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Abstract

Flaxseed polysaccharides (FLP) are bioactive macromolecules with valuable functional
properties and applications in the food, pharmaceutical, and packaging industries. This
study focused on obtaining high-purity pectin from flaxseed cake using sustainable ex-
traction with natural deep eutectic solvents (NADES) based on choline chloride (ChCl)
and citric acid (CA) The ChCl/CA system (1:1) resulted in the LU3 extract, which pro-
vided the best outcome, yielding the highest pectin recovery (36.88 mg/g), elevated uronic
acid content (30.33% of sample; 68.15% of saccharides), and the lowest protein contam-
ination (11.46%), confirming superior pectin purity. Structural (UV-Vis, FT-IR, GC-MS,
GPC, LH-20) identified homogalacturonan with xylogalacturonan domains (53% DM) and
a molecular weight range of 14–500 × 103 g/mol. Morphological and physicochemical
characterization, including SEM/EDS imaging, zeta potential analysis, and rheological
measurements, revealed that LU3 is an anionic, heterogeneous biopolymer exhibiting pH-
dependent charge behavior. These properties underscore its potential as a safe and effective
material for bio-industrial applications. Overall, the study demonstrates that NADES pro-
vide an eco-friendly and efficient medium for extracting high-quality pectin from flaxseed
cake, offering a sustainable strategy for the valorization of flaxseed polysaccharides in
bio-based products.

Keywords: flaxseed cake; natural deep eutectic solvents; pectin; homogalacturonan

1. Introduction
Flax (Linum usitatissimum L.) is an annual herbaceous plant that belongs to the genus

Linum and family Linaceae. Flax cultivation dates back to more than 7000 BC when flax
fiber was used by ancient Egyptians for wrapping mummies and flax oil was used for
body preservation [1]. Currently, Linum usitatissimum is cultivated mainly for flaxseed
oil production. The remaining above-ground parts of the plant are also collected for flax
fiber processing. Europe is the largest global producer, meeting as much as 95% of the
market demand [2]. Flax fibers are used for textiles, blotting papers, banknotes, polymers
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of lactic acid biodegradable composite materials, and glass fiber substitutes [3]. According
to the FAO (2021), the major flaxseed oil producers are China (32.3%), Belgium (17.4%),
and the USA (10.0%) [2], generating large amounts of by-products, also known as ‘cake’ or
‘meal’ [4,5].

According to the FAO (2021) [2], the major flaxseed oil producers are China (32.3%),
Belgium (17.4%), and the USA (10.0%), generating large amounts of by-products.

Defatted flaxseed cake is rich in many components that contain bioactive components
with valuable functionality, including polyphenols, proteins, and FLP [6,7]. Due to its
ben-eficial properties, flax cake is used not only as animal feed for farm animals, i.e., cattle,
pigs, poultry, and pets, but also as a food ingredient as a component in human food, e.g.,
as nutraceutical ingredient or the component improving texture and sensory properties
of many daily consumed food products, including sourdough bread, margarine or meat
products [1,8]. FLP is used as a gelling agent in the food industry [9]. Moreover, they can
stabilize emulsions, e.g., in ice creams and in yogurt [10–12]. FLP is also utilized as a fat
replacer and a prebiotic in food products such as cream cheese [13,14]. FLP are proven to
serve as useful components of food packaging materials and edible coatings [15–18].

Flax seeds are a rich source of many bioactive compounds, e.g., α-linolenic acid, sec-
oisolariciresinol diglucoside, and soluble as well as insoluble fiber. These compounds are
anti-inflammatory, antioxidant, and lipid-regulating agents, supporting therapies against
cardiovascular diseases, diabetes, and cancers [19]. The insoluble type of linseed fiber
is mainly composed of cellulose, hemicellulose, and lignans, whereas the water-soluble
type of this fiber forms linseed mucus [20,21]. The first type of fiber is responsible in
the body for facilitating the transport of fecal masses [20] and for the production of the
diglucoside secoisolariciresinol (SDG), in the digestion tract, which, when transformed
into enterolactone, prevents the formation of colon, prostate, intestinal, and lung can-
cers [20,22]. In turn, flaxseed mucilage isolated in an aqueous environment consists of one
neutral fraction and two acidic fractions. The neutral fraction consists of approximately
75% of arabinoxylan (AX), with a (1–4)-D-xylan backbone substituted by arabinose and
short D- and L-galactose chains [2,20,21]. The two remaining acidic fractions, which are
typical pectins, are polysaccharides with main chains composed of (1-4)-galacturonic acid
and (1-2)-L-rhamnose, which are branched with arabinose, galactose, or arabinogalactan
I side chains. These polysaccharides can be classified as rhamnogalacturonans type I
(RG I) [20]. The neutral arabinoxylans combined with the pectins rich in rhamnose are the
raw material for the synthesis of short-chain fatty acids (SCFA), produced in fermentation
catalyzed by intestinal bacteria [20,23]. SCFAs, in turn, act as substrates to synthesize the
components essential to life processes, like long-chain fatty acids, cholesterol, glutamine,
and glutamates [24].

The valorization of waste materials through pectin extraction offers not only an en-
vironmentally friendly strategy to obtain biodegradable, biocompatible, and non-toxic
biofilms and biomaterials. Pectins can function as matrices and scaffolds that facilitate
cell adhesion and proliferation, making them highly suitable for applications in tissue
engineering, including tissue repair and regeneration [25]. For example, Lapomarda
et al. demonstrated the use of pectin derivatives to construct 3D scaffolds for ear and
nose reconstruction [26]. Pectins are also incorporated into composites, such as cellulose,
gelatin, collagen, or polylactic acid, to enhance material properties [25,27]. Pectins are
also utilized in drug delivery systems in the form of hydrogels, micro- and macroparticles,
biofilms, tablets, and microspheres. These systems enable targeted therapies, such as in
cancer treatment or oral drug delivery, as pectin degradation occurs selectively via intesti-
nal bacteria expressing pectinolytic enzymes, ensuring release of the active compound
specifically in the colon [28]. In the food industry, pectins are widely applied to produce
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edible, biodegradable, and non-toxic biofilms aimed at prolonging shelf life. As with
biomaterials, pectins are often integrated into composites with starch, polylactic acid, or
essential oils, improving mechanical strength and imparting antimicrobial or antioxidant
properties [29–31]. Furthermore, pectins serve as versatile functional agents in food pro-
cessing, acting as gelling, thickening, emulsifying, and stabilizing components [10].

So far, various methods for the extraction of polysaccharides from flax seeds have
been described, including hot water extraction (HWE) [32,33], ultrasound-assisted extrac-
tion (UAE) [32,33], microwave-assisted extraction (MAE) [32–34], alkali-assisted extraction
(AAE) [23], and enzyme-assisted extraction (EAE) [35]. An increase in process temperature
resulted in a higher extraction yield, ranging from 4% to 9.4% (w/w). In each method used,
the extracted polysaccharides were accompanied by a protein fraction, whose proportion
increased with temperature and reached 15.1%, 15.7%, and 16.8% for HWE, MAE, and
AAE, respectively [32]. However, none of the applied extraction methods enabled the
isolation of flaxseed polysaccharides containing more than 36% uronic acids in their sugar
composition [32–35]. The high thickening capacity of flaxseed mucilage polysaccharides
significantly increases the viscosity of the extraction medium, which poses a major limita-
tion for the processing of flaxseeds and flaxseed cake in aqueous systems [32]. A potential
strategy to address this issue is to reduce the solid-to-liquid ratio; however, this approach
may be considered suboptimal from a process scale-up perspective.

In the present study, the polysaccharides rich in uronic acids were extracted from
flaxseed cake, a by-product of flaxseed oil production. The research primarily focused on
the extraction process from this raw material, employing, among other methods, aqueous
solutions of natural deep eutectic solvents (NADES). The aim was to evaluate the potential
of NADES as green solvents for the efficient extraction of pectins from this food processing
waste, in comparison to other extraction methods. Although aqueous solutions of NADES
have been previously reported in the scientific literature as effective extraction media
for isolating pectins from various plant-based wastes [36–39], their use for flaxseed cake
valorization has not yet been explored, despite the well-documented richness of this raw
material in such macromolecules. The existing literature describes only a single attempt to
use NADES on flax seeds, specifically those tailored for lipid extraction, in the context of
linseed oil recovery [40]. This article specifically presents the influence of the molar ratio of
NADES components, i.e., choline chloride and citric acid, on the yield of pectin extraction
and the chemical characteristics of these polysaccharides. The polysaccharide product with
the highest galacturonic acid content was subjected to spectrometric analyses, including
UV-Vis and FT-IR, as well as chromatographic techniques such as GPC, LH-20, and GC-
MS. Additionally, the morphology of this product was characterized by scanning electron
microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS). The behavior of
this product under different pH and ionic strength conditions was evaluated in terms of
zeta potential and viscosity.

2. Materials and Methods
2.1. Plant Material and Reagents

Linum L. seed cake was purchased from the pharmaceutical plant Polpharma S.A.
(Poland). Moisture content of flaxseed cake was determined using a moisture analyzer
(MB27, Ohaus, Nänikon, Switzerland). Briefly, 5 g of the raw material was dried at
70 ◦C until a constant mass was reached. As the dry mass was 97.03 ± 0.04% we assumed
acceptable to omit this parameter from the calculation of the extraction yield. Choline chlo-
ride (≥98%), m-hydroxybiphenyl (85%), gallic acid monohydrate, Folin-Ciocalteu reagent,
and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (Warsaw, Poland).
Citric acid monohydrate, methanol, and ammonia solution (25%) were obtained from P.P.H.
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STANLAB (Lublin, Poland). Phenol, D-(+)-galacturonic acid monohydrate (>97%), and
sodium borohydride (≥99%) were acquired from Fluka (Charlotte, NC, USA). Concen-
trated sulfuric acid (>95%), disodium-tetraborate-10-hydrate (Na2B4O7 × 10 H2O), sodium
hydroxide, sodium carbonate anhydrous, and sodium tartrate, trifluoroacetic acid (99.5%),
pyridine, acetic anhydride, and sodium sulfate were purchased from POCH (Warsaw,
Poland). Copper (II) sulfate (VI) pentahydrate and dichloromethane were obtained from
Chempur (Piekary Śląskie, Poland). All solvents were of analytical grade.

2.2. NADES Preparation

Four natural deep eutectic solvent (NADES) variants with different molar ratios of
choline chloride (ChCl) and citric acid (CA) were prepared, including ratios of 1:1, 1:2, 1:3,
and 1:4. To obtain 100 g of the NADES mixture, the chemicals were combined in their
respective proportions and mixed under reduced pressure, at 70 ◦C for 15–30 min. The
process continued until a homogeneous liquid was formed. Subsequently, immediately
before extraction, NADES was dissolved in distilled water at a ratio of 1:9 w/w to obtain
the final extraction medium.

2.3. Extraction of Pectins from Flaxseed Cake

The extraction and purification of pectins from flaxseed cake were performed following
standardized procedures described previously [41]. The initial step involved suspending
50 g of flaxseed cake in 1000 mL of various extraction media (distilled water, 10% citric
acid, or NADES (ChCl/CA) with molar ratios of 1:1, 1:2, 1:3, or 1:4). The mixtures were
then subjected to extraction at 100 ◦C for 4 h. After extraction, each extract was purified
according to the protocol previously described [21]; the solutions were cooled to room
temperature and solids were removed by filtration. The extract was then condensed
under reduced pressure. The alcohol-insoluble residue (AIR) was precipitated by adding
excess collected by vacuum filtration and dried, and stirred continuously for 2 h at room
temperature. The precipitate was filtered under reduced pressure and eventually dried.

The crude product was dissolved and dialyzed against distilled water using a
Spectra/Por® membrane (MWCO: 12–14 kDa, Spectrum Labs, San Francisco, CA, USA)
until the conductivity of the external solution equaled that of distilled water. Finally, the
purified solution was dried under reduced pressure to obtain the final product. The yield
of the extraction was calculated using the formula:

Y [%] =
mass o f product a f ter extraction process [mg]

mass o f raw material [g]
(1)

2.4. Chemical Characterization

The conductivity and pH of extraction media solutions were measured using a Labora-
tory pH/Conductivity meter CPC-511 (Elmetron, Zabrze, Poland). The total carbohydrate
content in Linum L. products was determined using the phenol-sulfuric acid assay, with
glucose as the standard at 490 nm [42]. To quantify uronic acids, the m-hydroxybiphenyl
method was applied at 520 nm, with galacturonic acid used as the reference compound [43].
Phenolic compounds were measured using the Folin-Ciocalteu method, with gallic acid
serving as the standard (λ = 765 nm) [44]. Protein content was determined at 750 nm
using the Lowry assay, with BSA as the reference compound [45]. Measurements were
taken using a Cecil CE 2021 spectrophotometer and a SPECTROstarNano microplate reader
(BMG Labtech, Ortenberg, Germany).
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2.5. Monosaccharides Composition

The polysaccharide sample was hydrolyzed (2M TFA, 120 ◦C, 5 h), reduced with
sodium borohydride, and acetylated by acetic acid anhydride in the presence of pyridine.
Thereafter, the sample was extracted three times with dichloromethane and evaporated
to dryness under N2 to obtain alditol acetates of neutral monosaccharides, following a
commonly used protocol [46]. Briefly, prior to the analysis, the sample was dissolved in
500 µL of dichloromethane. The analysis was performed on the Trace GC Ultra device,
coupled to an ITQ 700 mass spectrometer, equipped with a quadrupole ion trap detector
(Thermo Scientific). The separation of the analyzed sample was carried out in a Restek
RTX-2330 column (0.25 mm × 30 m) with helium as the carrier gas, with a constant flow
rate of 1 mL/min. The sample injection volume was 1 µL. The injection port was set
in splitless mode and heated to a temperature of 260 ◦C. The ion source in the detector
was heated to 300 ◦C. The analysis temperature program was set as follows: 170–180 ◦C
(1 ◦C/min), 180–235 ◦C (3 ◦C/min), and finally maintaining 235 ◦C for 10 min.

2.6. FT-IR Spectroscopy Analysis

Fourier-transform infrared spectroscopy (FT-IR) was performed using a Nicolet iS20
FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and Omnic 9.0 software.
A sample-containing KBr tablet was prepared using a hand press (Pike Technologies,
Madison, WI, USA) to perform the measurement. The spectrum was recorded in the mid-
infrared region spanning 4000–400 cm−1 with a resolution of 4 cm−1 and by collecting
64 scans. The raw spectrum was corrected for atmospheric background and baseline, then
smoothed using a 10 ppt filter. The positions of the shoulders were detected using a second
derivative algorithm.

2.7. Homogeneity

The crude extract was prepared for Sephadex LH-20 gel chromatography to assess
its homogeneity. The sample was weighed (~33 mg) and completely dissolved in 0.5 mL
of 0.1 M NaOH, followed by centrifugation and filtration on a syringe filter (0.45 µm).
The column (13 × 300 mm) was packed with resin (~10 g of Sephadex LH-20), which
was saturated with the eluent (methanol/0.1 M NaOH, 1:3), and pre-equilibrated with
at least 3 bed volumes of eluent. Then, 0.5 mL of the dissolved crude pectin-like extract
was loaded onto the column. The mobile phase was methanol/0.1 M NaOH (1:3). The
eluates were collected (1 mL/tube). The carbohydrate profile was analyzed using the
phenol-sulfuric acid assay [34]. Phenolic and protein compound levels were assessed using
the Folin-Ciocalteu and Lowry methods, respectively [44,45].

Gel Permeation Chromatography (GPC) was performed using Sephacryl S-300 HR
resin. The column (20 × 1200 mm) was packed with gel and washed with 0.1 M NaOH to
remove residual 0.02% sodium azide solution (at least 3 bed volumes). The crude product
(~30 mg) was dissolved in 0.1 M NaOH (0.5 mL). Then, 0.5 mL of the dissolved crude pectin-
like product was loaded onto the column. The void volume (V0) was 80 mL. Eluates were
collected in 2 mL fractions using a Gilson FC 203B fraction collector (Gilson, Middleton,
WI, USA) at a flow rate of ~0.5 mL/min. The carbohydrate profile analysis was performed
using the phenol-sulfuric acid assay [42].

2.8. Physicochemical Characterization
2.8.1. Microscopic Evaluation

Immediately before the experiment, LU3 powder was mounted onto double-sided
adhesive carbon tape. A 50 µL drop of LU3 solution (10 mg/mL) was applied to double-
sided adhesive carbon tape 24 h before the experiment to allow the water to evaporate.
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The morphology of LU3 was examined using a scanning electron microscope (JSM-6601LV,
JEOL, Tokyo, Japan) (operating at 5–20 kV, spot size 30, high vacuum) coupled with an
energy-dispersive X-ray spectroscopy (EDS) system (Oxford Aztec Energy, Oxford, UK) for
mineral characterization.

2.8.2. Zeta Potential Measurements

The electrophoretic mobility of LU3 particles was measured at 22 ◦C using a Zeta-
sizer Nano-ZS analyzer (Malvern, UK) (λlaser = 632.8 nm) in capillary zeta cells. LU3
was dissolved in ultrapure water (Milli-Q, Merck Millipore, Darmstadt, Germany) or
0.1–100 mM NaCl (as a supporting electrolyte) to a final concentration of 0.1% w/v. The
pH of the solutions was adjusted to a range of 3–10 using a pH meter (Mettler Toledo,
Columbus, OH, USA) with 0.1 M HCl or 0.1 M NaOH. Each sample was equilibrated for
180 s, and measurements were performed in triplicate, each consisting of 30 runs. The
surface charge of LU3 was expressed as the zeta potential (ζ) in millivolts (mV).

2.8.3. Static Viscosity Analysis

The viscosity of 0.1% LU3 was measured in a glass beaker at 23 ± 1 ◦C using a Rotavisc
Lo-vi viscometer (IKA, Poznań, Poland) equipped with an SP-6 spindle, following the
requirements of the International Standard ISO 2555:2018 [47]. The pH of the solutions was
adjusted to a range of 3–10 using a pH meter (06-700ALS, Chemland, Łódź, Poland) with
0.1 M HCl or 0.1 M NaOH. Each sample was analyzed in triplicate for 120 s at 190 rpm.

2.9. Statistical Analysis

Statistical evaluation was carried out with Microsoft Office Excel 2021. Data are
expressed as the mean ± standard deviation (S.D.). The statistical significance of differences
between the treated and the control groups was determined by the Student’s t-test, at a
significance level of p < 0.05.

3. Results and Discussion
3.1. Crude Polysaccharides from Flaxseed Cake

Crude extracts from Linum usitatissimum L. seed cake were obtained by hot water
extraction (HWE), in a 10% citric acid solution, or using 10% aqueous solutions of natural
deep eutectic solvents (NADES) composed of choline chloride (ChCl) and citric acid (CA)
in different molar ratios, i.e., 1:1, 1:2, 1:3, or 1:4, all at 100 ◦C for 4 h. Each crude extract was
then processed according to a standard polysaccharide isolation protocol [21]; that is, it
was filtered to remove the solid residue, concentrated, and precipitated using methanol
to collect the alcohol-insoluble residue (AIR), which was to enrich saccharide content.
Finally, crude polysaccharide products were obtained after dialysis against deionized water
(Figure 1).

The extraction yield and total saccharide concentration of the crude polysaccharide
products from flaxseed cake ranged from 53.58 to 136.71 mg/g and from 34.89% to 45.20%
(based on dry flaxseed cake), respectively. The highest extraction efficiency was observed
for the LU4 product, obtained using NADES with a ChCl/CA molar ratio of 1:2, whereas
the highest saccharide content was found in the LU6 product, corresponding to a ChCl/CA
molar ratio of 1:4.

Additionally, LU3 exhibited the lowest level of contamination by proteins, with a
value of 11.46%, in the dry crude polysaccharide product. Notably, the most efficient
LU3 product was obtained using the extraction medium with the highest conductivity,
i.e., 20.3 mS/cm.
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Figure 1. Process of polysaccharides isolation from Linum usitatissimum seed cake.

However, in this study, alongside the polysaccharide yield, the second most important
parameter indicating the presence of pectins was the uronic acid (UA) content. According
to Table 1, the extraction medium with a ChCl/CA molar ratio of 1:1 (LU3) yielded the
best results in this regard. It exhibited the highest UA content in both the crude product
and the saccharide fraction, with values of 30.33% and 68.15%, respectively. The uronic
acid content in other samples ranged from 14.35% to 24.64%, which aligns with scientific
literature indicating that flaxseed contains 21–36% UA [33]. It is also crucial to assess
the amount of pure pectin obtained from the extraction process. This parameter was
estimated by considering both the extraction yield and uronic acid content. As presented in
Table 1, pectin recovery, calculated per gram of raw material, ranges from 7.72% to 36.88%.
The highest value was achieved for the sample extracted in NADES with a ChCl/CA
molar ratio of 1:1. These findings provide the rationale for selecting LU3 as the most
promising product with respect to chemical characteristics and for subjecting it to further
structural analyses.

A high UA content (~68%) in the isolated crude polysaccharide LU3 suggests the
presence of pectin. Xyl residues were predominant among the neutral monosaccharide
residues in LU3, along with minor amounts of Ara, Gal, and Rha residues, where the Ara
content was almost equal to the sum of Gal and Rha. The molar ratio of Xyl to GalA (Table 2)
suggests the presence of a combination of homogalacturonan and xylogalacturonan [48]
with a degree of methylesterification of 53% in the crude polysaccharide product. Based
on the proportion of the sum of GalA and Rha to the sum of Fuc, Ara, Gal, and Xyl [48]
(3.13), it can be stated that the xylogalacturonan present in LU3 is typically linear. The very
low Rha-to-GalA ratio in LU3 0.045 (Table 1) suggests that rhamnogalacturonan (RG I) is
present as a residual component in the flaxseed pectin, as previously observed [49].
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Table 1. Colorimetric analysis of samples LU1-LU6 and conductivity and pH of extraction media solutions.

Name of the
Samples

Extraction
Medium

Conductivity
of Extraction

Medium
(mS/cm)

pH of
Extraction
Medium

Yield of
Extraction

(mg/g)

Saccharides
(wt%)

Uronic Acids
(wt%)

Uronic Acids
in Saccharide

Part (wt%)

Uronic Acids in
Raw Material

(mg/g)

Polyphenols
(µM GAE/1 g

of Dry
Product)

Proteins
(wt%)

LU1 H2O 0.0064 5.22 53.58 34.89 ± 1.36 14.35 ± 0.16 41.13 7.72 94.24 ± 10.80 14.52 ± 0.72
LU2 0:1 * 4.70 2.88 117.21 41.29 ± 2.20 24.41 ± 0.21 59.12 28.61 144.88 ± 3.03 12.00 ± 049
LU3 1:1 * 20.30 2.94 121.62 40.14 ± 1.92 30.33 ± 2.39 68.15 36.88 174.56 ± 11.35 11.46 ± 0.41
LU4 1:2 * 15.63 2.90 136.71 39.45 ± 1.56 24.64 ± 0.58 61.44 33.71 200.69 ± 16.02 12.18 ± 0.28
LU5 1:3 * 13.38 2.89 133.43 38.60 ± 0.75 23.15 ± 0.30 59.97 30.91 194.16 ± 16.77 13.01 ± 0.32
LU6 1:4 * 11.44 2.88 119.26 45.20 ± 1.21 24.37 ± 0.25 53.92 29.06 182.88 ± 8.52 11.95 ± 0.31

* Molar ratios of NADES components: choline chloride/citric acid. The extraction was performed in 10% (m/v) solutions of NADES.

Table 2. Monosaccharide composition and degree of esterification of LU3.

Monosaccharides Composition (wt%) DM b

(%)Fuc Rha Ara Xyl Man Gal Glc GalA a

0.12 ± 0.01 3.06 ± 0.15 7.67 ± 0.38 11.90 ± 0.60 1.09 ± 0.05 3.08 ± 0.15 0.77 ± 0.24 68.31 ± 3.42 53
a GalA—galacturonic acid content (wt%) calculated based on m-hydroxybiphenyl assay, as described by Blumenkrantz and Asboe-Hansen (1973) [43]. b DM—degree of methylesterifica-
tion of carboxylic functional groups of GalA, based on the FT-IR spectrum.
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These observations are consistent with Safdar et al. (2020), who reported that flaxseed
polysaccharides extracted by alkaline-acid extraction (AAE), hot water extraction (HWE),
microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE) had com-
parable monosaccharide compositions, dominated by rhamnose (Rha, ~22%), followed by
Glc, Gal, Xyl, Ara, Fuc, and GalA (~7–10%), indicating rhamnogalacturonan-I and xylo-
galacturonan [32]. Yu et al. (2022) showed that MAE yielded fractions enriched in Rha, Xyl,
Ara, and Gal, but with <20% GalA [34], markedly lower than in this study. Flaxseed pectins
enriched in neutral monosaccharides show shear-thinning and weak gelling, whereas those
dominated by acidic monosaccharides display viscoelastic behavior [50].

Extraction method strongly influences yield and composition. HWE, often combined
with pH adjustment or auxiliary treatments, is widely used. Three-stage countercurrent
HWE produced flaxseed pectin at 9.8% yield (80 ◦C, 30 min) [23]. Ding et al. (2014) obtained
3.05% at 70 ◦C for 4 h, with 78.36% sugar and 4.74% uronic acid (UA) [51]. Microwave-
assisted extraction using CA and HCl yielded 5.55% and 11.60%, respectively, consistent
with this study [52]. The products contained 72.87% (CA) and 80.99% (HCl) anhydrouronic
acid (AUA), and low-methoxyl pectins with a degree of esterification (DE) of ~43% [52].

Safdar et al. (2020) reported yields of 6.44% (AAE), 8.96% (HWE), 7.01% (MAE),
and 7.84% (UAE), with carbohydrate contents of 70–84% [32]. Microwave treatment also
improved yield: control and 1, 3, and 5 min treatments gave 3.15%, 3.49%, 4.34%, and 4.76%,
respectively—still less than half the value in the present work. UA decreased from 17.03%
to 11.16% (control: 15.59%), while sugar exceeded 84% [34]. Enzymatic–ultrasonic-assisted
extraction achieved >33% yield from defatted flaxseed meal [50]. For MAE and UAE,
protein content was low, below LU3 [33,34].

Differences in yield, chemical composition, and DE depend not only on extraction,
but also on cultivar and harvest conditions [50]. No prior studies were found on flaxseed
pectin isolation using NADES, highlighting a research gap. NADES, especially ChCl/CA,
are increasingly studied for pectin extraction. Applications include jackfruit [53], pas-
sion fruit [54], Averrhoa bilimbi [55], mango [56], kinnow [57], apple [37,58,59], and sweet
lime [60]. For example, ChCl/maleic acid (1:1) with microwave support extracted jackfruit
pectin (>33% yield, 68% GalA, DE 34.96%) [53]. Pereira et al. (2024) used Subcritical Water
Extraction (SWE) and Pressurized NADES (P-NaDES; ChCl/Glc/water, 1:1:3) for passion
fruit, achieving 19.1–27.6% yield (GalA 68%, DE > 50%), while SWE produced the highest
GalA (78%) but DE <50% [54]. Shafie et al. (2019) optimized NADES (ChCl/CA, 1:1) for
Averrhoa bilimbi, obtaining 14.4% yield, GalA-rich pectin with DE 54% [55]. Santra et al.
(2023) tested ten ChCl-based NADES; ChCl:maltose (5:2, 70 ◦C, 4.5 h) gave the best results
(35.66% yield, 78.22% GalA, DE < 50%) [57].

Vargas et al. (2025) extracted apple pectins using CA and NADES (CA/Glc/water;
lactic acid/Glc/water), yielding 2.5–12.2%, with >76% carbohydrates, UA > 50%, and
DE > 50% [37]. NADES were also used to pretreat apple pomace before HWE
(ChCl/glycerol, ChCl/lactic acid, potassium carbonate/glycerol, ChCl/oxalic acid,
ChCl/urea) [58,59]. Rai et al. (2025) applied ultrasonic cavitation with ChCl/CA, yield-
ing lime pectin at 37.21% with DE 85.49% [60]. Beyond pectins, NADES (e.g., ChCl/CA,
1:1) have also been applied to extract phenolic compounds from olive pomace and black
carrot [61].

Figure 2 presents the FT-IR spectrum of the LU3 product. A broad, intense band
around 3438 cm−1 corresponds to O-H stretching vibrations, indicating the presence of
water, polyhydroxy compounds such as carbohydrates, and polyphenols [62,63]. A sharp,
less intense band at 2931 cm−1 corresponds to C-H stretching vibrations in CH3, CH2, and
C-H moieties. The shoulder around 1747 cm−1 arises from C=O stretching in carboxylic
acids and ester groups [62].
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Figure 2. FT-IR spectra for LU3 crude polysaccharides.

Two intense bands centered at 1656 and 1538 cm−1, corresponding to amide I and
amide II vibrations, respectively, confirm the presence of proteins [64]. This result is con-
sistent with the colorimetric assay, which indicated a protein content of approximately
11.5% in the sample. Two weak bands at 1444 and 1377 cm−1 are associated with the
anti-symmetric and symmetric bending vibrations of CH3 groups [63]. The band at
1414 cm−1 indicates symmetric stretching of COO− in salts of uronic acids [62,63].

The band at 1238 cm−1, with a high-wavenumber shoulder, is attributed to C-O and
C-O-C stretching vibrations in carboxylic acids and ester groups, as well as amide III
vibrations in proteins. The narrow band at 1151 cm−1 corresponds to the C-O-C stretching
vibration of glycosidic bonds. Strong overlapping bands at 1068 and 1038 cm−1 originate
from C-O and C-C stretching vibrations in pyranoid rings, characteristic of plant cell-wall
polysaccharides [65]. The shoulder at 947 cm−1 corresponds to C-O bending vibrations,
characteristic of pectin structures [66]. The weak band at approximately 825 cm−1 and
a shoulder near 891 cm−1 indicate α- and β-anomeric configurations in carbohydrate
units [67]. The bands observed at 754, 665, 625, and 523 cm−1 primarily arise from complex
skeletal vibrations in the pyranoid ring and amino acid side chains, and to a lesser extent,
from low-frequency vibrations in the carboxylic and amide groups of carbohydrates and
proteins [68–70].

3.2. Homogeneity of LU3

The flaxseed cake polysaccharide product LU3, obtained by extraction in NADES
(ChCl/CA, 1:1), was separated chromatographically on the lipophilic resin Sephadex
LH-20. The collected samples were analyzed for carbohydrates, polyphenols, and
proteins [42,44,45]. Fractionation revealed high homogeneity in the analyzed LU3 product,
with two main overlapping fractions (Figure 3).
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Figure 3. Sephadex LH-20 chromatography of LU3 crude polysaccharide.

Similar patterns were observed in the saccharide and polyphenolic profiles, although
the peaks in the latter were less intense. Additional peaks in the polyphenolic profile were
detected at elution volumes of approximately 18 and 21 mL. The protein profile exhibited a
broad, flat peak corresponding to the carbohydrate and polyphenolic profiles. These results
suggest the presence of polyphenol-polysaccharide conjugates in LU3.

Gel permeation chromatography (GPC) was performed to determine the molecular
size distribution of the LU3 sample (Figure 4). The Sephacryl S300 HR column revealed the
complex and molecularly heterogeneous nature of the analyzed sample. A certain degree
of heterogeneity was noticeable. The correlation between carbohydrate, polyphenolic, and
protein profiles was not clearly visible; however, the carbohydrate and polyphenolic profiles
enabled the identification of eight fractions. The number of polyphenolic compounds and
proteins in the LU3 sample was quite low, as can be clearly seen in the profile. The average
molecular mass of the fractions ranged from approximately Mp ~500 × 103 g/mol to
~14 × 103 g/mol.

Figure 4. Gel permeation chromatography of LU3 on Sephacryl S300 HR column. Estimated molecular
masses are expressed as g/mol.
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The literature reports varying data on the molecular weight of polysaccharides iso-
lated from linseed, mainly because the extraction type and method strongly influence
the final product. In general, flaxseed polysaccharides are heteropolysaccharides, com-
posed of homogalacturonan, arabinogalactans, and rhamnogalacturonan, which makes
their structure quite complex [71]. The molecular weight of polysaccharides is related to
their solubility—lower molecular weight corresponds to higher solubility [72]. Guo et al.
(2017) characterized pectic polysaccharides extracted from flaxseed mucilage and kernel as
rhamnogalacturonan-I (RG-I), with molecular weights ranging from 285 kDa (mucilage)
to 550 kDa (kernel) [73]. A previous study by Goh et al. (2006) identified three molecular
weight fractions in flaxseed polysaccharides: 100, 67, and 31 kDa [74]. Safdar et al. (2020)
examined flaxseed polysaccharides isolated via AAE, HWE, UAE, and MAE, and found
substantial heterogeneity, with products comprising at least two fractions with molecular
weights ranging from 5.12 × 102 to 1.33 × 106 g/mol [32].

Based on a literature review, Fabre et al. (2015) determined that flaxseed pectins may
correspond to chromatographic peaks between 1.7 × 104 to 1.5 × 106, whereas neutral
arabinoxylans exhibit peaks between 1.2 × 106 and 1.5 × 106 g/mol, which may further
contribute to variations in viscosity [33].

The differences in the molecular weight of pectins appear to depend largely on the
extraction or purification method used.

3.3. Physicochemical Properties of LU3
3.3.1. Morphology of LU3

Structural features of pectins are important for understanding the physical stability
and performance of pectin-based materials, such as gels, films, and encapsulation matrices.
Moreover, the morphological changes observed under different environmental conditions
can provide useful insights for optimizing pectin functionality in systems where texture,
surface properties, and integrity are critical, including controlled release carriers, edible
coatings, and hydrogel scaffolds. SEM analysis allowed a detailed visualization of LU3
microstructure at high resolution, showing surface morphology, porosity, and the presence
of fibrillar or particulate features of LU3 powder (Figure 5A) and the dry film of LU3
(Figure 5C).

LU3 particles had an irregular shape, with sizes ranging from 36 to 216 µm. The
surface of the particles appears coarse, with shallow wrinkles and a few lumps. Similar
particle morphology has been reported for pectins derived from eggplant waste [75] and
pistachio green hulls [76]. EDS mineral analysis of the LU3 pectin surface detected, in
addition to C (62.1 wt%) and O (26.8 wt%), small amounts of N (9.7 wt%) and trace
amounts of P (1.1 wt%), Mg (0.2 wt%), and S (0.1 wt%) (Figure 5B). The noticeable nitrogen
content suggests the presence of protein complexed with LU3 pectin. The pectin film
surface of the LU3 is compact, showing only slight corrugations and no visible pores.
At 4500× magnification, fiber-like structures were visible on the surface of the LU3 film,
likely cellulose residues from the linseed cell wall [77]. The morphology of LU3 particles
seems to be mainly influenced by the randomness of pectin flocculation during the drying
process after dialysis, whereas in the film, the LU3 chains become more organized as water
gradually evaporates from the surface.
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Figure 5. SEM images of surface: LU3 particles (A1–A3) and LU3 film (C1–C3) (orange lines
indicate region observed with higher a magnification). SEM-EDS images of the surface and mineral
characteristics of the LU3 particle (B1–B3) (yellow lines indicate region mapped for EDS).

3.3.2. Zeta Potential Profiles of LU3

Zeta potential analysis provides quantitative information on the surface charge and
colloidal stability of pectin dispersions across different pH values and ionic strengths. High
absolute ζ values (typically > |30| mV) are indicative of stable dispersions with strong
electrostatic repulsion, reducing the risk of aggregation or flocculation. The pH-dependent
zeta potential profiles for polyanions such as pectins reflect the degree of ionization of
carboxyl groups, which is key for understanding interactions with ions, proteins, and other
compounds. The influence of ionic strength on ζ has direct implications for pectin behavior
in physiological, food, or formulation-relevant environments.

Overall, a negative correlation was observed between LU3 surface charge and solution
pH: as the pH increased, the zeta potential (ζ) decreased from ζ = –11.0 mV at pH 3.0 to
ζ = –47.2 mV at pH 9.0. A similar trend was observed for LU3 dissolved in NaCl solu-
tions, regardless of ionic strength, except that the lowest zeta potential was recorded at
pH 10. This indicates that the deprotonation of carboxyl residues in GalA units within LU3
increases as pH rises above the pKa of the carboxyl group (~3.5) [78], leading to a higher
density of negative charges along the polysaccharide chain. However, changes in LU3
charge density were not linear with pH but varied across the pH range (Figure 6C), which
is typical for polyelectrolytes. The steepest decrease in ζ s occurred between pH 3.0 and
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5.0, regardless of ionic strength. Under these conditions, protonation of carboxyl groups is
most prominent, resulting in substantial neutralization of negative charges in acidic media.

Figure 6. Physicochemical properties of LU3: pH dependence on ionic strength (A); zeta potential (ζ)
dependence on ionic strength (B); viscosity (η) dependence on pH measured in deionized water (C).

The effect of ionic strength on LU3’s zeta potential further supports these findings. As
ionic strength increases, the ζ becomes less negative, consistent with the electrochemical
double-layer compression phenomenon: salt ions screen negative surface charges and
reduce electrostatic repulsion. However, under acidic conditions, this effect diminishes,
showing that protonation of carboxyl groups dominated over counterion interactions in
determining surface charge. Compared with pH, ionic strength had a smaller effect on the
charge density of LU3 than pH. At pH 3–4, similar ζ values were observed across solutions
with low to moderate ionic strength (0–10 mM NaCl). At pH 5–6, this similarity was
observed only at lower ionic strengths (0–1 mM). As ionic strength increased, the variation
in ζ with pH diminished, suggesting that sodium counterions increasingly screened the
negative charges on LU3 by sodium counterions.
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The average surface electric charge of LU3 was determined using dynamic light
scattering combined with the microelectrophoresis technique and expressed as the zeta
potential (ζ). The ζ values represent the sum of the individual surface charges of different
functional groups in the biopolymer. The surface charge of LU3 was measured as a function
of pH (3.0–10.0) and ionic strength (0.1–100 mM NaCl) (Figure 6B) to assess their combined
effect of pH and ionic strength on the zeta potential.

To ensure clarity, the effect of ionic strength on the pH of LU3 was first
examined: pH = 4.0 in water, 0.1 mM, and 10 mM NaCl; pH = 3.8 in 10 mM and
100 mM NaCl (Figure 6A). The ζ potential of LU3 in its native form, i.e., pectin dissolved
in distilled water (pH ~ 4.0), was −22.1 mV, confirming its anionic character. At pH 7,
ζ = −40.6 mV, consistent with observations for apple waste pectin extracted with citric
acid [79].

A similar trend in zeta potential behavior has been reported for banana passionfruit
epicarp polysaccharides [78]. Furthermore, the degree of deprotonation decreased with
increasing ionic strength, reaching a plateau in 100 mM NaCl at pH 7.0. Only minor
deviations in ζ were observed within the measurement error, indicating that LU3 had
reached an electrostatic saturation point. At this stage, the polymer was saturated with
counterions, and the surface charge density could be considered stable. The standard
deviations in ζ values were higher at alkaline pH, suggesting that LU3’s fibrillar structure
becomes less stable under these conditions.

Similar behavior has been observed for citrus polysaccharides [80]. The optimal ζ
potential for proper dispersion of LU3 in aqueous media (ζ < −30 mV) was achieved at
pH > 5.0 in water or in solutions of low ionic strength, indicating good colloidal stability.
In contrast, in high-ionic-strength solutions and/or at pH < 5.0, the reduced ζ potential
suggests that LU3 may fold into semi-helical structures, aggregate, or even flocculate due
to weakened interchain repulsion [81]. No complete neutralization of its carboxyl groups
by counterions was detected, and LU3 did not acquire a positive charge under any of
the tested conditions. These results also suggest that the protein fraction complexed with
LU3 is negligible, as it does not significantly affect the net surface charge. In summary,
these findings support the classification of LU3 as an unchanged but smoothed commas
and parallelism.

3.3.3. Static Viscosity Characteristic of LU3

LU3 is an example of a high-molecular-weight, high-methoxy pectin (HMP), and both
of its structural properties contribute to the rigidity of the pectin chain, which corresponds
to its higher viscosity [82]. The results show that the apparent viscosity of LU3 remained
relatively stable, with only minor variations, regardless of pH (Figure 6C). The highest vis-
cosity values for LU3 were observed in its native state (pH ~4.0) and at pH 7.0, measuring
6.5 mPa·s and 6.6 mPa·s, respectively. Under acidic conditions, both below and above the
pKa of carboxyl groups (pKa_COOH), viscosity decreased slightly to 6.2 ± 0.1 mPa·s, while
under alkaline conditions, it was approximately 6.3 ± 0.1 mPa·s. These values are compa-
rable to those reported for HMP extracted from jackfruit seeds [83]. No clear correlation
was observed between viscosity, pH, or zeta potential. Nevertheless, it is noteworthy that,
despite the very low concentration of the LU3 working solution (only 0.1%), its viscosity
remains noticeably higher than that of water. Viscosity is a crucial parameter in industrial
applications, not only for optimizing extraction but also for predicting functional properties
in final products, such as thickening or stabilizing effects [84].

The results of this study suggest that LU3 is a promising candidate for use as a
biomaterial in both the food and pharmaceutical industries. Its high galacturonic acid
(GalA) content (>68%) contributes to a stable and uniform charge distribution along the
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pectin chain, enhancing its hydrophilic properties. Simultaneously, the low degree of
methylation (DM) and minimal polyphenol content result in only a few hydrophobic
regions. Moreover, the well-characterized structure of LU3 with pH-dependent charge
behavior allows for predictable chemical and physical interactions with various materials.
Therefore, further studies will focus on evaluating LU3 for its repulsive or attractive
interactions with other biopolymers, ability to form ionic complexes, water retention and
wetting properties, as well as rheological properties such as gelation capacity and viscosity
modification, plasticizing effect, barrier properties, and ability to modify the release profile
of different formulations.

4. Conclusions
In this study, linseed cake polysaccharides were obtained with a focus on sustainable

development. Extractions were performed using NADES solutions based on choline
chloride and citric acid in various molar ratios. Particular attention was paid to obtaining
a pectin-rich macromolecular product while adhering to the principles of sustainable
development. Among the tested samples, the LU3 product was the most promising,
showing the highest uronic acid content and the greatest proportion of uronic acids within
the saccharide fraction. The NADES with a choline chloride/citric acid (ChCl/CA) molar
ratio of 1:1 resulted in the highest pectin recovery and the lowest contamination, yielding
a high-purity product. The high conductivity of this extraction medium correlated with
its superior extraction efficiency. The most promising LU3 product underwent several
spectrometric (UV-Vis, FT-IR) and chromatographic (GPC, LH-20, GC-MS) analyses.

Additionally, the morphology of this product was characterized by scanning electron
microscopy (SEM) with energy-dispersive spectroscopy (EDS). The behavior of this product
under different pH and ionic strength conditions was assessed via zeta potential and viscos-
ity measurements, which indicated typical polyelectrolyte behavior, confirming its anionic
nature and potential to form stable colloidal systems. Owing to its well-characterized
chemical properties, LU3 can be utilized as a novel material alongside commonly used
polysaccharides such as cellulose, sodium alginate, or chitosan, as well as their chemically
modified derivatives. It can serve as a plasticizer, humectant, or building block for local
or systemic drug delivery systems, and can also be used in environmentally friendly food
packaging to extend shelf life.

Based on these findings, it can be concluded that NADES-assisted extraction appears
to be a promising technology for recovering valuable biopolymers from oil industry by-
products, aligning with current trends in the circular economy and sustainable development.
Carefully selected NADES extraction conditions yield pectin suitable for specific applica-
tions, including emulsion stabilization, drug delivery, tissue engineering, and functional
food development.

Future studies will focus on isolating pure pectic fractions for detailed chemical
analysis. For the fraction exhibiting the most promising characteristics, a structural proposal
will be developed based on GC-MS analysis to determine monosaccharide composition,
and NMR spectroscopy will provide insights into the linkages between saccharide subunits.
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