
the score is equal to or under 0.5, the peptide is labeled as a strong
binder. NetMHCpan also offers a column called “Binding level,”
which points to the binding strength based on the later values,
classifying peptides as weak binder (WB), and strong binder (SB).
The evaluation of peptide binding to MHC molecules is often
assessed through various scoring systems such as the IC50. The
IC50 value represents the peptide’s binding affinity to MHC, with
lower values indicating stronger binding. For instance, an IC50 of
500 nM or 50 nM typically denotes peptide binders or strong
binders to MHC, respectively [22].

NetMHCpan can be used through the interface available or the
command line version. The interface version is shown in Fig. 3a.
NetMHCpan outputs the result in tables containing information of
all the evaluated 9-mer peptides, their affinity, and their ranks both
for binding affinity and for eluted ligand, as well as a final column
indicating whether the peptide is a strong or weak binder.
Figure 3b—d shows the resulting predictions of the mutated pep-
tides used for this example. Evaluation of the selected 17-mers
resulted in two potential neoantigens. The 9-mer peptides were
RMVDVGGLR, VVGACGVGK, from GNAQ p.Q209L and
KRAS p.G12C, respectively. These peptides passed both %Rank
(BA and EL) scores as Weak Binders (under 2.0, but above 0.5).
Since the different tools might have discrepancies, the same pep-
tides were evaluated using MHCflurry to confirm their
neoantigenicity.

MHCAlurry implements Class I peptide/MHC-binding affinity
prediction. MHCflurry also includes two experimental predictors:
an “antigen processing” predictor that attempts to model MHC
allele-independent effects such as proteasomal cleavage and a “pre-
sentation” predictor that integrates processing predictions with
binding affinity predictions to give a composite “presentation
score.” Both models are trained using binding affinity and mass
spectrometry eluted ligand assays [23].

MHCAlurry has the same functionality as netMHCpan, but
runs in Python. The input can be a full protein sequence, which is

Fig. 3 (continued) peptides by NetMHCpan for (b) KRAS p.G12C, (¢) TP53 p.H179R, and (d) GNAQ p.Q209L
mutations. Pos, indicates the residue number of the peptide in the protein sequence, starting from 0; MHC,
specifies the HLA allele or supertipe; Score_EL, is the raw prediction score for eluted ligand; %Rank_EL, is the
rank of the predicted binding score compared to a set of random natural peptides; Aff, affinity; BindLevel,
indicates the binding level, where SB stands for strong binder and WB for weak binder; HLA human leukocyte
antigen, MHC major histocompatibility complex, nM nanoMolar
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nflank  cflank  sample name affinity best allele offinity percentile  processing score  presentation score  presentation percentile

nflank  cflank sample name  affinity best allele  affinity percentile processing score presentation score presentation_percentile

nflank  c flank sample_name affinity bestallele  affinity percentile  processing score  presentation score  presentation_percentile

SERRK

Fig. 4 Predictions from mutated peptides by MHCflurry for peptides containing (a) KRAS p.G12C mutation, (b)
TP53 p.H179R, and (c) GNAQ p.Q209L mutations. Pos, indicates the residue number of the peptide in the
protein sequence, starting from 0

splitted into all the possible peptides of the specified length (9-mers
in this example) to predict the binding affinities and calculate the
scores of each resulting peptide. The sequences have to be input as a
Python dictionary using the argument “sequences.” Then, the
argument “alleles” takes a list with the HLA alleles that are going
to be used for the predictions. The length of the peptides is called
“peptide_lengths,” which takes a list with the desired input lengths.
An example of how to run MHCAlurry is shown below:

from mhcflurry import ClasslPresentationPredictor

predictor = ClasslPresentationPredictor.load()

predictor.predict_sequences (
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3.1.3 NetMHCstabpan
1.0

sequences={'RASK_HUMAN - G12C’: "YKLVVVGACGVGKSALT",
'P53_HUMAN TP53 - H179R’: "EVVRRCPHRERCSDSDG",
'GNAQ_HUMAN Q209L’: "FRMVDVGGLRSERRKWI"},

alleles={"samplel": ["A0301"] },
result="all",

peptide_lengths= [9],

throw = False,

verbose=0)

In this case, it does not calculate %Rank like NetMHCpan but
outputs a percentile, which can be used to define a binder or not.
Any peptide with an affinity and/or presentation percentiles that
falls between 0 and 5 can be considered a binder or a presented
peptide. However, this is not a validated range. The well-validated
threshold is affinity of 500 nM. Figure 4 shows the resulting pre-
dictions of the mutated peptides used for this example. The two
peptides classified as HLLA-A*03-01 binders with NetMHCpan
were also classified as binders by MHCAlurry, showing concordance
between these two tools.

In summary, only one out of the 9-mers generated from KRAS
p-G12C mutation has been identified as a potential neoantigen,
although classified as weak. Also, one 9-mer from the GNAQ p.
Q209L mutation has been identified as a potential neoantigen. In
the case of TP53 p.HI179R, none of the generated 9-mers had
affinity for the tested HLA. Therefore, it will be excluded from
downstream analyses. Next, the stability of the peptide-MHC com-
plex in KRAS p.G12C and GNAQ p.Q209L putative neoantigens
will be evaluated.

NetMHCstabpan is a computational tool designed to predict the
stability of peptide-MHC Class I (pMHC-I) complexes. It uses a
machine learning approach to forecast the half-life of peptides
bound to MHC molecules, an essential step in antigen presentation
by the immune system. It is possible to run this tool using the
interface or the command line version [37] (Fig. 5a).

As in netMHCpan, the %rank values are not affected by the
inherent bias of certain molecules toward higher or lower mean
predicted affinities. Strong binders are defined as having %rank
<0.5, and weak binders with %rank <2. Of note, this tool also
includes a combined score using the affinity and stability values. In
fact, the output information is similar to netMHCpan, except for
the two new parameters related to stability and combined scores of
affinity and stability (Fig. 5b, c).

As a result, the two peptides from KRAS p.G12C and GNAQ
p-Q209L mutations, RMVDVGGLR and VVGACGVGK, were
predicted as stable binders. Thus, netMHCstabpan confirmed
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Predictions can be made for 8-14 mer peptides. Note, that all non 9mer predictions are made using approximations. Most HLA molecules
have a strong preference for binding 9mers.

The prediction values are given in half life time in hours values and as %-Rank to a set of 200.000 random natural peptides.
The project is a collaboration between CBS and IMMI at Copenhagen university
Link to table (tab seperated) describing the training data Training data table

If you download the stand alone version of the tool, please access the needed data.tar.gz file from data.tar.ez

Submission Instructions Output format Abstract Downloads

Submission

Type of input [Fasta ~|

Paste a single sequence or several sequences in FASTA format into the field below:
> 5p|PO1116|RASK_HUMAN - G12C
VKLVVVGACGVGKSALT

> 2p|P50148| GNAQ_HUMAN Q209L
FRIVDVGGLRSERRKWT

or submit a file in FASTA format directly from your local disk:
[‘Seleccior hivo | Ningun archivo seleccionado

I Threshold for strong binder: % Rank [05 |
PEPTIDE LENGTH: © R S Threshold for weak binder: % Rank

You may select multiple /engths Select Allele(s) (max 20 per submission) ®

o & et Include affinity predictions [No v
8mer peptides - e Sort by score [Nosort v

9mer pepliQes HLA-A"24.02 (A24)
10mer peptides HLA-A"26 01 (A26)
A HLA-B"07.02 (B7)
11mer peptides HLA-B708 01 (B8)
T HLAB°27-05 (B27) c e .
HLA-8'39.01 (B39)
A T3041 0%) Save prediction to xIs file CJ
HLA8'58.01 (B58)

HLA-8"15.01 (862) ~ -m

B)

HLA-A@3:@1 : Distance to traning data 0.080 (using nearest neighbor HLA-A@3:01)

% Rank Threshold for Strong binding peptides 0.500
% Rank Threshold for Weak binding peptides 2.000

pos. HLA peptide Identity Pred Thalf(h) %Rank_Stab  1-logSek Aff(nM) XRank_aff Combined Combined_Xrank BindLevel
4 HLA-A%Q3:01 VVGACGVGK sp_P@1116_RASK 9.488 9.97 1.18 0.491 246.31 1.08 9.499 1.02 <= 4B
1 HLA-A%03:01 KLVWVGACG sp_P81116_RASK_ 9.023 .18 16.00 9.051  28777.30 32.00 @.e45 26.67
2 HLA-A'23:01 LVWGACGV sp_P@1116_RASK_ 9.004 9.12 45.20 9.845  30846.65 58.00 @.037 48.91
6 HLA-A'93:01 GACGVGKSA sp_P@1116_RASK_ 9.013 .16 24.00 ©0.822  39587.82 58.08 0.020 41.10
3 HLA-A*03:01 VVWGACGVG sp _P81116 RASK 9.803 9.12 55.08 0.823  39143.57 58.08 9.819 58.93
5 HLA-A*@3:01 VGACGVGKS sp_P81116_RASK_ 9.801 0.10 80.€0 0.822  39217.35 58.08 0.018 54.05
8 HLA-A'23:01 CGVGKSALT sp_P@1116_RASK_ 9.001 .10 80.00 0.019  40738.44 58.00 @.015 54.05
7 HLA-A'93:01 ACGVGKSAL sp_P81116_RASK_ 9.001 .10 80.@0 0.813  43485.52 58.08 @8.011 54.05
@ HLA-A'03 YKLVWGAC sp_P@1116_RASK_ 9.901 9.989 88.00 ©.808  45816.91 58.00 9.897 54.05
Protein sp_P81116_RASK_. Allele HLA-A"@3:01. Number of high binders @. Number of weak binders 1. Humber of peptides 9
Link to Allele Frequencies in Worldwide Populations HLA-A'03:81
# Rank Threshold for Strong binding peptides 0.50@
4 Rank Threshold for Weak binding peptides  2.000
pes. HLA peptide Identity Pred Thalf(h) %Rank_Stab  1-logsek Aff(nM) %Rank_aff Combined Combined_Xrank BindlLevel
1 HLA-A*03:01 RMVDVGGLR sp P50148 GNAQ 0.477 0.94 1.10 0.418 544.67 1.50 9.43e 1.40 <= WB
6 HLA-A*Q3:01 GGLRSERRK sp_P50148_GNAQ_ 0.021 0.18 17.e0 0.123  13174.60 15.00 9.103 15.36
2 HLA-A'93:01 MVDVGGLRS sp_P50148_GNAQ_ @.004 0.13 40.00 @.06@  26246.48 32.00 9.049 33.33
5 HLA-A'23:01 VGGLRSERR sp_P58148_GNAQ_ 0.002 0.11 55.00 9.050  29103.20 32.00 0.0840 34.92
7 HLA-A*Q3:01 GLRSERRKW sp_P50148_GNAQ_ 9.025 0.19 16.00 0.844  31170.41 58.00 0.04e 35.09
4 HLA-A*03:01 DVGGLRSER sp_P50148 GNAQ 0.013 0.16 24.00 0.842  31685.57 58.00 9.836 41.1e
@ HLA-A'Q3:01 FRMVDVGGL sp_PS0148_GNAQ_ 0.001 0.09 80.00 9.016  42192.82 58.00 0.013 54.05
8 HLA-A'93:01 LRSERRKWI sp_P50148_GNAQ_ 9.001 .10 60.00 9.813  43458.15 50.e8 0.011 51.72
3 HLA-A'03:01 VDVGGLRSE sp_P50148_GNAQ_ 9.000 0.09 80.0e9 0.807  46451.85 50.08 9.896 54.05

Protein sp_P50148 GNAQ_. Allele HLA-A'@3:01. Number of high binders @. Number of weak binders 1. Number of peptides 9

Fig. 5 (a) User interface for the NetMHCstabpan tool for prediction of the stability of peptide-MHC Class |
complexes: Input box to enter the full protein sequence containing the neoantigen of interest as FASTA,
or directly input the peptide, to select peptide length and HLA allele, as well as other filters and optional
settings for the output. (b—c) Predictions from mutated peptides by netMHCstabpan for peptides containing
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that those mutations could produce potential neoantigens, with
affinity and stability for HLA-A*03:01. Nevertheless, additional
steps are required to evaluate whether these peptides will be pre-
sented on the cell surface, such as prediction of cleavage sites.

3.2 Predicting NetChop is a computational tool designed to predict cleavage sites
Cleavage and for processing protein precursors into mature peptides by proteases
Transport within the MHC Class I antigen presentation pathway. It operates

by using a neural network trained on a dataset of experimentally
verified cleavage sites, learning patterns indicative of protease spec-
ificity. When provided with an amino acid sequence, NetChop
assesses the likelihood of each residue being part of a cleavage site
based on its surrounding sequence context and outputs a probabil-
ity score for cleavage at each position [38].

NetChop also offers an interface closely similar to netMHCpan
and netMHCstabpan (Fig. 6a). In this example, the prediction
method was “C term 3.0,” with the default threshold of “0.5”
and output set to “Short output.” NetChop gives as a result the
input sequence marked with the predicted cleavage sites. The resi-
due where the cleavage is most likely happening is marked with an
“S,” whereas, if the cleavage is not occurring, the residue is marked
with a “.”. If'a residue is assigned with an “S” the peptide bond on
the C-terminal side is cleaved.

The cleavage sites are selected based on the value output by the
tool. This value can go from 0 to 1 and everything above 0.5 is
selected as a cleavage site. To access the predicted values per amino
acid “Short output” option needs to be unselected.

Figure 6b shows the resulting cleavage predictions of the
mutated peptides. In the case of KRAS, the 9-mer VVGACGVGK
was not found within the array of peptides produced after chopping
the mutated protein. On the contrary, the predicted cleavage pat-
tern of the 17-mer GNAQ p.Q209L can produce the peptide
RMVDVGGLR, which had binding affinity for HLA-A*03:01
allele (as shown above). It is important to note that the 9-mer
RMVDVGGLR also contains internal cleavage sites, which could
lead to the generation of shorter peptides.

Therefore, only the peptide RMVDVGGLR from GNAQ p.
Q209L remains as a potential neoantigen and will be tested in the

3.2.1 NetChop 3.1

A
Y

Fig. 5 (continued) KRAS p.G12C and GNAQ p.Q209L mutations. Pos, indicates the residue number of the
peptide in the protein sequence, starting from 0; HLA, specifies the MHC molecule or allele name; Pred, Stability
prediction score; Thalf(h), The predicted half-life of the pMHC complex (in hours); %Rank_Stab, %Random - %
Rank of predicted stability score to a set of 200,000 random natural 9-mer peptides; 1-log50K, Affinity
Prediction score (called 1-log50K(aff)); Aff(nM), Affinity as IC50 value in nM (only for white-listed alleles); %
Rank_aff, %Random - %Rank of predicted affinity score to a set of 200,000 random natural 9-mer peptides;
Combined, Prediction score combining Affinity and Stability predictions; Combined_%rank, %Rank approxima-
tion using both stability and affinity %Rank; BindLevel, Binding level (SB strong binder, WB weak binder)
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Submit | Clear fields
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Fig. 6 (a) User interface for the netChop 3.1 tool for prediction of the peptide cleavage sites: Input box to enter
the full protein sequence containing the neoantigen of interest as FASTA, or input the peptide directly, together
with optional settings. (b) Predictions of cleavage sites by netChop 3.1 for the 17-mer containing the GNAQ p.

Q209L mutation

last step, intending to predict if this peptide could be presented on
the cell surface of cancer cells by being transported to the ER by

TAP protein.
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3.2.2 TAP Transport
Predictions

For the TAP transport prediction, many Al-based tools have
recently been developed. A validated method described by Peters
et al. will be used in this example. The scoring matrix and how the
values are assigned for every amino acid at each position of a 9-mer
(calculated from experimental data) and formula used to score each
9-mer can be found in the original work [39].

The TAP score using this method on RMVDVGGLR was —
1.97. Since the authors specified that any TAP score below 1 would
be considered a potential neoantigen, this peptide would pass all
thresholds to be considered as a potential neoantigen.

In summary, according to our findings; from the three evalu-
ated mutations, only GNAQ p.Q209L mutation would have a
potential neoantigen, in agreement with previous reports. Interest-
ingly, GNAQ p.Q209L mutation is harboured by approximately
70% patients with uveal melanoma so it could represent a therapeu-
tic opportunity [41, 42]. In contrast, none of the peptides resulting
from TP53 p.H179R mutation had sufficient affinity to bind HLA
so would not be immunogenic, in agreement with previous studies
[42]. Whilst other mutations arising from TP53 could lead to
potential neoantigens [43], it has been reported that TP53 muta-
tions with greater oncogenic potential would be less immunogenic
[44]. Finally, although one peptide derived from KRAS p.G12C
mutation scored as a potential HLA-binding peptide, this 9-mer
would not be generated according to the cleavage prediction tool.
Of note, more potential neoantigens would have been found if
more HLA genotypes had been interrogated. In that sense, the
fact that neoantigens are restricted to certain HLA alleles limits the
applicability for immunotherapeutic approaches [45, 46].

4 Overview of Available Computational End-to-End Workflows for Neoantigen

Identification

Computational workflows for neoantigen prediction consist of four
main steps, which can be categorized as (1) variant calling and
annotation for tumor-specific mutations, (2) HLA genotyping of
patients’ alleles, (3) prediction of HLA-binding affinity and stability
of peptide epitopes, and (4) neoantigen prioritization and identifi-
cation of immunogenic neoepitopes for personalized cancer immu-
notherapy (Fig. 2). Those steps, explained in Subheading 2, are
typically integrated into a sophisticated bioinformatics pipeline
provided as a ready-to-use software. With the advent of Al, some
of the steps are being replaced or facilitated by machine learning
algorithms, whereas recent state-of-the-art approaches utilize end-
to-end deep learning models. Over the past years, several methods
have been proposed to conduct each step of the neoantigen predic-
tion process. As an example, in Subheading 3 an extensive
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description of the available methods for HLA-binding affinity and
stability prediction has been provided. Herein, an overview of the
methods providing unified pipelines and workflows for neoantigen
prediction will be presented. Since several end-to-end pipelines are
available, this section will focus on those that provide unique
features to users aimed at improving neoantigen identification,
facilitating clinical implementation, reducing computation time,
and inclusiveness in the user group.

CloudNeo [47]: It was the initial effort to introduce a cloud-
based neoantigen prediction workflow with the scope of identifying
patient-specific tumor neoantigens. The CloudNeo workflow
requires non-synonymous mutations in VCF format and RNA or
DNA sequencing data in BAM format for HLA typing. Then, the
VEP tool [48] and a custom R script named Protein_Translator are
utilized to convert genomic variants into amino acid changes. The
Protein_Translator generates a list of N-amino-acid-long peptide
sequences in FASTA format, with the single peptide change posi-
tioned in the middle of the N-mer. Additionally, it generates
another FASTA file for homologous N-mers without peptide muta-
tions. Users can select either HLAminer [49] or Polysolver [50] to
calculate six predicted HLA types (top two predictions each for
HLA-A, HLA-B, and HLA-C). Then, the NetMHCpan tool
[22, 51] computes binding affinities between the six HLA types
and each ([N/2] + 1)-mer peptide subsequence within the N-mers.
The platform’s output includes peptide subsequences and
MHC-binding affinity scores for all six HLA types. The CloudNeo
pipeline, implemented in Common Workflow Language (CWL), is
publicly available on GitHub. It can be executed using Rabix,
enabling deployment on various platforms such as AWS, Google
Compute Engine, and Azure.

Antigen.garnish [52] is a workflow featuring unique charac-
teristics. The first is ensemble neoantigen prediction, while the
second is utilizing the dissimilarity to the non-mutated (reference)
proteome to identify high-quality predicted neoantigens. More
specifically, the antigen.garnish workflow input options include
VCPFs, peptide sequences, or ensemble transcript IDs with HGVS-
style cDNA annotations. Mutated sequences undergo prediction
and filtering against the non-mutated proteome. The main func-
tion of the tool, “garnish_affinity,” is to conduct ensemble MHC
affinity prediction. The ensemble method generates a unified affin-
ity score by averaging the affinities from all models predicting the
peptide-MHC binding. The pipeline provides both the ensemble
value and the individual algorithm prediction affinities from each
model. Dissimilarity analysis integrates Smith-Waterman align-
ments against the reference proteome, with a cutoff of dissimilarity
metric >0.75 applied to identify high dissimilarity neoantigens,
enhancing identification of immunogenic peptides. The workflow
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is provided as an open-source tool, implemented in R, designed for
Linux, and utilizes the “mclapply” function for parallelization.

NeoFuse [53] was proposed as the first fully unified workflow
for the prediction of fusion neoantigens from tumor RNA-seq data.
The unique characteristic of this tool lies in the integration of the
preprocessing steps required for fusion transcript prediction in an
end-to-end pipeline, which yields IC50 annotation for each neoan-
tigen, percentile rank, confidence score, binding HLA type, expres-
sion of both HLA genes and fusion. Additionally, it identifies
premature stop codons that could lead to nonsense-mediated
decay of the fusion transcript. NeoFuse is a command line tool
with five modules. Initially, data is imported in FASTQ format,
and the first module performs HLA Class I typing using OptiType
[54]. The second module utilizes Arriba [55] to predict fusion
peptides, while the binding affinity of fusion peptides to HLA
types is predicted by MHCflurry [23, 56] in the third module.
Afterward, the fourth module quantifies gene expression levels as
transcripts per million by utilizing both STAR [57] and feature-
Counts [58]. The fifth and final module filters and prioritizes based
on the binding affinity and confidence score resulting from the
fourth step. In this way, it produces a set of peptides that indicate
potential fusion neoantigens. The tool is provided through two
major container technologies, Docker and Singularity.

DeepHLApan [59] in contrast with the other methods is not a
unified neoantigen prediction pipeline since it requires some pre-
processing steps, yet it provides the distinctive feature of an end-to-
end deep learning scheme for neoantigen prediction based on
peptide-HLA binding and the immunogenicity of the complex.
Specifically, DeepHLApan utilizes recurrent neural networks
(RNN) and consists of two models, the first for predicting the
probability of the peptide binding to the HLA in the tumor cell
membrane and the second immunogenicity model for predicting
the capacity of the peptide-HLA complex to induce T-cell activa-
tion. The immunogenicity score is used as a filter to rank the
binding prediction score to yield a high confidence neoantigen
identification. The model works only for HLA Class I neoantigens
(A, B, and C alleles). Moreover, preprocessing steps are required
since the model’s input data should be in CSV format with the
columns’ heads being “Annotation, HLA, Peptide.” DeepHLApan
is provided as a ready-to-use model through a web platform or as a
docker image.

pVACtools [60-62] is not a pipeline itself but a toolkit with
several modules that can be integrated into one workflow to create
an end-to-end neoantigen prediction tool. It is a modularized
toolkit that provides the independent use of its module while
facilitating multiple input types. It can also be integrated with
external tools. The main feature of this toolkit is pVACseq, a
pipeline for identifying and prioritizing neoantigens from a VCF
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file, which can be coupled with the pVACviz GUI for the visualiza-
tion and selection of data resulting from pVACseq. The pVACbind
is used for FASTA files, while the pVACfuse is utilized for neoanti-
gen prediction in gene fusions. Another tool is the pVACvector,
which is employed to optimize the design of DNA-based cancer
vaccines that prevent high-affinity junction neoantigens. Finally,
the pVACapi offers a Rest-API for the pVACtools suite.

NextNEOpi [63] is a fully automated pipeline for neoantigen
prediction with some special characteristics, such as quantification
of neoepitope and patient-specific features associated with tumor
immunogenicity and response to immunotherapy. NextNEOpi is a
command line tool that utilizes raw DNA and RNA sequencing
data, and a list of known patients” HLA types can also be imported.
The first step of the pipeline after sequencing data pre-processing is
HLA typing for both Class I using the OptiType and HLA-HD
[64] for Class II. Then, variant calling is performed with several
different independent algorithms, and variants called by more than
one tool are marked as having high confidence. All variants are then
annotated by the VEP tool, and the pVACseq tool is used to predict
neoantigens from SNVs and INDELs, whereas NeoFuse is used to
predict neoantigens from gene fusions. For peptide-HLA Class 1
binding prediction, NextNEOpi uses by default netMHCpan [65],
MHCFlurry [23], and NetMHCIIpan [22]. For peptide-HLA II
binding prediction mixMHC2pred [66] is employed. MiXCR [67]
is used to predict T- and B-cell receptor repertoires, while clonality,
tumor mutational burden, and CSiN scores are computed for the
individual neoantigens and samples. NextNEOpi is implemented in
NextFlow, providing reproducibility and scalability as a user-
friendly tool.

NeoSplice [68] is another neoantigen prediction method, yet
its unique characteristic is the use of splice variants. This method
utilizes RNA-seq data as input and generates tumor-specific k-mers
by comparing tumor cells with normal cells. Hence it identifies
k-mer sequences abundant in the tumor transcriptome but rare in
normal cells. Then, splice variant transcripts are predicted by con-
structing a splice graph using tumor cell RNA-seq data. Tumor-
specific k-mers identified in the first step are then mapped to these
splice variant transcripts. Annotations from Gencode are utilized to
ascertain if the novel splice occurs within a protein-coding region
and to determine the reading frame of the transcript. Finally, it
translates novel splice junctions found within each splice variant
transcript into peptide sequences based on the inferred open
reading frame. Following translation, HLA Class I-binding affinity
prediction is carried out on these peptide sequences employing
NetMHCpan-4.0 [65] to identify regions that may produce neoe-
pitopes. This tool is provided as a command line tool implemented
in Python 2 while also shipping in a docker image.
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Seq2Neo [69] provides a one-stop solution pipeline for neoan-
tigen immunogenicity prediction and specifically for neoepitope
feature prediction through raw sequencing data. The major distinc-
tive characteristic of this pipeline is the use of a convolutional neural
network (CNN) that predicts the immunogenicity of neoepitopes.
Seq2Neo is a command line tool that automates workflows for
predicting immunogenic peptides. It integrates mutation labeling,
HLA typing, and HLA affinity-binding prediction tools, along with
a (CNN)-based model for immunogenicity prediction. The work-
flow begins with importing raw sequencing data in FASTQ, SAM,
or BAM format and then selecting the workflow of interest. For
point mutation and INDEL detection, Mutect2 [70] was utilized,
while for gene fusion detection STAR-Fusion [71] was employed.
VCF format was used for the somatic variant data generated.
HLA-HD is used for MHC genotyping, and ANNOVAR [72] or
Agfusion [73] were utilized to annotate somatic variants to identify
mutated peptides. Seq2Neo uses NetMHCpan for peptide-HLA-
binding affinity prediction, while TPMCalculator [74] was used to
detect gene expression and NetCTLpan [19] to obtain TAP trans-
port efficiency. The tool outputs various peptide features, aiding in
neoantigen prediction and immunogenicity assessment. Seq2Neo
is provided as a Conda package or a docker image.

PGNneo [75] is another unique pipeline that performs neoan-
tigen prediction in noncoding regions based on proteogenomics.
The overall computational framework of PGNneo comprises the
following components. First, there is noncoding somatic variant
calling and HLA typing, this involves using paired tumor and
normal samples for somatic variant calling, filtering out
low-quality mutations, and extracting noncoding mutations. HLA
typing is determined based on RNA-seq data from tumor samples.
Second, nucleotide sequences are obtained and translated into
proteins via six-frame translation. Tumor mutated peptides are
extracted, and a customized protein database is constructed by
combining these mutated protein sequences with reference pro-
teins. Third, variant peptide identification involves filtering result-
ing peptides using MS datasets, providing evidence for their
presence at protein levels and their binding to MHC molecules.
Finally, neoantigen prediction and selection are conducted. Candi-
date neoantigens are predicted based on peptides and HLA types
using NetMHCpan 4.1 [22]. These candidates undergo filtering
using the dbPepNeo 2.0 database, which contains 746 experimental
immunogenic peptides as a reference. The tool is provided both in a
command line version and GUI versions, while for its implementa-
tion, Python, R, Java, and Perl were used.

NeoMUST [76] employs multitask learning, representing a
novel approach to neoantigen prediction. The primary task of the
model is neoantigen presentation classification, while the secondary
task is binding affinity prediction between HLA Class I molecules
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and eluted peptides. It effectively captures and utilizes task-specific
information from both tasks, identifying similarities and distinc-
tions to enhance performance. Additionally, it optimizes individual
loss functions to balance the two tasks effectively while significantly
reducing training time and enhancing scalability for large datasets.
Although it is not an end-to-end pipeline, it features some novel
capabilities. The model is available either as a Conda package or a
docker image.

ImmuneMirror [77] is another recent method that provides
an integrative pipeline for neoantigen prediction enhanced by
machine learning. The machine learning model was constructed
utilizing the balanced random forest algorithm to predict neoanti-
gens. It integrates multiple biological features pertinent to neoanti-
gen processes, including biogenesis, transportation, presentation,
and T-cell recognition (such as agretopicity, foreignness, hydro-
phobicity, binding stability, peptide processing, and transportation
scores). This machine learning model was then integrated into the
ImmuneMirror bioinformatics pipeline, which also operates as a
web server for predicting and prioritizing neoantigens from mul-
tiomics sequencing data. The pipeline accepts raw FASTQ reads as
input, while the web server requires VCF files containing somatic
mutations. The web server produces a visual report that incorpo-
rates the following: tumor mutational burden (TMB), HLA types,
neoantigen load for HLA Class I and II, mismatch repair (MMR)
status, germline and somatic mutations, ImmuneMirror prediction
score, and IPRES gene expression signature.

GraphMHC [78] is one of the most recent approaches for
neoantigen prediction, utilizing a graph neural network applied to
molecular structure to simulate the binding between peptide and
MHC proteins. The pipeline begins by converting HLA into MHC
amino acid sequences. Next, both MHC and peptide sequences are
transformed into SMILES structures using the RDKit 2022.03.2
library. Then, these two SMILES strings are combined using
non-bond notation. Afterward, the combined structure is con-
verted into a molecular structure using RDKit, ensuring that any
omitted hydrogen atoms are included. Following this, the molecu-
lar structure is transformed into a graph structure using the RDKit
library, allowing for the encoding of vectors and matrices. Each
feature is encoded using one-hot encoding and assembled into a
sparse matrix. Finally, the graph dataset is converted using the
PyTorch Geometric (PyG) 2.1.0 library.

Table 1 summarizes all the methods discussed. The table pro-
vides the name of each tool, the intended function of the software
and specifies the input data utilized in neoantigen prediction. Addi-
tionally, it provides neoantigen classification, the method employed
to evaluate the binding affinity between the neoantigen and HLA
molecules and the outcomes obtained from the analysis. A link to
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the source code or user interface of the software is also provided
along with its publication date and the date of its last update.

The above methods provide only an overview of the distinctive
utilities offered by available tools and pipelines. However, there are
several other methods available for neoantigen prediction. The
choice of method depends on factors such as the specific use, the
user’s level of bioinformatics expertise, and the ease of pipeline
implementation. Therefore, users should consider both the input
and output data of each pipeline based on their needs. Additionally,
users can choose among command-line interface (CLI) tools or
web applications with user-friendly interfaces, depending on their
proficiency in utilizing informatics tools. It is important to note
that a direct comparison of the prediction accuracy of tools can only
be made when the prediction endpoint of the pipeline is the same.

In the last decade, deep learning models have flourished due to
their high prediction accuracy across several fields. Thus, they have
been widely adopted in biomedical research. This trend is particu-
larly evident in the field of neoantigen prediction, where deep
learning methods have been introduced for binding affinity predic-
tion. While machine learning models were predominantly utilized
for neoantigen-peptide binding, there has been a noticeable transi-
tion in many pipelines toward deep learning methods. This shift is
strongly correlated with the continuous expansion of available
training data and the emergence of additional features. As a result,
the complexity of the data is increasing, favouring deep learning
models due to their enhanced capacity to capture and process this
wealth of information compared to traditional machine learning
models.

5 Neoantigen Prediction in Mouse Models

In silico prediction of neoantigens represents a pivotal phase in
unlocking the therapeutic potential of cancer immunotherapy. As
described in the previous section, a plethora of software for neoan-
tigen discovery is available. However, these pipelines are mainly
tailored to human data with a focus on predicting the binding
affinity between epitope and HLA. Nevertheless, models specific
to murine systems are crucial for facilitating in vivo experimentation
and further translation of immunotherapies into clinical practice.
The availability of these pan-specific software solutions remains
limited, posing a significant challenge in preclinical immunotherapy
research. Consequently, some human-centric software platforms
have undergone adaptation to include binding affinity predictions
for mouse MHC. Moreover, efforts have also been made to develop
murine-specific models aimed at bridging this gap in experimental
settings.
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When evaluating the collection of available software tools, it is
important to recognize that neoantigen presentation and recogni-
tion by T cells entail a complex process comprising various steps.
Many existing neoantigen prediction tools primarily focus on pre-
dicting the binding affinity between the epitope and the MHC
molecule while overlooking other critical steps, leading to a high
false positive rate of predicted epitopes [64]. Emerging software
solutions are now considering these additional steps to yield more
robust predictions. First, the different software platforms specializ-
ing in binding affinity prediction within murine models will be
examined. These tools exhibit variations in training data modalities,
training methodologies, and input data types. While some tools
exclusively predict binding affinity for user-identified neoepitopes,
others offer end-to-end platforms capable of processing RNA-seq
data to predict neoantigens directly. These latter tools enable users
to input raw data directly without having to create and apply variant
calling pipelines. In terms of training data, it is common to utilize
either binding affinity data or mass spectrometry-eluted ligands.
However, studies have demonstrated that combining both input
data types enhances predictive performance [22]. Additionally, pre-
dictive models have transitioned from earlier methodologies, such
as support vector machine regression [79] or profiles [80], to more
advanced approaches like ANNs and RNNs, which have shown
superior performance.

Among the reviewed software solutions, only two are explicitly
designed for murine models. The first, NetH2Pan [81 ], employs an
ANN architecture to predict binding atfinity. It performs the pre-
diction based on user-provided peptides, leveraging both binding
affinity and eluted ligand data during training. Conversely,
NAP-CNB [9] operates as an end-to-end platform, using
RNA-seq for neoantigen prediction. The tool integrates a variant
calling pipeline that returns SNVs and INDELs unique to the
tumor. This method implements a more advanced neural network
with long-short-term memory (LSTM) units, albeit trained solely
on binding affinity data. Additionally, several software platforms
initially developed for human data have been adapted to incorpo-
rate murine H2 alleles. Examples of such software include
NetMHC [25], NetMHCpan [65], and MHCAlurry [23]. Both
NetMHC and NetMHCpan utilize an ANN architecture and
were trained on binding affinity and eluted ligand data. Moreover,
they accept user-generated tumor-specific peptides as input. How-
ever, NetMHC employs an allele-specific training approach, while
NetMHCpan adopts a “pan-specific” strategy, combining informa-
tion from both data modalities and diverse MHC molecules into a
unified network. The authors reported that the novel training
strategy employed by NetMHCpan enhances predictive accuracy.
In contrast, MHCflurry uses binding affinity and eluted ligand data
in a more sequential manner. The method initially conducts
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binding predictions using an ensemble of ANNSs trained on binding
affinity data and subsequently integrates mass spectrometry data
into another ensemble of ANNSs to account for the antigen proces-
sing steps, particularly focusing on proteasomal cleavage. The out-
puts of these two models are then aggregated to generate a
comprehensive presentation score. Furthermore, certain tools
seek to bridge the gap between RNA-seq data and tumor-specific
peptides by integrating some of the prediction methods mentioned
above with variant calling pipelines, offering end-to-end solutions
for neoantigen prediction. Examples include Epi-Seq [82], a bioin-
formatics pipeline utilizing NetMHC, and pVAC-Seq [62], which
incorporates various prediction methods like NetMHC or
MHCAlurry. A general summary of these methods can be found in
Table 2.

Newly developed methods are taking into consideration addi-
tional steps of the neoantigen processing pipeline, aiming to reduce
the occurrence of false positives. One such tool, DeepNeo [83], a
neural network-based tool, integrates predictions on MHC binding
affinity and T-cell reactivity, a crucial factor for the success of
neoantigen vaccines. The tool accepts peptide sequences from
both mouse and human data and generates a binary prediction for
MHC binding alongside a quantification of T-cell reactivity. While
the prediction of T-cell reactivity holds promise for designing more
effective neoantigen-based treatments, it is worth noting that the
authors do not provide validation of the tool’s performance on
murine data in the paper. Another recently introduced tool,
Neo-Intiline [84], similarly accounts for various stages of peptide
presentation and recognition. The tool is designed to be used with
WGS data. The tool’s optimal performance is observed when ana-
lyzing melanoma data, although its applicability extends to any
relevant dataset of interest.

Although these methods have demonstrated efficacy in silico,
in vivo validations are imperative to assess their real-world perfor-
mance. Both NetH2pan and NAP-CNB, validated in clinical set-
tings, have proven effective in neoantigen discovery [85].

6 Technical Challenges and Future Improvements

The field of neoantigen prediction has evolved significantly, pro-
pelled by advancements in computational biology, high-through-
put sequencing technologies, and the integration of machine
learning approaches. Despite these advancements, several technical
challenges persist, and addressing these challenges is crucial for
enhancing the predictive accuracy and clinical utility of neoantigen
prediction methods.
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6.1 Technical

Challenges

6.2 Future
Improvements
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The main challenges we have identified are:

1. High false positive rates: One of the enduring challenges in

neoantigen prediction is the high rate of false positives. Many
predicted neoantigens are not genuinely immunogenic, which
can lead to inefficient or ineffective therapeutic strategies. This
challenge stems primarily from the limitations in accurately
modeling the complex interplay of factors that contribute to
the immunogenicity of neoantigens, such as peptide-MHC-
binding affinity, TCR recognition, and the expression and pre-
sentation dynamics in tumor microenvironment.

. HLA allelic diversity: The genetic diversity of HLA alleles poses

a significant challenge due to its impact on binding affinity
predictions. Current prediction tools often have reduced accu-
racy for less common HLA alleles, which are underrepresented
in training datasets. This limitation affects the generalizability
of prediction models across different populations. In addition,
most tools are specific to MHC Class I molecules, although it
has been demonstrated that MHC Class 11 is also essential for
effective antitumor immune responses.

. Integration of epitope processing: Neoantigen prediction tools

primarily focus on the binding affinity of peptides to MHC
molecules. However, the entire process of antigen presenta-
tion, including proteasomal processing, transport by TAP pro-
teins, and trimming by ER aminopeptidases, significantly
influences the presence of peptides on the cell surface. The
lack of comprehensive integration of these steps can lead to
inaccuracies in predicting true neoantigens.

. Scalability and computational efficiency: As genomic datasets

grow in size and complexity, the computational demands of
neoantigen prediction also increase. Scalability and efficiency
become critical, especially for real-time or near-real-time analy-
sis in clinical settings. Many existing tools require substantial
computational resources, which can be a barrier to routine
clinical use.

As future improvements to be accomplished, we propose the
following:

1. Enhanced machine learning models: Future advancements

should include the development of more sophisticated machine
learning models integrating multiple aspects of antigen presen-
tation and immune recognition. Deep learning approaches that
can learn complex patterns from large datasets may offer
improvements in predicting the immunogenicity of neoanti-
gens beyond mere peptide-MHC binding and development of
neoantigen-based therapies.
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2. Incorporation of tumor microenvironment factors: Incorpor-
ating data from the tumor microenvironment, such as cytokine
profiles, immune infiltration, and checkpoint expression, could
enhance the prediction of neoantigen immunogenicity. Under-
standing the interaction between neoantigens and the tumor
microenvironment will aid in prioritizing neoantigens that are
more likely to elicit a robust immune response.

3. Expanding training datasets: To address the issue of HLA
diversity, it is essential to expand training datasets to include a
broader array of HLA types, particularly those that are less
common globally. This expansion would improve the accuracy
of the model and its applicability to diverse populations.

4. Integrative multiomics approaches: Future tools should aim to
integrate multi-omics data, including genomics, transcrip-
tomics, and proteomics, to provide a more holistic view of
neoantigen presentation and potential immunogenicity. This
integration will help in understanding the complex dynamics of
cancer biology and immune responses.

5. Cloud-based platforms and real-time analysis: Developing
cloud-based platforms that can perform real-time analysis of
neoantigen predictions would significantly benefit clinical
applications. Such platforms should be designed to handle
large-scale data efficiently, providing accessible and rapid
insights for personalized cancer immunotherapy.

7 Discussion and Gonclusions

The prediction of neoantigens represents a cornerstone in the
development of personalized cancer immunotherapies. It leverages
the power of computational biology, genomics, and immunology
to identify tumor-specific antigens that can be targeted by the
immune system, offering a highly personalized approach to cancer
treatment. The insights gained from this research area are critical in
guiding the design of vaccines and cell-based therapies that have the
potential to significantly improve patient outcomes.

Throughout this chapter, various computational methods and
tools developed for neoantigen prediction have been explored.
These tools have evolved from basic sequence alignment techniques
to sophisticated machine learning models that predict peptide-
MHC-binding affinities and assess immunogenic potential. The
integration of deep learning has particularly enhanced the accuracy
and predictive power of these tools, reflecting broader trends in
biomedical research where advanced computational methods are
increasingly pivotal.

However, despite these technological advancements, several
challenges remain. The prediction of neoantigens still contends
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with issues such as high false positive rates, limited understanding
of the immunogenicity landscape, and the need for better integra-
tion of comprehensive antigen processing pathways. Moreover, the
diversity of HLA alleles presents a significant hurdle in achieving
universally applicable prediction tools, necessitating ongoing
efforts to expand and diversify the training datasets used in model
development.

Looking forward, the field of neoantigen prediction is poised
for transformative growth. Key areas for future improvement
include the development of integrative multi-omics platforms that
can provide a more complete picture of tumor immunogenicity and
the microenvironmental factors influencing immune recognition.
Additionally, the expansion of machine learning models to include
more diverse data types and training sets will enhance the accuracy
and applicability of predictions across different populations and
cancer types.

Ultimately, the integration of neoantigen prediction into clini-
cal practice promises to revolutionize cancer immunotherapy. By
tailoring treatments to the specific immunogenic landscape of the
tumor of each patient, neoantigen prediction paves the way for
more effective and less toxic therapies. It holds the promise of
turning the immune system into a precise tool for targeting cancer,
fundamentally changing the way we approach cancer treatment and
heralding a new era of precision oncology. As we continue to refine
and improve computational methods for neoantigen prediction, we
move closer to realizing the full potential of immunotherapy in
providing durable and potent cancer treatments.
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