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Abstract 

Neoantigens are mutated peptides arising from tumor genomic alterations, which can be recognized and 
attacked by the immune system, leading to antitumor immune responses. In the last decades, many 
immunotherapeutic strategies have been developed, which has increased the interest in neoantigens. This 
led to the development of computational tools that facilitate neoantigen identification and prioritization, 
prior to their validation using experimental approaches. This chapter aims at explaining the key steps that 
need to be conducted to identify potential neoantigens in silico, including an example of the most 
frequently used tools. This is followed by a description and comparison of the cutting-edge tools and 
pipelines for neoantigen prediction both for human and mouse. The last aim of this chapter is to depict the 
technical challenges that limit neoantigen prediction using bioinformatics, as well as the expected improve-
ments, given the current revolution of artificial intelligence, which is implemented in most of the 
neoantigen-related tools. As exposed in this book chapter, we believe that advances in immunomics and 
computational biology will be key to implement personalized cancer immunotherapy in the clinical practice, 
to improve outcomes of cancer patients. 

Key words Neoantigen prediction, Bioinformatics, HLA-binding affinity, MHC, Mice, Immu-
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1 Introduction 

Over the last decades, the emergence of immunotherapy has revo-
lutionized cancer treatment and has offered new opportunities for 
precise and personalized interventions. Among others, one immu-
notherapy strategy is the identification and targeting of tumor-
specific antigens (TSAs) including neoantigens, which are peptides 
resulting from genetic alterations. Aberrant proteins in tumors are
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degraded by the proteasome and resulting peptides are transported 
to the endoplasmic reticulum (ER), where they are subsequently 
loaded onto major histocompatibility complex (MHC) molecules, 
known as human leukocyte antigens (HLAs) in humans [1]. There 
are a variety of sources of neoantigens. Although somatic muta-
tions, especially missense (which change the amino acid codon), are 
the most studied; increasing evidence supports that neoantigens 
can also be derived from other events such as insertion/deletions of 
nucleotides (INDELs), frameshift mutations (insertion or deletion 
of a number of nucleotides not multiple of three, thus disrupting 
the reading frame), gene fusions (caused by joining parts of two 
different genes, leading to a new protein), endogenous retroviruses 
(ERVs) (ERV transcripts can be a source of tumor-specific neoanti-
gens), RNA splicing anomalies (alternative splicing consists of dif-
ferent exon combinations, leading to proteins with different 
structure and function), post-transcriptional frameshift (e.g., ribo-
somal slippage) or post-translational frameshift (e.g., protein splic-
ing) [2]. In fact, the more different the neoantigen versus the wild 
type, the more immunogenic [3].
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Neoantigens are expressed in tumors but not in healthy tissues, 
thus they induce stronger effector responses than tumor-associated 
antigens (TAAs), which are overexpressed in tumor cells but also 
present at a lesser extent in nonmalignant cells [4]. To trigger 
antitumor immune responses, neoantigens need to be presented 
by MHC molecules. MHC Class I molecules primarily exhibits 
small protein fragments derived from degraded intracellular pro-
teins, and its role in cancer neoantigen presentation is well estab-
lished. On the contrary, MHC Class II molecules exhibit 
extracellular antigens typically captured by antigen-presenting 
cells (APCs). However, MHC class II pathway is also essential for 
effective immune responses against neoantigens since APCs can 
uptake neoantigens from dying cancer cells [5, 6]. Hence, the 
resulting neoantigen-MHC complexes are formed and transported 
to the surface of cancer cells to be recognized as nonself by T-cell 
receptor (TCR), leading to antitumor immune responses. This 
specific recognition allows the elimination of malignant cells with-
out affecting healthy tissue [7] (Fig. 1a). 

Traditionally, the discovery of neoantigens has relied on exper-
imental approaches, which make the process tedious, thus offering 
limited results. However, the advances in computational biology 
and bioinformatics, such as the use of artificial intelligence and deep 
learning algorithms on next-generation sequencing (NGS) data, 
enable a possible strategy to predict potential neoantigens faster 
with high accuracy [4] (Fig. 1b). Optimal pipelines discussed below 
not only take into account the binding capacity of peptides to 
MHC but also the expression levels of the antigen of interest by 
tumor cells [8, 9].
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Fig. 1 (a) Key steps of neoantigens origin and processing until loaded in MHC molecules for their recognition 
by T cells: mutations can occur at a genomic level of the malignant cell (1), where they are transcribed (2) and 
spliced to form mRNA (3). During this process, alternative splicing can also produce splice variant mRNA. 
Translation of these variant mRNAs then leads to the synthesis of variant proteins (4). At this stage, post-
transcriptional frameshifts, such as those caused by ribosomal slippage, can also produce variant proteins. 
These variant proteins can then undergo proteasomal degradation (5) and be transported to the endoplasmic 
reticulum (ER) (6), where they are subsequently loaded onto major histocompatibility complexes (MHCs) (7). 
After being loaded, the resulting neoantigen-MHC complexes can be transported to the cell surface (8), where 
they are exposed to recognition by the T-cell receptor (TCR) of lymphocytes. (b) Schematic representation of 
the overall process of identification of new neoantigens: Tumor samples are obtained and used to identify



➤

256 Andrea Moreno-Manuel et al.

Thus, the prediction of neoantigens is a critical process in the 
pursuit of truly personalized cancer immunotherapies, relying on 
advanced bioinformatics tools to integrate high-quality patient data 
with a rapidly expanding body of immunological knowledge. The 
overarching goal is to predict if patient-specific cancerous muta-
tions can stimulate the immune system to target and eliminate the 
patient’s own tumor. 

In Subheading 2, an overview of the key steps in neoantigen 
prediction using NGS will be provided. Subheading 3 shows an 
example of neoantigenicity prediction comparing different meth-
ods over the same peptides. Afterwards, the available pipelines for 
neoantigen prediction and their characteristics will be listed in 
Subheading 4 for humans and in Subheading 5 for mouse models. 
Lastly, technical challenges and future improvements will be dis-
cussed in Subheading 6. 

2 Key Steps of Neoantigen Prediction 

The complex, multi-step process of neoantigen prediction involves 
several stages, each contributing to the final prediction. As 
explained before, the MHC Class I pathway is involved in present-
ing antigens originating from the inside of cells, for example, 
stemming from viruses and mutations, inducing CD8+ cytotoxic 
T cells. Traditionally, the MHC Class I antigen-presentation path-
way has been recognized as the most restrictive, and consequently, 
the most predictive pathway for neoantigen prediction [10] and 
will thus be the main focus of this section. The key parts of neoanti-
gen prediction process can be split into the following steps (Fig. 2): 

2.1 Sample 

Collection 

This is the initial, and arguably the most important, step in the 
process since all downstream results inadvertently depend on it. It 
involves obtaining high-quality patient samples from both tumor 
and representative normal tissues and comparing them to identify 
unique genetic alterations in the cancer cells that are not present in 
normal (germline) cells [11, 12]. These somatic mutations can 
potentially give rise to neoantigens, forming the basis for all down-
stream investigations. However, the mutations must be identified

Fig. 1 (continued) individualized neoantigens via RNA sequencing (RNAseq) or whole genome/exome 
sequencing (1). In parallel, HLA typing prediction is performed (2). Then a neoantigen-MHC complex binding 
prediction is evaluated (3). Once a suitable neoantigen-MHC complex is identified, the T-cell recognition via 
TCR is evaluated to check that a proper immune response can be triggered (4). In that case, the neoantigen 
discovered is classified as useful for therapeutic approaches. SNV single nucleotide variant, INDEL insertion/ 
deletion, ERV endogenous retroviruses, DNA deoxyribonucleic acid, MHC major histocompatibility complex, ER 
endoplasmic reticulum, TCR T-cell receptor, RNA ribonucleic acid, HLA human leukocyte antigen. (Images 
created with BioRender)
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Variant Calling 

HLA Typing 

HLA Binding Affinity 

Neoantigen prioritization & selection 

Sequence reads Quality control Genome alignment Variant calling 

Tool 
GATK 
FreeBayes 
VarScan 
Platypus 
MuTect 

Method 
Toolkit for high - throughput sequencing data  
Bayesian genetic variant detector for SNPs and indels 
Platform - independent variant caller  
Variant caller (designed for SNPs and indels) 
Tool for detecting somatic point mutations in sequencing data 

HLA Class I 
HLA - A 
HLA - B 
HLA - C 

HLA Class II 
HLA - DR 
HLA - DQ 
HLA - DP 

Tool 
OptiType 
HLA-HD 
HLAminer 
HLA*LA 

Method 
Infers HLA from NGS based on integer linear programming 
Algorithm able to determine 6-digit alleles from NGS data 
Compares shotgun sequencing data with a reference allele database 
HLA inference via linear alignment projection onto a variation graph 

HLA 

Peptide 

Tool 
NetMHCpan 4.1 

NetMHCIIpan-4.0 

MHCflurry 2.0 

MixMHCpred 

PickPocket 

Method 
Predicts T-cell epitopes that bind to MHC class I, 
using the NNAlign_MA method 
Predicts T-cell epitopes that bind to MHC class II, 
using the NNAlign_MA method 
Predicts pan-allele MHC class I based on MS 
identified ligands (prediction model) 
Predicts antigen presentation and TCR recognition 
(ML framework) 
Predicts peptide binding to MHC class I (applying a 
pocket profile approach) 

Key parameters: 
1. Expression levels of neoantigen 
2. Tumor percentage (%) that contains the neoantigen of interest 
3. Proteasomal cleavage potential 
4. Transport probability in the endoplasmic reticulum via TAP 
5. Binding affinity of the MHC-peptide complex 
6. Stability assessment (neoantigen) 

Fig. 2 Representation of a typical computational workflow integrating all the steps required for neoantigen 
prediction. Step 1 corresponds to variant calling where input data are processed to identify variants and 
annotate tumor-specific mutations. Step 2 refers to HLA typing where both Class I and Class II HLA alleles of
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first, which requires the patient samples to be collected and stored 
in a manner that preserves the integrity of their genetic material.
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2.2 Sequencing These high-quality normal and tumor tissue samples are then typi-
cally sequenced using NGS techniques such as whole exome 
sequencing (WES) or whole genome sequencing (WGS). NGS 
can also be used for sequencing RNA, providing information on 
the expression level of specific somatic mutations [13]. 

2.3 Somatic Variant 

Calling 

The sequenced reads from normal and tumor tissues are aligned to 
a reference genome, and the differences between them are identi-
fied. Specialized bioinformatics tools are used to perform this vari-
ant calling [14], and the identified somatic mutations are annotated 
and stored in variant call format (VCF) files, which contain essential 
details on each mutation. This includes information regarding 
nucleotide and amino acid changes, their genomic location, and 
additional annotations useful for downstream analyses and filtering, 
for example, variant allele frequency (VAF) scores, denoting the 
specific variant’s prevalence. 

2.4 In Silico Peptide 

Generation 

Following the identification of patient-specific somatic variants, 
typically contained in VCF files, the next step is to construct all 
relevant peptides capable of containing these variants in silico. This 
involves using bioinformatics tools for transforming genomic 
nucleotide sequences into translated amino acid chains, constitut-
ing the proteins altered by the cancer. The subsequent splitting of 
proteins into mutation-containing peptides has no associated stan-
dard tool, but peptides of 8–12 amino-acid length, with a prefer-
ence for 9-mers, are typically constructed for HLA Class I 
[15]. Longer peptides are constructed for HLA Class II, although 
the indicated range of relevant peptides can vary between studies, 
for example, 13–19 and 12–24 [16, 17]. 

2.5 Antigen 

Processing 

The natural process emulated by in silico peptide generation occurs 
when proteins are damaged or decommissioned, and subsequently 
chopped up by proteasome enzymes into fragments. These peptide 
fragments are transported to the endoplasmic reticulum via trans-
porter associated with antigen processing (TAP) proteins, where 
they can be further modified and finally loaded onto MHC mole-
cules. This process is not random, however, and the uniformity

Fig. 2 (continued) patients are determined. Step 3 includes HLA binding affinity and stability prediction where 
in silico tools quantify the linkage among peptides-HLA alleles. Step 4 consists of neoantigen prioritization and 
selection aiming to facilitate the identification of immunogenic neoepitopes for personalized cancer immuno-
therapy. SNP single nucleotide polymorphism, HLA human leukocyte antigen, NGS next-generation sequenc-
ing, MHC major histocompatibility complex, MS mass spectrometry, TCR T-cell receptor, ML machine 
learning, TAP transporter associated with antigen processing



assumption of the in silico peptide generation needs modification. 
Computational immunology tools can help assess peptides, and 
their contextual flanking amino acids, by providing scores indicat-
ing the likelihood of, for example, cleavage sites and TAP compati-
bility [18, 19].
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2.6 HLA Typing The antigen-presentation pathway ultimately hinges on peptides 
binding to HLA molecules. Although in humans it is known as 
HLA, it is worth mentioning that the terms “MHC” and “HLA” 
are often used interchangeably. Thus, the patient’s HLA alleles 
must be determined or typed [20]. There are three major HLA 
Class I genes: HLA-A, HLA-B, and HLA-C, with up to two alleles 
per gene, one from each biological parent. There are also several 
HLA Class II genes, which, unlike Class I, act as pairs forming 
heterodimer MHC molecules. HLA typing is performed by dedi-
cated bioinformatics tools, providing allele identifiers denoting the 
amino acid composition of the resulting MHC molecules, and 
potentially also information affecting translation of the gene. The 
HLA genes are very polymorphic, and there are currently registered 
more than 27,000 Class I and 11,000 Class II allele variants ([21], 
v.3.56). 

2.7 HLA Binding The aim of HLA-binding prediction is estimating the binding 
affinity between all permutations of pairwise peptides and HLA 
alleles. This is a crucial step, since only peptides binding to HLA 
have a chance to be presented to the immune system. Machine 
learning, and neural networks in particular, have proven to be 
effective at this task, with well-known examples such as NetMHC-
pan [22] and MHCflurry [23]. These models are trained on large 
datasets of HLA-peptide pairs with associated experimentally deter-
mined binding affinities, typically given as half-maximal inhibitory 
concentration (IC50) values [24]. In the case of a competitive 
binding assay, an IC50 value represents the concentration of a 
candidate peptide required to outcompete a high-affinity reference 
peptide until only half of them remain bound to the HLA allele. 
There is a gradual transition from HLA-peptide pairs with strong 
binding affinities (small IC50 values) to weak binding affinities 
(large IC50 values), but a threshold of IC50 < 500 is often 
employed to denote Class I HLA-peptide pairs to be binders [25]. 

2.8 HLA-Peptide 

Stability 

Similarly, measurements and predictions can be performed to assess 
the stability of HLA-peptide complexes. While closely related to 
HLA binding, stability revolves around measuring the 
HLA-peptide complex’ ability to stay bound under perturbations, 
through, for example, thermal and kinetic stability assays 
[26]. Such stability assays work by subjecting the HLA-peptide 
complex to varying conditions and measuring how long it remains 
intact, providing valuable information about its durability. So,



while HLA binding assesses the potential of a peptide to bind to an 
HLA allele, HLA-peptide stability assesses the half-life of an 
HLA-peptide complex. A more stable complex might have a higher 
chance of being recognized by T cells, potentially leading to a 
stronger immune response [27]. 
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In the context of the HLA-peptide complexes, the affinity/ 
stability for the HLA is defined in its majority as the anchor residues 
of the peptides. These residues are buried within the HLA pocket 
and create bonds with the residues within it to stabilize the dock-
ing. In 9-mer peptides, the anchoring residues can normally be 
found at positions 2 and 9, although peptides of different lengths 
can have anchor residues in different positions [28]. 

2.9 Antigen 

Presentation 

Somatic mutations capable of navigating through the above steps, 
forming stable HLA-peptide complexes, are then transported to 
the surface of the cell for subsequent inspection by the immune 
system. In essence, this is the first main goal of neoantigen predic-
tion: predict the somatic mutations with the right characteristics to 
be transported as peptides to the cell surface. Mass spectrometry 
techniques can be used to discover these presented peptides, or 
eluted ligands, but cannot ascertain which HLA allele it was bound 
to [29]. It provides verification that a peptide indeed was presented. 
There are several ways this information could be used to increase 
predictive power, such as reinforcing HLA binding scoring 
[22, 30]. 

2.10 T-Cell 

Recognition and 

Immunogenicity 

Once the HLA-peptide complexes are presented on the cell surface, 
they can be recognized by T cells, each carrying a unique T-cell 
receptor (TCR) capable of recognizing a few specific HLA-peptide 
complexes [31]. If a TCR binds to an HLA-peptide complex con-
taining a somatic mutation, it triggers a signaling cascade that can 
initiate an immune response against these cells. This is the second 
main goal of neoantigen prediction: to predict which of the pre-
sented peptides will likely trigger an immune response. Predicting 
T-cell recognition is a huge challenge; however, the TCR diversity 
is vast, and the rules governing TCR-peptide-HLA interaction are 
not fully understood [31]. Some bioinformatics tools attempt to 
predict T-cell recognition by modeling TCR-peptide-MHC inter-
actions [32], and while predictive power is steadily increasing, these 
predictions are often uncertain and require experimental validation 
[10, 33]. Laboratory experiments can be performed to validate that 
the neoantigens can elicit an immune response, with assays such as 
ELISA and intracellular cytokine staining [34]. 

2.11 Neoantigen 

Prioritization 

Following the above steps, there are several predictions, scores, and 
potential immune-response measurements associated with each 
neoantigen candidate. Ranking and prioritizing these candidates 
by their overall potential for inducing an immune response is



challenging, and typically involves combining predictions of anti-
gen processing, HLA binding and immunogenicity with gene 
expression and other relevant information into a single, combined 
score per neoantigen [10]. Recent advances within single-cell tech-
nologies and cutting-edge machine learning approaches are pre-
sumed to provide valuable insights for the future [35]. 
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In conclusion, neoantigen prediction is a complex, multistep 
process that integrates numerous bioinformatics tools and data 
types in elaborated pipelines. There are several factors omitted in 
this section that could further increase the complexity, such as HLA 
Class II, posttranslational modifications, immune escape, mutated 
HLA genes, and alternative sequencing methods [7, 34, 
36]. Despite the challenges, neoantigen prediction holds great 
promise for the transition toward truly personalized cancer 
immunotherapies. 

3 Examples of Neoantigen Prediction Applying Different Tools to Cancer Driver 
Mutations 

In order to illustrate the key steps described in the previous section 
and show how different tools perform on neoantigen prediction, an 
example using driver mutations will be developed in this section. 

A variety of tools including those predicting binding affinity, 
stability, peptide cleavage, and TAP transportation will be tested. 
Although many tools focus on predicting HLA-binding affinity of 
mutated peptides, the two considered as gold standard will be used 
(NetMHCpan and MHCflurry, as discussed below) [22, 23]. The 
other tested tools focus on prediction of binding stability of the 
peptide-MHC complex (netMHCstabpan) [37], prediction of 
cleavage sites (netChop 3.1) [38], and TAP transport of the 
chopped peptides (TAP) [39]. Three well-known mutations have 
been selected: KRAS p.G12C, TP53 p.H179R, and GNAQ p. 
Q209L. For the sake of clarity, only one allele (HLA-A*03–01) 
will be tested. 

First, the mutated peptides (17-mers) need to be generated and 
written in FASTA format: 

> sp|P01116|RASK_HUMAN - G12C 

YKLVVVGACGVGKSALT 

> sp|P04637|P53_HUMAN TP53 - H179R 

EVVRRCPHRERCSDSDG 

> sp|P50148|GNAQ_HUMAN Q209L 

FRMVDVGGLRSERRKWI
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3.1 Predicting 

Affinity and Stability 

Many deep learning-based tools have been developed over the last 
years, but they all share the main functionality of predicting the 
HLA-binding affinity. 

A work by Zhao et al. tested 18 antigen prediction tools and 
compared their capacity to accurately find binders by testing pep-
tides of different lengths in a variety of HLAs [40]. In summary, 
MHCflurry and NetMHCpan outperformed other tools in 
peptide-MHC-binding prediction. Both tools are based on artificial 
neural networks (ANN) and exhibited superior performance in 
binary classification compared to logistic regression-based meth-
ods. This is because ANN-based approaches are favored for their 
ability to capture complex interactions between MHC-binding 
residues and for better regularization, reducing overfitting. 
MHCflurry consistently demonstrated robust performance in 
binder prediction. Moreover, MHCflurry was superior in three-
class classification, suggesting its efficacy not only in identifying 
MHC binders but also in distinguishing strong binders. Neverthe-
less, one of the downsides of using this type of tools is the available 
data used for their training. The performance of AI-based tools 
largely depends on the quality and comprehensiveness of their 
training data. These tools use both quantitative (binding affinity) 
and qualitative (eluted ligand) assays. The latter yield binary out-
comes, indicating only whether a peptide binds or not, without 
quantifying the strength of that binding in traditional affinity units 
such as nM. This poses a challenge for prediction tools like 
MHCflurry and NetMHCpan, which predict affinity values. The 
researchers who developed the tools came up with different strate-
gies to assign affinity values to data lacking precise measurements, 
but these estimates may not always align with reality. Despite these 
shortcomings, NetMHCpan 4.1 and MHCflurry are still consid-
ered the gold standard in the field. Both tools can predict the 
affinity between the peptides and HLA allele input, among other 
neoantigen presentation related scores. They also have a very useful 
feature which is the splitting of protein sequences in all the possible 
peptides of a specified length. For these reasons, the examples 
below will focus on these tools. 

3.1.1 NetMHCpan 4.1 NetMHCpan is one of the most well-known tools for MHC affinity 
predictions. It allows the user to predict the affinity of peptides for 
the different existing HLAs in different scores. In netMHCpan, the 
important information to define a binder or not, and to distinguish 
between strong and weak binders, comes from the predicted bind-
ing affinity and eluted ligand score. Apart from the raw score 
NetMHCpan provides %Rank scores, which indicate whether a 
predicted binding score stands relative to a set of random natural 
peptides. Unlike some scoring methods that can be skewed by the 
tendency of certain molecules to generally have higher or lower 
predicted affinities, the rank values are designed to be bias-free,
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Fig. 3 (a) User interface for the NetMHCpan tool for MHC affinity prediction. Input box to enter the full protein 
sequence containing the neoantigen of interest as FASTA, or directly input the peptide, to select peptide length 
and HLA alleles, as well as other filters and optional settings for the output. (b–d) Predictions from mutated
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ensuring an accurate comparison across different peptides. If the % 
Rank score for either binding affinity or eluted ligand is above 2.0, 
the peptide is considered a non-binder. If the score falls between 
2.0 and 0.5 (exclusive), the peptide is classified as a weak binder. If 
the score is equal to or under 0.5, the peptide is labeled as a strong 
binder. NetMHCpan also offers a column called “Binding level,” 
which points to the binding strength based on the later values, 
classifying peptides as weak binder (WB), and strong binder (SB). 
The evaluation of peptide binding to MHC molecules is often 
assessed through various scoring systems such as the IC50. The 
IC50 value represents the peptide’s binding affinity to MHC, with 
lower values indicating stronger binding. For instance, an IC50 of 
500 nM or 50 nM typically denotes peptide binders or strong 
binders to MHC, respectively [22].
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NetMHCpan can be used through the interface available or the 
command line version. The interface version is shown in Fig. 3a. 
NetMHCpan outputs the result in tables containing information of 
all the evaluated 9-mer peptides, their affinity, and their ranks both 
for binding affinity and for eluted ligand, as well as a final column 
indicating whether the peptide is a strong or weak binder. 
Figure 3b–d shows the resulting predictions of the mutated pep-
tides used for this example. Evaluation of the selected 17-mers 
resulted in two potential neoantigens. The 9-mer peptides were 
RMVDVGGLR, VVGACGVGK, from GNAQ p.Q209L and 
KRAS p.G12C, respectively. These peptides passed both %Rank 
(BA and EL) scores as Weak Binders (under 2.0, but above 0.5). 
Since the different tools might have discrepancies, the same pep-
tides were evaluated using MHCflurry to confirm their 
neoantigenicity. 

3.1.2 MHCflurry 2.0 MHCflurry implements Class I peptide/MHC-binding affinity 
prediction. MHCflurry also includes two experimental predictors: 
an “antigen processing” predictor that attempts to model MHC 
allele-independent effects such as proteasomal cleavage and a “pre-
sentation” predictor that integrates processing predictions with 
binding affinity predictions to give a composite “presentation 
score.” Both models are trained using binding affinity and mass 
spectrometry eluted ligand assays [23]. 

MHCflurry has the same functionality as netMHCpan, but 
runs in Python. The input can be a full protein sequence, which is

Fig. 3 (continued) peptides by NetMHCpan for (b) KRAS p.G12C, (c) TP53 p.H179R, and (d) GNAQ p.Q209L 
mutations. Pos, indicates the residue number of the peptide in the protein sequence, starting from 0; MHC, 
specifies the HLA allele or supertipe; Score_EL, is the raw prediction score for eluted ligand; %Rank_EL, is the 
rank of the predicted binding score compared to a set of random natural peptides; Aff, affinity; BindLevel, 
indicates the binding level, where SB stands for strong binder and WB for weak binder; HLA human leukocyte 
antigen, MHC major histocompatibility complex, nM nanoMolar



splitted into all the possible peptides of the specified length (9-mers 
in this example) to predict the binding affinities and calculate the 
scores of each resulting peptide. The sequences have to be input as a 
Python dictionary using the argument “sequences.” Then, the 
argument “alleles” takes a list with the HLA alleles that are going 
to be used for the predictions. The length of the peptides is called 
“peptide_lengths,” which takes a list with the desired input lengths. 
An example of how to run MHCflurry is shown below:
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Fig. 4 Predictions from mutated peptides by MHCflurry for peptides containing (a) KRAS p.G12C mutation, (b) 
TP53 p.H179R, and (c) GNAQ p.Q209L mutations. Pos, indicates the residue number of the peptide in the 
protein sequence, starting from 0 

from mhcflurry import Class1PresentationPredictor 

predictor = Class1PresentationPredictor.load() 

predictor.predict_sequences(



sequences={’RASK_HUMAN - G12C’: "YKLVVVGACGVGKSALT", 

’P53_HUMAN TP53 - H179R’: "EVVRRCPHRERCSDSDG", 

’GNAQ_HUMAN Q209L’: "FRMVDVGGLRSERRKWI"}, 

alleles={"sample1": ["A0301"] }, 

result="all", 

peptide_lengths= [9], 

throw = False, 

verbose=0) 
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In this case, it does not calculate %Rank like NetMHCpan but 
outputs a percentile, which can be used to define a binder or not. 
Any peptide with an affinity and/or presentation percentiles that 
falls between 0 and 5 can be considered a binder or a presented 
peptide. However, this is not a validated range. The well-validated 
threshold is affinity of 500 nM. Figure 4 shows the resulting pre-
dictions of the mutated peptides used for this example. The two 
peptides classified as HLA-A*03–01 binders with NetMHCpan 
were also classified as binders by MHCflurry, showing concordance 
between these two tools. 

In summary, only one out of the 9-mers generated from KRAS 
p.G12C mutation has been identified as a potential neoantigen, 
although classified as weak. Also, one 9-mer from the GNAQ p. 
Q209L mutation has been identified as a potential neoantigen. In 
the case of TP53 p.H179R, none of the generated 9-mers had 
affinity for the tested HLA. Therefore, it will be excluded from 
downstream analyses. Next, the stability of the peptide-MHC com-
plex in KRAS p.G12C and GNAQ p.Q209L putative neoantigens 
will be evaluated. 

3.1.3 NetMHCstabpan 

1.0 

NetMHCstabpan is a computational tool designed to predict the 
stability of peptide-MHC Class I (pMHC-I) complexes. It uses a 
machine learning approach to forecast the half-life of peptides 
bound to MHC molecules, an essential step in antigen presentation 
by the immune system. It is possible to run this tool using the 
interface or the command line version [37] (Fig. 5a). 

As in netMHCpan, the %rank values are not affected by the 
inherent bias of certain molecules toward higher or lower mean 
predicted affinities. Strong binders are defined as having %rank 
<0.5, and weak binders with %rank <2. Of note, this tool also 
includes a combined score using the affinity and stability values. In 
fact, the output information is similar to netMHCpan, except for 
the two new parameters related to stability and combined scores of 
affinity and stability (Fig. 5b, c). 

As a result, the two peptides from KRAS p.G12C and GNAQ 
p.Q209L mutations, RMVDVGGLR and VVGACGVGK, were 
predicted as stable binders. Thus, netMHCstabpan confirmed
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Fig. 5 (a) User interface for the NetMHCstabpan tool for prediction of the stability of peptide-MHC Class I 
complexes: Input box to enter the full protein sequence containing the neoantigen of interest as FASTA, 
or directly input the peptide, to select peptide length and HLA allele, as well as other filters and optional 
settings for the output. (b–c) Predictions from mutated peptides by netMHCstabpan for peptides containing



➤

that those mutations could produce potential neoantigens, with 
affinity and stability for HLA-A*03:01. Nevertheless, additional 
steps are required to evaluate whether these peptides will be pre-
sented on the cell surface, such as prediction of cleavage sites.
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3.2 Predicting 

Cleavage and 

Transport 

3.2.1 NetChop 3.1 

NetChop is a computational tool designed to predict cleavage sites 
for processing protein precursors into mature peptides by proteases 
within the MHC Class I antigen presentation pathway. It operates 
by using a neural network trained on a dataset of experimentally 
verified cleavage sites, learning patterns indicative of protease spec-
ificity. When provided with an amino acid sequence, NetChop 
assesses the likelihood of each residue being part of a cleavage site 
based on its surrounding sequence context and outputs a probabil-
ity score for cleavage at each position [38]. 

NetChop also offers an interface closely similar to netMHCpan 
and netMHCstabpan (Fig. 6a). In this example, the prediction 
method was “C term 3.0,” with the default threshold of “0.5” 
and output set to “Short output.” NetChop gives as a result the 
input sequence marked with the predicted cleavage sites. The resi-
due where the cleavage is most likely happening is marked with an 
“S,” whereas, if the cleavage is not occurring, the residue is marked 
with a “.”. If a residue is assigned with an “S” the peptide bond on 
the C-terminal side is cleaved. 

The cleavage sites are selected based on the value output by the 
tool. This value can go from 0 to 1 and everything above 0.5 is 
selected as a cleavage site. To access the predicted values per amino 
acid “Short output” option needs to be unselected. 

Figure 6b shows the resulting cleavage predictions of the 
mutated peptides. In the case of KRAS, the 9-mer VVGACGVGK 
was not found within the array of peptides produced after chopping 
the mutated protein. On the contrary, the predicted cleavage pat-
tern of the 17-mer GNAQ p.Q209L can produce the peptide 
RMVDVGGLR, which had binding affinity for HLA-A*03:01 
allele (as shown above). It is important to note that the 9-mer 
RMVDVGGLR also contains internal cleavage sites, which could 
lead to the generation of shorter peptides. 

Therefore, only the peptide RMVDVGGLR from GNAQ p. 
Q209L remains as a potential neoantigen and will be tested in the

Fig. 5 (continued) KRAS p.G12C and GNAQ p.Q209L mutations. Pos, indicates the residue number of the 
peptide in the protein sequence, starting from 0; HLA, specifies the MHC molecule or allele name; Pred, Stability 
prediction score; Thalf(h), The predicted half-life of the pMHC complex (in hours); %Rank_Stab, %Random - % 
Rank of predicted stability score to a set of 200,000 random natural 9-mer peptides; 1-log50K, Affinity 
Prediction score (called 1-log50K(aff)); Aff(nM), Affinity as IC50 value in nM (only for white-listed alleles); % 
Rank_aff, %Random - %Rank of predicted affinity score to a set of 200,000 random natural 9-mer peptides; 
Combined, Prediction score combining Affinity and Stability predictions; Combined_%rank, %Rank approxima-
tion using both stability and affinity %Rank; BindLevel, Binding level (SB strong binder, WB weak binder)



last step, intending to predict if this peptide could be presented on 
the cell surface of cancer cells by being transported to the ER by 
TAP protein.
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Fig. 6 (a) User interface for the netChop 3.1 tool for prediction of the peptide cleavage sites: Input box to enter 
the full protein sequence containing the neoantigen of interest as FASTA, or input the peptide directly, together 
with optional settings. (b) Predictions of cleavage sites by netChop 3.1 for the 17-mer containing the GNAQ p. 
Q209L mutation
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3.2.2 TAP Transport 

Predictions 

For the TAP transport prediction, many AI-based tools have 
recently been developed. A validated method described by Peters 
et al. will be used in this example. The scoring matrix and how the 
values are assigned for every amino acid at each position of a 9-mer 
(calculated from experimental data) and formula used to score each 
9-mer can be found in the original work [39]. 

The TAP score using this method on RMVDVGGLR was -
1.97. Since the authors specified that any TAP score below 1 would 
be considered a potential neoantigen, this peptide would pass all 
thresholds to be considered as a potential neoantigen. 

In summary, according to our findings; from the three evalu-
ated mutations, only GNAQ p.Q209L mutation would have a 
potential neoantigen, in agreement with previous reports. Interest-
ingly, GNAQ p.Q209L mutation is harboured by approximately 
70% patients with uveal melanoma so it could represent a therapeu-
tic opportunity [41, 42]. In contrast, none of the peptides resulting 
from TP53 p.H179R mutation had sufficient affinity to bind HLA 
so would not be immunogenic, in agreement with previous studies 
[42]. Whilst other mutations arising from TP53 could lead to 
potential neoantigens [43], it has been reported that TP53 muta-
tions with greater oncogenic potential would be less immunogenic 
[44]. Finally, although one peptide derived from KRAS p.G12C 
mutation scored as a potential HLA-binding peptide, this 9-mer 
would not be generated according to the cleavage prediction tool. 
Of note, more potential neoantigens would have been found if 
more HLA genotypes had been interrogated. In that sense, the 
fact that neoantigens are restricted to certain HLA alleles limits the 
applicability for immunotherapeutic approaches [45, 46]. 

4 Overview of Available Computational End-to-End Workflows for Neoantigen 
Identification 

Computational workflows for neoantigen prediction consist of four 
main steps, which can be categorized as (1) variant calling and 
annotation for tumor-specific mutations, (2) HLA genotyping of 
patients’ alleles, (3) prediction of HLA-binding affinity and stability 
of peptide epitopes, and (4) neoantigen prioritization and identifi-
cation of immunogenic neoepitopes for personalized cancer immu-
notherapy (Fig. 2). Those steps, explained in Subheading 2, are 
typically integrated into a sophisticated bioinformatics pipeline 
provided as a ready-to-use software. With the advent of AI, some 
of the steps are being replaced or facilitated by machine learning 
algorithms, whereas recent state-of-the-art approaches utilize end-
to-end deep learning models. Over the past years, several methods 
have been proposed to conduct each step of the neoantigen predic-
tion process. As an example, in Subheading 3 an extensive



description of the available methods for HLA-binding affinity and 
stability prediction has been provided. Herein, an overview of the 
methods providing unified pipelines and workflows for neoantigen 
prediction will be presented. Since several end-to-end pipelines are 
available, this section will focus on those that provide unique 
features to users aimed at improving neoantigen identification, 
facilitating clinical implementation, reducing computation time, 
and inclusiveness in the user group. 
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CloudNeo [47]: It was the initial effort to introduce a cloud-
based neoantigen prediction workflow with the scope of identifying 
patient-specific tumor neoantigens. The CloudNeo workflow 
requires non-synonymous mutations in VCF format and RNA or 
DNA sequencing data in BAM format for HLA typing. Then, the 
VEP tool [48] and a custom R script named Protein_Translator are 
utilized to convert genomic variants into amino acid changes. The 
Protein_Translator generates a list of N-amino-acid-long peptide 
sequences in FASTA format, with the single peptide change posi-
tioned in the middle of the N-mer. Additionally, it generates 
another FASTA file for homologous N-mers without peptide muta-
tions. Users can select either HLAminer [49] or Polysolver [50]  to  
calculate six predicted HLA types (top two predictions each for 
HLA-A, HLA-B, and HLA-C). Then, the NetMHCpan tool 
[22, 51] computes binding affinities between the six HLA types 
and each ([N/2] + 1)-mer peptide subsequence within the N-mers. 
The platform’s output includes peptide subsequences and 
MHC-binding affinity scores for all six HLA types. The CloudNeo 
pipeline, implemented in Common Workflow Language (CWL), is 
publicly available on GitHub. It can be executed using Rabix, 
enabling deployment on various platforms such as AWS, Google 
Compute Engine, and Azure. 

Antigen.garnish [52] is a workflow featuring unique charac-
teristics. The first is ensemble neoantigen prediction, while the 
second is utilizing the dissimilarity to the non-mutated (reference) 
proteome to identify high-quality predicted neoantigens. More 
specifically, the antigen.garnish workflow input options include 
VCFs, peptide sequences, or ensemble transcript IDs with HGVS-
style cDNA annotations. Mutated sequences undergo prediction 
and filtering against the non-mutated proteome. The main func-
tion of the tool, “garnish_affinity,” is to conduct ensemble MHC 
affinity prediction. The ensemble method generates a unified affin-
ity score by averaging the affinities from all models predicting the 
peptide-MHC binding. The pipeline provides both the ensemble 
value and the individual algorithm prediction affinities from each 
model. Dissimilarity analysis integrates Smith-Waterman align-
ments against the reference proteome, with a cutoff of dissimilarity 
metric >0.75 applied to identify high dissimilarity neoantigens, 
enhancing identification of immunogenic peptides. The workflow



is provided as an open-source tool, implemented in R, designed for 
Linux, and utilizes the “mclapply” function for parallelization. 
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NeoFuse [53] was proposed as the first fully unified workflow 
for the prediction of fusion neoantigens from tumor RNA-seq data. 
The unique characteristic of this tool lies in the integration of the 
preprocessing steps required for fusion transcript prediction in an 
end-to-end pipeline, which yields IC50 annotation for each neoan-
tigen, percentile rank, confidence score, binding HLA type, expres-
sion of both HLA genes and fusion. Additionally, it identifies 
premature stop codons that could lead to nonsense-mediated 
decay of the fusion transcript. NeoFuse is a command line tool 
with five modules. Initially, data is imported in FASTQ format, 
and the first module performs HLA Class I typing using OptiType 
[54]. The second module utilizes Arriba [55] to predict fusion 
peptides, while the binding affinity of fusion peptides to HLA 
types is predicted by MHCflurry [23, 56] in the third module. 
Afterward, the fourth module quantifies gene expression levels as 
transcripts per million by utilizing both STAR [57] and feature-
Counts [58]. The fifth and final module filters and prioritizes based 
on the binding affinity and confidence score resulting from the 
fourth step. In this way, it produces a set of peptides that indicate 
potential fusion neoantigens. The tool is provided through two 
major container technologies, Docker and Singularity. 

DeepHLApan [59] in contrast with the other methods is not a 
unified neoantigen prediction pipeline since it requires some pre-
processing steps, yet it provides the distinctive feature of an end-to-
end deep learning scheme for neoantigen prediction based on 
peptide-HLA binding and the immunogenicity of the complex. 
Specifically, DeepHLApan utilizes recurrent neural networks 
(RNN) and consists of two models, the first for predicting the 
probability of the peptide binding to the HLA in the tumor cell 
membrane and the second immunogenicity model for predicting 
the capacity of the peptide-HLA complex to induce T-cell activa-
tion. The immunogenicity score is used as a filter to rank the 
binding prediction score to yield a high confidence neoantigen 
identification. The model works only for HLA Class I neoantigens 
(A, B, and C alleles). Moreover, preprocessing steps are required 
since the model’s input data should be in CSV format with the 
columns’ heads being “Annotation, HLA, Peptide.” DeepHLApan 
is provided as a ready-to-use model through a web platform or as a 
docker image. 

pVACtools [60–62] is not a pipeline itself but a toolkit with 
several modules that can be integrated into one workflow to create 
an end-to-end neoantigen prediction tool. It is a modularized 
toolkit that provides the independent use of its module while 
facilitating multiple input types. It can also be integrated with 
external tools. The main feature of this toolkit is pVACseq, a 
pipeline for identifying and prioritizing neoantigens from a VCF



file, which can be coupled with the pVACviz GUI for the visualiza-
tion and selection of data resulting from pVACseq. The pVACbind 
is used for FASTA files, while the pVACfuse is utilized for neoanti-
gen prediction in gene fusions. Another tool is the pVACvector, 
which is employed to optimize the design of DNA-based cancer 
vaccines that prevent high-affinity junction neoantigens. Finally, 
the pVACapi offers a Rest-API for the pVACtools suite. 
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NextNEOpi [63] is a fully automated pipeline for neoantigen 
prediction with some special characteristics, such as quantification 
of neoepitope and patient-specific features associated with tumor 
immunogenicity and response to immunotherapy. NextNEOpi is a 
command line tool that utilizes raw DNA and RNA sequencing 
data, and a list of known patients’ HLA types can also be imported. 
The first step of the pipeline after sequencing data pre-processing is 
HLA typing for both Class I using the OptiType and HLA-HD 
[64] for Class II. Then, variant calling is performed with several 
different independent algorithms, and variants called by more than 
one tool are marked as having high confidence. All variants are then 
annotated by the VEP tool, and the pVACseq tool is used to predict 
neoantigens from SNVs and INDELs, whereas NeoFuse is used to 
predict neoantigens from gene fusions. For peptide-HLA Class I 
binding prediction, NextNEOpi uses by default netMHCpan [65], 
MHCFlurry [23], and NetMHCIIpan [22]. For peptide-HLA II 
binding prediction mixMHC2pred [66] is employed. MiXCR [67] 
is used to predict T- and B-cell receptor repertoires, while clonality, 
tumor mutational burden, and CSiN scores are computed for the 
individual neoantigens and samples. NextNEOpi is implemented in 
NextFlow, providing reproducibility and scalability as a user-
friendly tool. 

NeoSplice [68] is another neoantigen prediction method, yet 
its unique characteristic is the use of splice variants. This method 
utilizes RNA-seq data as input and generates tumor-specific k-mers 
by comparing tumor cells with normal cells. Hence it identifies 
k-mer sequences abundant in the tumor transcriptome but rare in 
normal cells. Then, splice variant transcripts are predicted by con-
structing a splice graph using tumor cell RNA-seq data. Tumor-
specific k-mers identified in the first step are then mapped to these 
splice variant transcripts. Annotations from Gencode are utilized to 
ascertain if the novel splice occurs within a protein-coding region 
and to determine the reading frame of the transcript. Finally, it 
translates novel splice junctions found within each splice variant 
transcript into peptide sequences based on the inferred open 
reading frame. Following translation, HLA Class I-binding affinity 
prediction is carried out on these peptide sequences employing 
NetMHCpan-4.0 [65] to identify regions that may produce neoe-
pitopes. This tool is provided as a command line tool implemented 
in Python 2 while also shipping in a docker image.
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Seq2Neo [69] provides a one-stop solution pipeline for neoan-
tigen immunogenicity prediction and specifically for neoepitope 
feature prediction through raw sequencing data. The major distinc-
tive characteristic of this pipeline is the use of a convolutional neural 
network (CNN) that predicts the immunogenicity of neoepitopes. 
Seq2Neo is a command line tool that automates workflows for 
predicting immunogenic peptides. It integrates mutation labeling, 
HLA typing, and HLA affinity-binding prediction tools, along with 
a (CNN)-based model for immunogenicity prediction. The work-
flow begins with importing raw sequencing data in FASTQ, SAM, 
or BAM format and then selecting the workflow of interest. For 
point mutation and INDEL detection, Mutect2 [70] was utilized, 
while for gene fusion detection STAR-Fusion [71] was employed. 
VCF format was used for the somatic variant data generated. 
HLA-HD is used for MHC genotyping, and ANNOVAR [72]  or  
Agfusion [73] were utilized to annotate somatic variants to identify 
mutated peptides. Seq2Neo uses NetMHCpan for peptide-HLA-
binding affinity prediction, while TPMCalculator [74] was used to 
detect gene expression and NetCTLpan [19] to obtain TAP trans-
port efficiency. The tool outputs various peptide features, aiding in 
neoantigen prediction and immunogenicity assessment. Seq2Neo 
is provided as a Conda package or a docker image. 

PGNneo [75] is another unique pipeline that performs neoan-
tigen prediction in noncoding regions based on proteogenomics. 
The overall computational framework of PGNneo comprises the 
following components. First, there is noncoding somatic variant 
calling and HLA typing, this involves using paired tumor and 
normal samples for somatic variant calling, filtering out 
low-quality mutations, and extracting noncoding mutations. HLA 
typing is determined based on RNA-seq data from tumor samples. 
Second, nucleotide sequences are obtained and translated into 
proteins via six-frame translation. Tumor mutated peptides are 
extracted, and a customized protein database is constructed by 
combining these mutated protein sequences with reference pro-
teins. Third, variant peptide identification involves filtering result-
ing peptides using MS datasets, providing evidence for their 
presence at protein levels and their binding to MHC molecules. 
Finally, neoantigen prediction and selection are conducted. Candi-
date neoantigens are predicted based on peptides and HLA types 
using NetMHCpan 4.1 [22]. These candidates undergo filtering 
using the dbPepNeo 2.0 database, which contains 746 experimental 
immunogenic peptides as a reference. The tool is provided both in a 
command line version and GUI versions, while for its implementa-
tion, Python, R, Java, and Perl were used. 

NeoMUST [76] employs multitask learning, representing a 
novel approach to neoantigen prediction. The primary task of the 
model is neoantigen presentation classification, while the secondary 
task is binding affinity prediction between HLA Class I molecules



and eluted peptides. It effectively captures and utilizes task-specific 
information from both tasks, identifying similarities and distinc-
tions to enhance performance. Additionally, it optimizes individual 
loss functions to balance the two tasks effectively while significantly 
reducing training time and enhancing scalability for large datasets. 
Although it is not an end-to-end pipeline, it features some novel 
capabilities. The model is available either as a Conda package or a 
docker image. 
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ImmuneMirror [77] is another recent method that provides 
an integrative pipeline for neoantigen prediction enhanced by 
machine learning. The machine learning model was constructed 
utilizing the balanced random forest algorithm to predict neoanti-
gens. It integrates multiple biological features pertinent to neoanti-
gen processes, including biogenesis, transportation, presentation, 
and T-cell recognition (such as agretopicity, foreignness, hydro-
phobicity, binding stability, peptide processing, and transportation 
scores). This machine learning model was then integrated into the 
ImmuneMirror bioinformatics pipeline, which also operates as a 
web server for predicting and prioritizing neoantigens from mul-
tiomics sequencing data. The pipeline accepts raw FASTQ reads as 
input, while the web server requires VCF files containing somatic 
mutations. The web server produces a visual report that incorpo-
rates the following: tumor mutational burden (TMB), HLA types, 
neoantigen load for HLA Class I and II, mismatch repair (MMR) 
status, germline and somatic mutations, ImmuneMirror prediction 
score, and IPRES gene expression signature. 

GraphMHC [78] is one of the most recent approaches for 
neoantigen prediction, utilizing a graph neural network applied to 
molecular structure to simulate the binding between peptide and 
MHC proteins. The pipeline begins by converting HLA into MHC 
amino acid sequences. Next, both MHC and peptide sequences are 
transformed into SMILES structures using the RDKit 2022.03.2 
library. Then, these two SMILES strings are combined using 
non-bond notation. Afterward, the combined structure is con-
verted into a molecular structure using RDKit, ensuring that any 
omitted hydrogen atoms are included. Following this, the molecu-
lar structure is transformed into a graph structure using the RDKit 
library, allowing for the encoding of vectors and matrices. Each 
feature is encoded using one-hot encoding and assembled into a 
sparse matrix. Finally, the graph dataset is converted using the 
PyTorch Geometric (PyG) 2.1.0 library. 

Table 1 summarizes all the methods discussed. The table pro-
vides the name of each tool, the intended function of the software 
and specifies the input data utilized in neoantigen prediction. Addi-
tionally, it provides neoantigen classification, the method employed 
to evaluate the binding affinity between the neoantigen and HLA 
molecules and the outcomes obtained from the analysis. A link to
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the source code or user interface of the software is also provided 
along with its publication date and the date of its last update.
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The above methods provide only an overview of the distinctive 
utilities offered by available tools and pipelines. However, there are 
several other methods available for neoantigen prediction. The 
choice of method depends on factors such as the specific use, the 
user’s level of bioinformatics expertise, and the ease of pipeline 
implementation. Therefore, users should consider both the input 
and output data of each pipeline based on their needs. Additionally, 
users can choose among command-line interface (CLI) tools or 
web applications with user-friendly interfaces, depending on their 
proficiency in utilizing informatics tools. It is important to note 
that a direct comparison of the prediction accuracy of tools can only 
be made when the prediction endpoint of the pipeline is the same. 

In the last decade, deep learning models have flourished due to 
their high prediction accuracy across several fields. Thus, they have 
been widely adopted in biomedical research. This trend is particu-
larly evident in the field of neoantigen prediction, where deep 
learning methods have been introduced for binding affinity predic-
tion. While machine learning models were predominantly utilized 
for neoantigen-peptide binding, there has been a noticeable transi-
tion in many pipelines toward deep learning methods. This shift is 
strongly correlated with the continuous expansion of available 
training data and the emergence of additional features. As a result, 
the complexity of the data is increasing, favouring deep learning 
models due to their enhanced capacity to capture and process this 
wealth of information compared to traditional machine learning 
models. 

5 Neoantigen Prediction in Mouse Models 

In silico prediction of neoantigens represents a pivotal phase in 
unlocking the therapeutic potential of cancer immunotherapy. As 
described in the previous section, a plethora of software for neoan-
tigen discovery is available. However, these pipelines are mainly 
tailored to human data with a focus on predicting the binding 
affinity between epitope and HLA. Nevertheless, models specific 
to murine systems are crucial for facilitating in vivo experimentation 
and further translation of immunotherapies into clinical practice. 
The availability of these pan-specific software solutions remains 
limited, posing a significant challenge in preclinical immunotherapy 
research. Consequently, some human-centric software platforms 
have undergone adaptation to include binding affinity predictions 
for mouse MHC. Moreover, efforts have also been made to develop 
murine-specific models aimed at bridging this gap in experimental 
settings.
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When evaluating the collection of available software tools, it is 
important to recognize that neoantigen presentation and recogni-
tion by T cells entail a complex process comprising various steps. 
Many existing neoantigen prediction tools primarily focus on pre-
dicting the binding affinity between the epitope and the MHC 
molecule while overlooking other critical steps, leading to a high 
false positive rate of predicted epitopes [64]. Emerging software 
solutions are now considering these additional steps to yield more 
robust predictions. First, the different software platforms specializ-
ing in binding affinity prediction within murine models will be 
examined. These tools exhibit variations in training data modalities, 
training methodologies, and input data types. While some tools 
exclusively predict binding affinity for user-identified neoepitopes, 
others offer end-to-end platforms capable of processing RNA-seq 
data to predict neoantigens directly. These latter tools enable users 
to input raw data directly without having to create and apply variant 
calling pipelines. In terms of training data, it is common to utilize 
either binding affinity data or mass spectrometry-eluted ligands. 
However, studies have demonstrated that combining both input 
data types enhances predictive performance [22]. Additionally, pre-
dictive models have transitioned from earlier methodologies, such 
as support vector machine regression [79] or profiles [80], to more 
advanced approaches like ANNs and RNNs, which have shown 
superior performance. 

Among the reviewed software solutions, only two are explicitly 
designed for murine models. The first, NetH2Pan [81], employs an 
ANN architecture to predict binding affinity. It performs the pre-
diction based on user-provided peptides, leveraging both binding 
affinity and eluted ligand data during training. Conversely, 
NAP-CNB [9] operates as an end-to-end platform, using 
RNA-seq for neoantigen prediction. The tool integrates a variant 
calling pipeline that returns SNVs and INDELs unique to the 
tumor. This method implements a more advanced neural network 
with long-short-term memory (LSTM) units, albeit trained solely 
on binding affinity data. Additionally, several software platforms 
initially developed for human data have been adapted to incorpo-
rate murine H2 alleles. Examples of such software include 
NetMHC [25], NetMHCpan [65], and MHCflurry [23]. Both 
NetMHC and NetMHCpan utilize an ANN architecture and 
were trained on binding affinity and eluted ligand data. Moreover, 
they accept user-generated tumor-specific peptides as input. How-
ever, NetMHC employs an allele-specific training approach, while 
NetMHCpan adopts a “pan-specific” strategy, combining informa-
tion from both data modalities and diverse MHC molecules into a 
unified network. The authors reported that the novel training 
strategy employed by NetMHCpan enhances predictive accuracy. 
In contrast, MHCflurry uses binding affinity and eluted ligand data 
in a more sequential manner. The method initially conducts



binding predictions using an ensemble of ANNs trained on binding 
affinity data and subsequently integrates mass spectrometry data 
into another ensemble of ANNs to account for the antigen proces-
sing steps, particularly focusing on proteasomal cleavage. The out-
puts of these two models are then aggregated to generate a 
comprehensive presentation score. Furthermore, certain tools 
seek to bridge the gap between RNA-seq data and tumor-specific 
peptides by integrating some of the prediction methods mentioned 
above with variant calling pipelines, offering end-to-end solutions 
for neoantigen prediction. Examples include Epi-Seq [82], a bioin-
formatics pipeline utilizing NetMHC, and pVAC-Seq [62], which 
incorporates various prediction methods like NetMHC or 
MHCflurry. A general summary of these methods can be found in 
Table 2. 
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Newly developed methods are taking into consideration addi-
tional steps of the neoantigen processing pipeline, aiming to reduce 
the occurrence of false positives. One such tool, DeepNeo [83], a 
neural network-based tool, integrates predictions on MHC binding 
affinity and T-cell reactivity, a crucial factor for the success of 
neoantigen vaccines. The tool accepts peptide sequences from 
both mouse and human data and generates a binary prediction for 
MHC binding alongside a quantification of T-cell reactivity. While 
the prediction of T-cell reactivity holds promise for designing more 
effective neoantigen-based treatments, it is worth noting that the 
authors do not provide validation of the tool’s performance on 
murine data in the paper. Another recently introduced tool, 
Neo-Intiline [84], similarly accounts for various stages of peptide 
presentation and recognition. The tool is designed to be used with 
WGS data. The tool’s optimal performance is observed when ana-
lyzing melanoma data, although its applicability extends to any 
relevant dataset of interest. 

Although these methods have demonstrated efficacy in silico, 
in vivo validations are imperative to assess their real-world perfor-
mance. Both NetH2pan and NAP-CNB, validated in clinical set-
tings, have proven effective in neoantigen discovery [85]. 

6 Technical Challenges and Future Improvements 

The field of neoantigen prediction has evolved significantly, pro-
pelled by advancements in computational biology, high-through-
put sequencing technologies, and the integration of machine 
learning approaches. Despite these advancements, several technical 
challenges persist, and addressing these challenges is crucial for 
enhancing the predictive accuracy and clinical utility of neoantigen 
prediction methods.
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6.1 Technical 

Challenges 

The main challenges we have identified are: 

1. High false positive rates: One of the enduring challenges in 
neoantigen prediction is the high rate of false positives. Many 
predicted neoantigens are not genuinely immunogenic, which 
can lead to inefficient or ineffective therapeutic strategies. This 
challenge stems primarily from the limitations in accurately 
modeling the complex interplay of factors that contribute to 
the immunogenicity of neoantigens, such as peptide-MHC-
binding affinity, TCR recognition, and the expression and pre-
sentation dynamics in tumor microenvironment. 

2. HLA allelic diversity: The genetic diversity of HLA alleles poses 
a significant challenge due to its impact on binding affinity 
predictions. Current prediction tools often have reduced accu-
racy for less common HLA alleles, which are underrepresented 
in training datasets. This limitation affects the generalizability 
of prediction models across different populations. In addition, 
most tools are specific to MHC Class I molecules, although it 
has been demonstrated that MHC Class II is also essential for 
effective antitumor immune responses. 

3. Integration of epitope processing: Neoantigen prediction tools 
primarily focus on the binding affinity of peptides to MHC 
molecules. However, the entire process of antigen presenta-
tion, including proteasomal processing, transport by TAP pro-
teins, and trimming by ER aminopeptidases, significantly 
influences the presence of peptides on the cell surface. The 
lack of comprehensive integration of these steps can lead to 
inaccuracies in predicting true neoantigens. 

4. Scalability and computational efficiency: As genomic datasets 
grow in size and complexity, the computational demands of 
neoantigen prediction also increase. Scalability and efficiency 
become critical, especially for real-time or near-real-time analy-
sis in clinical settings. Many existing tools require substantial 
computational resources, which can be a barrier to routine 
clinical use. 

6.2 Future 

Improvements 

As future improvements to be accomplished, we propose the 
following: 

1. Enhanced machine learning models: Future advancements 
should include the development of more sophisticated machine 
learning models integrating multiple aspects of antigen presen-
tation and immune recognition. Deep learning approaches that 
can learn complex patterns from large datasets may offer 
improvements in predicting the immunogenicity of neoanti-
gens beyond mere peptide-MHC binding and development of 
neoantigen-based therapies.
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2. Incorporation of tumor microenvironment factors: Incorpor-
ating data from the tumor microenvironment, such as cytokine 
profiles, immune infiltration, and checkpoint expression, could 
enhance the prediction of neoantigen immunogenicity. Under-
standing the interaction between neoantigens and the tumor 
microenvironment will aid in prioritizing neoantigens that are 
more likely to elicit a robust immune response. 

3. Expanding training datasets: To address the issue of HLA 
diversity, it is essential to expand training datasets to include a 
broader array of HLA types, particularly those that are less 
common globally. This expansion would improve the accuracy 
of the model and its applicability to diverse populations. 

4. Integrative multiomics approaches: Future tools should aim to 
integrate multi-omics data, including genomics, transcrip-
tomics, and proteomics, to provide a more holistic view of 
neoantigen presentation and potential immunogenicity. This 
integration will help in understanding the complex dynamics of 
cancer biology and immune responses. 

5. Cloud-based platforms and real-time analysis: Developing 
cloud-based platforms that can perform real-time analysis of 
neoantigen predictions would significantly benefit clinical 
applications. Such platforms should be designed to handle 
large-scale data efficiently, providing accessible and rapid 
insights for personalized cancer immunotherapy. 

7 Discussion and Conclusions 

The prediction of neoantigens represents a cornerstone in the 
development of personalized cancer immunotherapies. It leverages 
the power of computational biology, genomics, and immunology 
to identify tumor-specific antigens that can be targeted by the 
immune system, offering a highly personalized approach to cancer 
treatment. The insights gained from this research area are critical in 
guiding the design of vaccines and cell-based therapies that have the 
potential to significantly improve patient outcomes. 

Throughout this chapter, various computational methods and 
tools developed for neoantigen prediction have been explored. 
These tools have evolved from basic sequence alignment techniques 
to sophisticated machine learning models that predict peptide-
MHC-binding affinities and assess immunogenic potential. The 
integration of deep learning has particularly enhanced the accuracy 
and predictive power of these tools, reflecting broader trends in 
biomedical research where advanced computational methods are 
increasingly pivotal. 

However, despite these technological advancements, several 
challenges remain. The prediction of neoantigens still contends



with issues such as high false positive rates, limited understanding 
of the immunogenicity landscape, and the need for better integra-
tion of comprehensive antigen processing pathways. Moreover, the 
diversity of HLA alleles presents a significant hurdle in achieving 
universally applicable prediction tools, necessitating ongoing 
efforts to expand and diversify the training datasets used in model 
development. 
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Looking forward, the field of neoantigen prediction is poised 
for transformative growth. Key areas for future improvement 
include the development of integrative multi-omics platforms that 
can provide a more complete picture of tumor immunogenicity and 
the microenvironmental factors influencing immune recognition. 
Additionally, the expansion of machine learning models to include 
more diverse data types and training sets will enhance the accuracy 
and applicability of predictions across different populations and 
cancer types. 

Ultimately, the integration of neoantigen prediction into clini-
cal practice promises to revolutionize cancer immunotherapy. By 
tailoring treatments to the specific immunogenic landscape of the 
tumor of each patient, neoantigen prediction paves the way for 
more effective and less toxic therapies. It holds the promise of 
turning the immune system into a precise tool for targeting cancer, 
fundamentally changing the way we approach cancer treatment and 
heralding a new era of precision oncology. As we continue to refine 
and improve computational methods for neoantigen prediction, we 
move closer to realizing the full potential of immunotherapy in 
providing durable and potent cancer treatments. 
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