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Simple Summary

Multiple myeloma is a cancer of plasma cells in the bone marrow. It often develops
gradually, starting from a harmless stage called monoclonal gammopathy of undetermined
significance, then a higher-risk stage called smoldering multiple myeloma, and finally
symptomatic disease. New medicines usually take many years to develop, so finding
new uses for existing medicines can bring treatments to patients faster. Our goal was to
discover medicines that could help at each stage of this disease. We analysed public studies
across these three stages and used an approach to match disease patterns with medicines
that might reverse them. We identified 25 candidates for monoclonal gammopathy of
undetermined significance, 23 for smoldering multiple myeloma, and 66 for multiple
myeloma. We also examined the biological pathways these medicines affect and suggested
combinations with current treatments. These results provide a stage-specific resource
to guide laboratory testing and clinical exploration, with the aim of improving earlier
intervention and outcomes for people at risk of, or living with, multiple myeloma.

Abstract

Background/Objectives: Multiple myeloma (MM) is a challenging, B cell malignancy
characterised by the uncontrolled proliferation of plasma cells within the bone marrow.
Despite significant advances in treatment options nowadays, MM remains an incurable
malignancy, with the majority of patients succumbing to the disease. MM develops from a
pre-malignant state known as monoclonal gammopathy of unknown significance (MGUS),
which then has the potential to evolve either into smouldering (asymptomatic) multiple
myeloma (SMM) or into MM. Since novel drug discovery takes years to reach the clinic,
drug repurposing, which concerns the detection of existing drugs for a novel disease, can
be applied. Methods: To address this critical and still unmet medical need, we present a
comprehensive signature-based drug-repurposing approach using all the publicly available
bulk transcriptomics datasets on mGUS, sMM, and MM. Results: Our study included an
in-house scoring scheme approach enabling further filtering and prioritisation, resulting
in 25 candidate repurposed drugs for mGUS, 23 for sMM, and 66 for MM. The corre-
sponding gene targets and the related functional terms have been analysed, providing
extra information for stage-specific underlying mechanisms in myeloma. Lastly, enabled
by a specific computational workflow, we propose drug combinations between our top
candidate repurposed drugs and FDA-approved drugs for MM. Conclusions: Together,
these results deliver a stage-specific, transparent resource for MM drug repurposing and
combination design, intended to accelerate translation toward earlier disease intervention
and improved patient outcomes.
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1. Introduction

Multiple myeloma, the second-most common haematological malignancy after non-
Hodgkin lymphoma, originates from terminally differentiated plasma cells primarily found in
the bone marrow. The disease is characterised by the secretion of a monoclonal immunoglobulin
protein (M protein) in most patients, driving clinical manifestations such as hypercalcemia, renal
insufficiency, anaemia, and bone disease [1]. Monoclonal gammopathy of undetermined signifi-
cance (MGUS) represents an asymptomatic precursor to multiple myeloma, involving clonal
plasma cells and M protein secretion. Approximately 15% of MGUS cases progress to multiple
myeloma over 25 years, and early detection has shown positive effects on overall survival [2].
Smouldering multiple myeloma (sMM) serves as an intermediate stage between MGUS and
MM, with recent updates considering ultra-high-risk sMM as part of multiple myeloma and
suggesting that early treatment for high-risk sMM may delay progression to full-blown MM [3].
More specifically, MGUS is an asymptomatic clonal plasma cell disorder (M protein <3 g/dL;
marrow plasma cells < 10%; no common symptoms of MM). Progression to MM averages
~1%/year but varies with isotype, M protein level, and free light chain ratio [4]. SMM shows
higher tumour burden (>10% marrow plasma cells and/or higher M protein) without end
organ damage; risk stratification identifies subsets for early intervention [5]. Symptomatic MM
is defined by clonal plasma cells (>10%) plus myeloma-defining events, reflecting genomic
lesions and microenvironmental cues driving proliferation, immune evasion, and bone dis-
ease [6]. Established diagnostic and prognostic biomarkers in MM include detecting M protein,
free immunoglobulin light chain, 32-microglobulin and albumin, creatinine and calcium, and
FISH analysis for cytogenetic abnormalities. These biomarkers are used in the disease’s staging
system. Additionally, imaging is also used to detect the degree of bone marrow infiltration.
Emerging diagnostic biomarkers include next-generation sequencing and next-generation flow
cytometry, extracellular vesicles, miRNAs, and circulating tumour cells [7].

Current management includes regular monitoring for MGUS and low-risk sMM, which
avoids drug toxicity but carries a small ongoing risk of progression [4]. In selected high-risk
sMM, early treatment (e.g., daratumumab- or lenalidomide-based) can delay progression
and improve outcomes, but increases infection risk and cost, and patient-selection criteria
are still evolving [8]. In symptomatic MM, proteasome inhibitors (bortezomib, carfilzomib,
ixazomib) yield high response rates, but neuropathy with bortezomib and cardiopul-
monary events with carfilzomib remain key limitations, alongside eventual resistance [9].
Immunomodulatory drugs (IMiDs; lenalidomide, pomalidomide) provide durable benefit
and underpin maintenance therapy yet cause cytopenia and venous thromboembolism [10].
Anti-CD38 monoclonal antibodies (daratumumab, isatuximab) achieve rapid cytoreduction
and synergise with proteasome inhibitor and IMiD-based backbones, but are associated
with infusion-related reactions, infections, hypogammaglobulinemia, and higher treatment
cost [11]. BCMA-directed therapies—including CAR-T cells, bispecific antibodies, and
antibody-drug conjugates—can induce deep remissions in relapsed/refractory MM, yet
are limited by cytokine-release syndrome, immune-effector cell-associated neurotoxicity,
infections with prolonged hypogammaglobulinemia, manufacturing/access constraints,
and relapse driven by antigen escape [11].

Early standard treatment for MM included alkylating agents such as melphalan and/or
cyclophosphamide, combined with corticosteroids in most cases. This treatment was fol-
lowed by autologous stem cell transplantation, a standard treatment option still used today.
Compounds such as thalidomide, lenalidomide, and pomalidomide also became available
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soon afterward. During the last two decades, the therapeutic pool of MM expanded even
further, with the discovery of proteasome inhibitors (bortezomib), histone deacetylase in-
hibitors (panobinostat), and more recently, nuclear export inhibitors (selinexor). In addition,
approval of immunotherapies for MM in 2015 starting with daratumumab and elotuzumab
monoclonal antibodies and later on with the antibody—drug conjugate belantamab mafodotin,
the bispecific teclistamab, and chimeric antibody receptor (CAR)-T cell products, such as ide-
cabtagene and vicleucel, are standard treatment options nowadays. Despite the outstanding
discoveries and improvements that were made regarding the treatment for MM, almost all
patients become refractory to treatment and relapse. Because of that, there is a high need to
detect or develop drugs for the treatment of relapsed and/or refractory MM or for halting
the progression to MM [12]. One such approach is drug repurposing. Drug repurposing
concerns the detection of novel indications for drugs that are already approved for another
disease. Specifically, in silico drug repurposing offers the ability to detect potential drugs
using computational methodologies in a cost and time-efficient way.

Motivated by the lack of a cure for MM or drugs that could halt the progression to
MM, we focused on applying the avenue of computational drug-repurposing to highlight
promising drug candidates and to study the underlying mechanisms of the drugs and
pathways related to the disease and the stages that precede the disease. Since each MM
stage (MGUS, sMM, and MM) is characterised by different symptoms and molecular
mechanisms, we stratified the patient samples based on the different stages to pinpoint
stage-specific candidate repurposed drugs.

Here, we present a novel approach to use the transcriptomic signatures of the molecu-
lar basis of the different stages of MM to detect candidate repurposed drugs per severity
stage. Initially, we performed drug-repurposing analysis for different MM stages using
publicly available transcriptomic data. Moreover, we show the pathways that our proposed
repurposed drugs are involved in and their structural similarities with current clinical trial
drugs of MM.

2. Objectives

e To analyse publicly available transcriptomic datasets across the full spectrum of multi-
ple myeloma (MGUS, sMM, and MM) to identify stage-specific differentially expressed
genes (DEGs) and perform pathway enrichment analysis.

e To apply a computational drug-repurposing pipeline aimed at identifying candidate
therapeutic compounds for each disease stage and uncovering shared and distinct
candidate drugs across the MM progression.

e To investigate the molecular targets and associated pathways of the repurposed
drug candidates, offering insight into the biological complexity and heterogeneity of
myeloma at each stage.

e  Topropose rational drug combination strategies, integrating FDA-approved treatments
for MM with newly identified repurposed candidates.

3. Materials and Methods

On 2 September 2024, we collected all the available bulk transcriptomic data of the
3 stages of MM progression: MGUS, SMM, and MM. We performed DE analysis per dataset
and MM stage, using the Limma R package (version 3.64.0). Enrichment analysis of the DE
genes and in silico drug repurposing using 3 different drug-repurposing tools then followed.
After collecting the candidate repurposed drugs, we used an already established in-house
scoring scheme to further filter the drugs. A structural comparison of the highlighted
proposed drugs with the drugs that are currently in clinical trials was then followed. The
targets of the proposed candidate repurposed drugs were found and enrichment analysis
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of those targets was then performed. Lastly, suggestions of candidate drug combinations
of the MM FDA-approved drugs with our proposed candidate repurposed drugs were

followed. The detailed pipeline is shown in Figure 1.
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Figure 1. General pipeline of the study. Step 1: Transcriptomics data collection from Gene expression
omnibus (GEO). Step 2: Pre-processing of data and detection of differentially expressed genes in R
using the limma R package. Step 3: Transcriptomics-based drug repurposing—3 different tools were
used: Connectivity Map (CMap) CLUE, L1000CDS?, and SigComLINCS. The top 150 over-expressed
and 150 under-expressed genes based on log,FC from the gene list with an adjusted p value of <0.05
were used as an input. Gene ontology enrichment analysis of the differentially expressed genes and
drug targets was followed. Kept the top pathways per dataset to keep a unique list for each stage
using an in-house scoring scheme. Step 4: Collection of clinical trials drugs and structural similarity
was performed for candidate repurposed drugs and drugs in clinical trials. Step 5: Proposal of drug
combinations through 4 different models, using the FDA-approved drugs for MM and our proposed

candidate repurposed drugs.

3.1. Data

Six different microarray MM datasets were retrieved from the Gene expression om-
nibus (GEO) [13]—a transcriptional data repository. Some of the datasets did not include
all disease stages. The selection of the datasets was based on the disease staging: MGUS,
sMM, and MM (Table 1). To our knowledge, these were the only publicly available datasets
on the 2 September 2024 that clearly used this progression staging for the disease.

Table 1. The experimental design of the transcriptomic datasets used in this study. All stages were

compared to controls.

No Ref. GEO Accession Number Stage

1 [14] GSE36474 MM
MGUS

2 [15] GSE5900 MM
MGUS

3 [16] GSE6477 sMM

MM
MGUS

4 [17] GSE13591 MM
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Table 1. Cont.

No Ref. GEO Accession Number Stage
MGUS
5 [18] GSE47552 sMM
MM
MGUS
6 [19] GSE80608 MM

3.2. Pre-Processing of Data

Each dataset selected was quantile-normalised and log-transformed where necessary.
Subsequent analysis was performed in R statistical environment (http:/ /www.R-project.
org/, accessed 12 September 2024) [20]. Each of the six datasets and for each stage was
processed using the Limma R package [21], a linear model that calculates a moderated
t-statistic from gene expression experiments.

3.3. Detection of Differentially Expressed Genes

After the dataset pre-processing, probe-set IDs were matched to gene symbols accord-
ing to each platform’s annotation file. We maintained the most differentially expressed
ones in cases of gene symbol correspondence to multiple probe-sets (Tables S1-56). Ex-
plicitly stage-labelled cohorts across the MGUS — sMM — MM spectrum are rare and
span different microarray platforms with unequal stage composition. Thus, we adopted a
conservative strategy: within-study normalisation and limma DE, followed by rank-level
aggregation across studies per stage.

From the Limma analysis result, we kept the top 150 over-expressed and 150 under-
expressed genes based on log,FC from the gene list with an adjusted p value of <0.05. All
comparisons were made using the disease state (i.e., MGUS, sMM, or MM) vs. control samples.
The selected number of genes (150 over-expressed and 150 under-expressed) corresponds to
the input number limit of the drug-repurposing tools we used in the sequel. Many widely
used signature-reversal tools perform best with balanced up/down lists of limited size. Using
a fixed symmetric cutoff ensures comparability across tools and stages and focuses on the
high-confidence perturbation while avoiding noise from long tails where directionality is least
stable across datasets. To keep the study tractable and avoid tool-specific optimisation (which
risks overfitting), we retained 150/150 as a pre-specified setting.

3.4. Pathway Analysis of DEGs

The Gene ontology (GO) enrichment analysis was conducted using the differentially
expressed genes (DEGs) identified in the transcriptomics study. The focus was on biological
processes (BPs), and the clusterProfiler R package (accessed on 18 April 2025) [22] was
employed for the analysis. This procedure was applied individually to each stage and
dataset, and a scoring method was used to combine the results, leading to a single list of
pathways for each stage of the disease (Tables S7-59).

To rank the pathways for each stage and dataset, leading to a unified list per stage, we
ranked the pathways within each dataset according to their adjusted p values. Hence, the
pathways from each dataset for each stage were combined as a union of unique pathways
and ranked by calculating the weighted sum of normalised average rankings and the
normalised number of appearances according to Equation (1):

Score; = w1 * R; + wp x A;, 1 =1, ..., N pathways (1)
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where R; is the average ranking score from each of the three tools, A; is the number of
appearances of each pathway for the different datasets per stage, and w; and w, are set to
0.7 and 0.3, respectively. This scoring scheme was adapted from [23].

3.5. Transcriptomics-Based Drug Repurposing

The transcriptomic-based drug repurposing was performed using three different
drug-repurposing tools: Connectivity Map (CMap) CLUE [24], L1000CDS? [25], and Sig-
ComLINCS [26]. The 300 differentially expressed genes (based on their log, FC value)
from the six different datasets were used as transcriptomic signatures. Next, each set was
used as an input to the aforementioned repurposing tools. These tools use transcriptional
expression data from multiple human cell lines to probe relationships between diseases
and therapeutic agents. Drugs are sorted according to a score (inhibition score), which
characterises if a drug can reverse (drugs with a strong negative score value) or mimic
(drugs with a strong positive score value) the expression levels of a disease based on a given
set of genes. For each stage and each dataset, we obtained a list of candidate repurposed
drugs predicted by each of the three tools, ranked based on their inhibition score. Since the
output of L1000CDS? is limited to 50 drugs, we applied the same cutoff for all the other
repurposed drug lists. Hence, the top 50 drugs from each of the three tools were combined
as a union of unique drugs and ranked by calculating the weighted sum of normalised
average rankings and the normalised number of appearances according to Equation (2):

Score; = wy * R; + wy x A;, i =1,..., Ndrugs (2)

where R; is the average ranking score from each of the three tools, A; is the number of
appearances of each drug in the three DR tools, and wj and w; are set to 0.7 and 0.3,
respectively. The drug lists obtained from all datasets were combined and re-ranked using
Equation (1) to conclude a single drug list from all the datasets. This scoring scheme was
adapted from [23].

After the scoring was completed, we retained drugs with a score of 0.75 or higher for
each disease stage.

3.6. Collection of the Currently Running Clinical Trials of MM and Its Stages

All listed clinical studies related to the three stages were collected from www.
clinicaltrials.gov, accessed on 5 January 2025. The downloaded file was filtered sepa-
rately for MGUS, sMM, and MM and entries that did not match these terms were removed.
Additionally, clinical trials that were either suspended, withdrawn, unknown, or termi-
nated were removed in order to keep the entries that are active, completed, or will be
recruiting soon. Specifically, only small-molecule drugs and biologicals were obtained from
the studies, and everything else was removed.

3.7. Structural Similarity

The structures of the candidate repurposed drugs and the clinical trial drugs we
collected were downloaded in the form of the Simplified Molecular Input Line Entry
Systems (SMILES) through the PubChem Identifier Exchange Service of the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi, accessed on
21 March 2025) [27]. We then converted the SMILES format into a single 2D structure
data file (SDF) using the OpenBabel software [28]. The Rcpi R package (accessed on
27 March 2025) [29] was then used to perform structural similarity across the different
drug groups collected, using an in-house script. We used an 80% Tanimoto similarity as
a threshold. Additionally, we used a merged SDF of the shortlisted repurposed drugs
of the three stages (MGUS, sMM, and MM) as input in the ChemBioServer 2.0 (https:
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/ /chembioserver.vi-seem.eu/, accessed on 30 March 2025) [30], a publicly available tool
that provides filtering, clustering, comparison of drug structures, and networking of
chemical compounds to facilitate both drug discovery and repurposing. Drugs were
clustered using the Soergel distance < 0.15 corresponding to a Tanimoto similarity 87%
(Tanimoto similarity = 1/(1 + Soergel distance)) [31].

3.8. Drug Target Pathway Analysis

To further explore the candidate repurposed drugs, we extracted the corresponding
gene targets of each drug through mainly the Drug repurposing hub database (https:
/ /repo-hub.broadinstitute.org/repurposing, accessed on 30 March 2025) [32] per stage.
In cases where no target was found, DrugBank (https://go.drugbank.com/, accessed on
30 March 2025) and PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 30 March
2025) were also used. (Tables S13-515). The Gene ontology (GO) enrichment analysis was
conducted using the drug target genes of the top candidate repurposed drugs, as chosen
using the scoring scheme mentioned above. The focus was on biological processes (BPs),
and the clusterProfiler R package was employed for the analysis. This procedure was
applied individually to each stage, and the top pathways were kept using an adjusted
p value of <0.05.

3.9. Drug Combination Synergies

The DrugComb database [33] was used to extract and analyse experimental drug
combination data across multiple cancer cell lines. DrugComb (https://drugcomb.fimm.fi,
accessed on 30 March 2025) is an open access data portal containing drug combination
studies, which are standardised and harmonised. In total, 437,932 drug combinations were
tested on a variety of cancer cell lines. The data were downloaded and filtered to include
only MM-related cell lines and FDA-approved drugs for MM. The analysis was performed
in R. Four synergy models were used:

e  ZIP (Zero Interaction Potency): Measures interactions across different doses [34].

e  Loewe Additivity: Compares observed combination effects to the expected additive effects.

e HSA (Highest Single Agent): Evaluates whether the combination is superior to the
best-performing single agent.

e Bliss Independence: Assesses interactions based on independent probabilities of
drug effects.

We used four complementary reference models. HSA benchmarks against the best
single agent (conservative). Bliss assumes probabilistic independence. Loewe assumes
dose equivalence (appropriate for similar mechanism pairs) and is typically most stringent
when mechanisms diverge. ZIP integrates potency and effect shifts across the response
surface. Therefore, model divergence, especially lower Loewe synergy for mechanistically
distinct pairs, is expected and informative.

4. Results

The pipeline adopted in this study and the main steps are illustrated in Figure 1. The
overall process entails the analysis of stage-specific MM-related transcriptomics datasets to
identify significant genes, with the subsequent identification and shortlisting of candidate
repurposed drugs and the pathways they target.

4.1. Differential Expression Analysis

The first part of this study included the collection and analysis of publicly available transcrip-
tomics datasets of MGUS, sMM, and MM patients and controls. Following the pre-processing
of these datasets, we performed differential analysis to identify differentially expressed genes
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(DEGs) between patients in each stage vs. controls. We used a cutoff of adjusted p values < 0.05
and then sorted the differentially expressed genes based on their log, fold-change (log,FC) value.
All differential expression analysis comparisons are presented in Tables S1-S6. The top five
differentially expressed genes for each comparison are listed in Table 2.

Table 2. The top 5 differentially expressed genes for each comparison.

MGUS sMM MM
MAB21L1
XG
GSE36474 EMX2
HOXB-AS3
FAM3A
KIT KIT
IGLC1 CYAT1
GSE5900 PRR15 LOC100293211
C70rf55 IGHV3-73
LOC100293211 C70rf55
CLC IGHD IGHD
PRG2 IGLJ3 IGLJ3
GSE6477 LOC100293211 LOC100293211 LOC100293211
RNASE2 CKAP2 CKAP2
PRG3 IGHA1 IGHA1
IGLV1-44 IGHD
IGLC1 LOC100293211
GSE13591 LOC100293211 AbParts
IGK IGLV1-44
CKAP2 IGHM
IGKV2D-40 IGKV2D-40 IGKV2D-40
SNORD115-1 IGKV2D-26 IGKV2D-26
GSE47552 SNORD115-6 IGKV1D-27 IGKV1OR2-3
GPR15 IGHV10R15-1 IGKVe6-21
SNORD115-44 IGKV1OR2-3 IGKV1D-27
SFRP2 FLG
H19 H19
GSE80608 SLC14A1 SLC14A1
F2R F2R
SCIN SCIN

4.2. Pathway Analysis of Differentially Expressed Genes

GO enrichment analysis was performed to detect the statistically significant pathways
involving the DEGs from the different datasets per stage. In the MGUS stage, several biological
processes (BPs) related to the immune response were significantly detected (Table S7). The
highest scores were associated with processes like the adaptive immune response, particularly
those involving immune receptor recombination- and leukocyte-mediated immunity. This
indicates heightened immune activity at this early stage, where processes such as regulation of
leukocyte and lymphocyte proliferation, cell chemotaxis, and immune responses to hydrogen
peroxide are prominent. Notably, positive regulation of cytokine production, reactive oxygen
species (ROS) metabolic process, and cell—cell adhesion suggest an active environment where
immune cells are mobilised and interact to control abnormal cell growth.

In the sMM stage, immune system regulation intensifies, as seen in the overrepre-
sentation of GO terms related to mononuclear and lymphocyte proliferation, positive
regulation of cell activation, and T cell differentiation (Table S8). Nearly all immune-related
pathways show high scores (0.99), indicating robust immune modulation. Key processes
such as immune response-activating cell surface receptor signalling and antigen receptor-
mediated signalling pathways are highly active, suggesting a pre-cancerous state where
immune surveillance attempts to combat disease progression. Additionally, terms involv-
ing positive regulation of leukocyte and lymphocyte adhesion imply strong immune cell
communication and activation during this transitional phase.
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In the MM stage, there is still emphasis in immune-related processes, with some unique
changes (Table S9). The B cell receptor signalling pathway and B cell activation become more
prominent, suggesting the involvement of B cells in the disease’s progression. Additionally,
cytokine production, particularly interleukin-6 (IL-6), and processes related to leukocyte migra-
tion and myeloid leukocyte cytokine production highlight the advanced immune dysregulation.
These factors are likely contributing to the chronic inflammatory environment.

Across the three stages (MGUS, sMM, and MM)), there is a clear progression in immune
response activities. In the MGUS stage, the immune system is highly active with processes
focused on immune cell proliferation and activation. As the disease progresses to the sMM
stage, the immune system continues to play a central role, with heightened regulation of
lymphocyte activation and immune signalling pathways. By the MM stage, however, there
is a shift towards immune dysfunction, with an emphasis on B cell activation and cytokine
production, particularly IL-6, a known contributor to MM progression. This progression
reflects how the immune system, initially attempting to control the abnormal cells, becomes
increasingly compromised, allowing for tumour growth and proliferation in later stages.
Full lists of pathways for each stage are presented in Tables S7-S9.

4.3. Identification of the Shortlisted Candidate Repurposed Drugs for MM and Its Stages

To perform in silico drug-repurposing analysis, we selected the top 150 over- and
150 under-expressed genes as they are required for most repurposing tools. Using the
DEG sets, we performed a series of in silico drug-repurposing analyses with existing
computational tools (see Methods); Connectivity Map (CLUE), L1000CDS?, and SigCom
LINCS, leading to three lists of candidate repurposed drugs, for each stage and dataset,
followed by a scoring process yielding to three lists of proposed repurposed drugs for
each stage (MGUS, sMM, and MM). The top repurposed drugs selected are shown in
Figure 2. Our in silico drug-repurposing analysis identified several candidate drugs with
the potential for repurposing in MM. These drugs were evaluated based on their clinical
trial status, preclinical evidence, mechanisms of action, and gene targets (Table 516). While
some drugs have been previously investigated in MM, others have only been tested in other
cancer types. Key mechanisms of action included cyclin-dependent kinase (CDK) inhibition,
histone deacetylase (HDAC) inhibition, and selective estrogen receptor modulation.

(B) ©

Figure 2. Top-scored candidate repurposed drugs for each disease state (MGUS, sMM, and MM)
according to our scoring scheme [23]. (A). MGUS, (B). sMM, and (C). MM. Bortezomib, which is
detected in the sMM stage, is an already FDA drug for MM.

For MGUES, the top candidate repurposed drugs proposed regarding the in-house
scoring scheme used were geldanamycin, roscovitine, PP-30, mitomycin C, and collybolide.
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For sMM,, the top candidate repurposed drugs proposed regarding the scoring scheme used
were olprinone, lamotrigine, diprotin A, collybolide, and 112726-66-6 (BTCP). For MM, the
top candidate repurposed drugs proposed regarding the scoring scheme used in this study
were radicicol, piperlongumine, entinostat, vecuronium, and terreic acid (Tables 510-512).

4.4. Investigation of Structural Similarity Concerning Ongoing Clinical Trials

The shortlisted candidate repurposed drugs were screened for structural similarity with
the MGUS-, sMM-, and MM-related drugs in clinical trials, and FDA-approved drugs of MM.
Pairwise structural similarity was calculated using a Tanimoto score threshold of 80%. As
shown in Figure 3, heatmaps for each disease state suggest that the majority of all examined
drugs are not very similar, indicating a lack of redundancy and a wide range of structural
diversity in both our shortlist and clinical trials. However, some similarities are present, partic-
ularly for MM. For instance, ten candidate repurposed drugs are also used in ongoing clinical
trials, therefore showing a Tanimoto similarity of 100%. Additionally, the candidate repurposed
drug exemestane, was found to have a similarity score of 82% against dehydroepiandrosterone,
a clinical trial drug. The repurposed drug fluocinolone acetonide was also found to have a
similarity score of 82% against the clinical trial drug dexamethasone. Lastly, the repurposed
drug ivermectin bla showed an 81% similarity with the clinical trial drug bryostatin 1.

Additionally, the shortlisted candidate repurposed drugs were screened for structural similar-
ity among the three stages: MGUS, sMM, and MM. Pairwise structural similarity was calculated
using a Tanimoto score threshold of 87%. As shown in Figure 4, again in this comparison, the hier-
archical clustering suggests that all drugs are not very similar, indicating a lack of redundancy and
a wide range of structural diversity in our shortlisted candidate repurposed drugs. Ten of these
drugs were detected in two disease stages as shown by the asterisk. These drugs include terreic
acid, calyculin A, radicicol, sofalcone, piperlongumine, vorinostat, 849234-64-6 (4-acetamido-N-(2-
amino-5-thiophen-2-ylphenyl)benzamide), bortezomib, elesclomol, and linifanib.

To further explore the candidate repurposed drugs, we extracted the corresponding
gene targets of each drug through mainly the Drug repurposing hub database, and in cases
where no target was found, DrugBank and PubChem were also used (Tables 513-515).

We then performed Gene ontology (GO) analysis (biological processes) per disease
stage, using the gene targets of the candidate drugs through the ClusterProfiler R package.
Additionally, hierarchical clustering of the enriched terms was performed again using the
ClusterProfiler R package. This relies on the pairwise similarities of the enriched terms
calculated by the use of Jaccard’s similarity index (JC) (Supplementary Figures S1 and S2).

To further elucidate the functional differences and commonalities between the three
disease stages, we generated an enrichment map plot using the ClusterProfiler R package,
organising enriched terms into a network with edges connecting overlapping gene sets. In
this way, mutually overlapping gene sets tend to cluster together, making it easy to identify
functional modules. These gene targets of the proposed candidate repurposed drugs from
our analysis, provide valuable insights into the fundamental transcriptional characteristics
underlying the functional properties of MGUS, sMM, and MM.

This analysis highlights BPs involved in “cell signalling pathways”, such as vascular
endothelial growth factor signalling pathway, brain-derived neurotrophic factor receptor
signalling pathway, response to insulin and others (Figure 5, yellow cluster). Moreover, the
purple cluster is involved in cellular response to insulin stimulus, cellular response to peptide
hormone stimulus, response to macrophage colony-stimulating factor, and others. Notably, the
yellow and purple clusters overlapped spatially, indicating that these functionally coherent
groups share biologically related terms. Additionally, BPs involved in membrane and action
potentials and potassium ion transport were also highlighted (Figure 5, red cluster). GO
terms associated with this cluster were highly enriched in all disease stages, and particularly
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Structural similarity of Repurposed drugs vs Clinical trials - mGUS

in MGUS and sMM. Another important cluster generated by this analysis highlights BPs
involved in epigenetic regulation of gene expression and protein modification (Figure 5, green
cluster). Additionally, GO terms associated with this cluster were highly enriched in all disease
stages. Moreover, a cluster highlighting Circadian rhythms, protein localisation, mitochondrial
function, and others, has also been generated through this analysis. Most BPs of this cluster
have been highlighted in MM (blue cluster, Figure 5). The blue-green cluster is focused on
hormone-related signalling pathways, with the GO terms associated with this cluster being
enriched in all disease stages. Lastly, a small cluster associated with response to oxidative stress
has also been highlighted (yellow cluster, Figure 5).
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Figure 3. Structural similarity heatmaps of shortlisted repurposed drugs along with the ongoing drugs in
clinical trials for (A) MGUS, (B) sMM, and (C) MM. For MM, the maximum similarity between a repurposed
drug and a clinical trial drug was kept, since too many drugs were available for this stage. X-axis shows the
candidate repurposed drugs. Y-axis shows the drugs in clinical trials for each disease state.
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Figure 4. Hierarchical clustering of the shortlisted candidate repurposed drugs for MGUS, sMM,
and MM. The different groups in each box are thresholded at Soergel distance value 0.15. Candidate
repurposed drugs that are detected in two disease stages are marked with an asterisk (*¥).
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Figure 5. Biological theme comparison of MGUS, sMM, and MM. The enrichment map shows the
top enriched terms in MGUS, sMM, and MM, organised into a network with edges connecting
overlapping gene sets. Coloured-based clustering was performed using the emapplot function, which
reflects functional similarity among enriched terms.

4.5. Drug Combination Synergies

The drug combination data were extracted through the DrugComb database (see
Methods). In this work, we kept four synergy models: ZIP (Zero Interaction Potency),
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Loewe Additivity, HSA, and Bliss Independence. Drug combinations are considered
synergistic if they exceed specific thresholds: moderate synergy (>+5) and strong synergy
(>+10) (Supplementary Figure S3).

4.6. Top Drug Combinations Identified

To find the top synergies regarding our disease of interest, MM, a systematic analysis
of MM’s FDA-approved drugs was carried out to detect synergies in general and, more
specifically, synergies with our proposed candidate repurposed drugs. When looking
for drug combinations common across all synergy models, 17 drug combinations were
detected (Supplementary Figures S4 and S5), from which, however, none include any of
our proposed candidate repurposed drugs. Therefore, we stick to the drug combinations
for each synergy model separately, which are then combined in a final list.

A total of 181 drug combinations exhibited synergy across multiple, with some combi-
nations including drugs from our proposed candidate repurposed drug list. The strongest
synergies observed per model are shown in Figure 6, in a subset of 20 top-ranking combina-
tions. Notably, an analogue of one of the proposed candidate repurposed drugs, erlotinib,
was also identified, further supporting its potential application in combination therapy. Top
drug combinations of FDA drugs along with our proposed candidate repurposed drugs in-
clude lenalidomide + retinoic acid (from the ZIP and Bliss models), erlotinib hydrochloride
+ bortezomib (from the ZIP model), and 23541-50-6 (daunorubicin HCL) + thalidomide
(from the HAS model). The total significant drug combinations can be found in Table 519.
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Figure 6. Summary of the top 20 drug combinations per model. The figure presents a comparative
analysis of synergy scores across different models, highlighting the most promising combinations
for MM treatment. (A) Synergy Zip Score model, (B) Synergy Loewe Score model, (C) Synergy HSA
Score model and (D) Synergy Bliss Score Model.
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The results suggest that several repurposed drugs could be explored further for their
potential in MM treatment. Additionally, the identification of highly synergistic drug
combinations underscores the importance of combination therapy approaches. Future
studies should focus on validating these findings in preclinical and clinical settings to
assess their therapeutic potential.

5. Discussion

The search for effective treatments for MM continues to be a substantial problem,
requiring ongoing investigation into new therapeutic approaches. Drug repurposing, the
process of using existing drugs for a novel disease, offers a promising approach due to
its cost- and time-effective nature. Drug repurposing is essential in the advancement of
innovative anti-cancer therapies. This study explores the capabilities of transcriptomic
signature-based drug repurposing using all the publicly available bulk transcriptomics
datasets on MGUS, sMM, and MM. We filter and prioritise candidate repurposed drugs to
be shortlisted for further analysis in the future. Our study included a scoring scheme from
a previous work of our group [23], resulting in 25 candidate repurposed drugs for MMGUS,
23 for sMM, and 66 for MM. From these, 18 candidate repurposed drugs for MGUS, 16 for
sMM, and 52 for MM had available structure information. These highlighted drugs have
generally been shown to be structurally distinct from each other, meaning that most of
the proposed drugs do not belong to the same structural subgroup. Additionally, Gene
ontology terms (biological processes) were detected using the DEGs of each dataset and
disease state. The same scoring scheme used for the candidate repurposed drugs was also
used here to select a single list of pathways for each disease state. Lastly, we detected the
gene targets of the proposed repurposed drugs along with the associated Gene ontology
terms (biological processes).

According to MeSH, when analysing the top 15 proposed candidate repurposed drugs
for each disease stage—MGUS, sMM, and MM—three drugs were characterised as antineo-
plastic for MGUS, including geldanamycin, mitomycin, and roscovitine. Additionally, for
sMM, two drugs were detected as antineoplastic: linifanib and vorinostat. Lastly, for MM,
five out of the fifteen top proposed candidate repurposed drugs were antineoplastic agents,
including radicicol, entinostat, salermide, temozolomide, and daunorubicin. Other drug cat-
egories among the top proposed candidate repurposed drugs include immunosuppressants
(e.g., cyclosporin A detected for sMM).

To synthesise the pathway-level signals, we summarise key therapeutic families im-
plicated by our stage-specific targets and drug candidates (Table 3). This table highlights
where candidates align with known mechanisms versus under-explored processes enriched
in earlier stages.

Table 3. Mechanistic families for shortlisted repurposing candidates across the MGUS, sMM, and

MM spectrum.
Pathway Family Representative Targets/Mechanisms Example Candidates from Our Shortlist Key References
HSP90AA1/HSP90AB1 chaperoning of . - . .
HSP90/proteostasis oncogenic clients; stabilisation of FOXM1; Geldapqmycm, Rad1‘c 1cql, Luminespib, [35-39]
. . Radicicol, and derivative KF55823
stress-survival under hypoxia/chemo
DNA damage response activation;
topoisomerase II inhibition; CDK2/7/9 ..
blockade; apoptosis with MCL1 Daunorubicin,
DNA damage—response effectors d ! o Seliciclib (Roscovitine), CGP-60474, and [40-45]
own-regulation; | IL-6 Mi K
.o . itomycin C
transcription/expression;
metabolised to an alkylating agent
1 ROS leading to mitochondria-dependent
Oxidative stress apoptosis; direct inhibition of Piperlongumine [46-48]

STATS3 (Cys712)
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Table 3. Cont.
Pathway Family Representative Targets/Mechanisms Example Candidates from Our Shortlist Key References
HDAC1/2/6 inhibition; epigenetic
Epigenetic modulation—HDAC inhibition reprogramming; synergy with Entinostat (MS-275/SNDX-275) [49], NCT00015925
proteasome inhibition
Muscle-type nAChR (CHRNS) blockade;
Neuromuscular nicotinic AChR antagonism preclinical anti-metastatic effects Vecuronium bromide [50,51]

with cisatracurium

BTK/B cell receptor signalling

BTK catalytic inhibition; impacts mast-cell

activation and B cell development Terreic acid (52,531

Many of the pathways detected using the gene targets of the proposed candidate re-
purposed drugs are involved in cancer. For instance, pathways detected in the “yellow and
purple cluster” (Figure 5), such as Kit signalling pathway and ephrin receptor signalling
pathway, are involved in cellular processes like proliferation, differentiation, controlling cell
growth, survival, and metabolism. Specifically, the former is a cellular signalling cascade
initiated by the binding of stem cell factor (SCF) to the KIT receptor, which is a tyrosine
kinase, that when activated leads to the activation of multiple signalling pathways. These
include MAPK, PI3K, and JAK/STAT, which regulate diverse cellular processes like cell
growth, survival, migration, and differentiation [54]. Additionally, the latter, the ephrin
receptor signalling pathway, is a key cell-to-cell communication system involved in various
cellular processes, such as cell migration [55]. In MM, various cytokines and cell adhesion
molecules are the key players in helping MM cells and the bone marrow microenviron-
ment to interact. This interaction promotes the activation of signalling pathways such as
PI3BK/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/ 3-catenin, and NF-kB. In the case of
MM, these pathways are aberrantly activated, and, therefore, uncontrolled proliferation,
survival, migration, and drug resistance of myeloma cells persist. Hence, these pathways
are great therapeutic targets [56]. Additionally, the vascular endothelial growth factor
pathway (VEGF), which was also detected in the aforementioned cluster, was shown to
be essential in MM cell migration to the bone marrow and peripheral blood, and also in
cancer metastasis [57,58].

Moreover, regarding the “red” cluster, ion channels are involved in several biological
processes, including proliferation, cell volume and shape, differentiation, migration, and
apoptosis, and have been recently associated with malignant transformation, tumour
progression, and drug resistance. Specifically, for MM, it has been shown that MM cells’
survival, proliferation, and drug resistance can be a result of ion channel deregulation. For
instance, in MM settings, changes in K* currents modify membrane potential and affect
intracellular pathways that regulate cell proliferation. Additionally, treatment with arsenic
trioxide, which reduces voltage-gated potassium currents and affects cell activity based
on dosage, slows the growth of MM cells by stopping them in the GO/G1 phase. Wu and
colleagues also showed that using berberine, a natural compound, on MM cells blocks
potassium currents and limits their growth [59]. Moreover, epigenetic regulation is another
key process, both in MM and in several cancer types. In MM, key epigenetic processes
like DNA methylation and histone acetylation are known to contribute to the disease’s
development. Recently, research has also introduced the term “epi-microRNAs,” which
refers to microRNAs that can influence these epigenetic processes by targeting specific
regulators such as DNA methyltransferases and histone deacetylases [60].

Steroid hormone signalling, another process detected through our candidate repur-
posed drugs, can directly stimulate the MEK/ERK/RSK pathway to regulate cellular
proliferation and survival in transformed cells [61]. Furthermore, response to oxidative
stress and ROS were also detected through our analysis. In most stages of MM, there
is an increase in free radicals and a disruption of the body’s antioxidant system, which
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causes the cancer cells to grow rapidly. However, in advanced stages accompanied with
other comorbidities, reducing oxidative stress can lead to further tumour growth. New
treatments for MM, like proteasome inhibitors, immunomodulatory drugs, epigenetic
drugs, and monoclonal antibodies, have helped improve survival and quality of life. These
treatments increase oxidative stress, leading to cancer cell death by triggering a process
known as the Unfolded Protein Response [62].

Interestingly, our analysis showed that the ROS metabolic process was detected only
in MGUS but not in sMM or MM. This suggests that MGUS cells may have an active system
to manage ROS levels, which could help them maintain stability and prevent damage. In
contrast, MM cells are known to experience high oxidative stress without activating the
relevant ROS degradation processes. The loss of ROS regulation in MM may contribute to
disease progression by allowing harmful oxidative damage to accumulate. This finding
highlights a potential shift in how cells handle oxidative stress as the disease advances,
which could be important for understanding why some MGUS cases progress to MM while
others remain stable. Further studies could help determine whether targeting redox balance
might be useful for preventing or slowing disease progression [62,63].

The detection of the ubiquitin-dependent protein catabolic process exclusively in
sMM and MM aligns with the current understanding of MM pathology. The ubiquitin—
proteasome system (UPS) is integral to cellular protein degradation, regulating processes
such as cell cycle progression, apoptosis, and differentiation. In MM, dysregulation of the
UPS contributes to uncontrolled cell proliferation and survival. Proteasome inhibitors like
bortezomib have been developed to target this pathway, inducing apoptosis in MM cells
by disrupting protein degradation mechanisms. The exclusive activation of the ubiquitin-
dependent protein catabolic process in sMM and MM, but not in MGUS, suggests a pivotal
role of UPS dysregulation in the progression and maintenance of malignant phenotypes
in MM [64,65].

There are different ways to measure drug synergy. Each method, however, has its
strengths and limitations. The four models used in this study—ZIP, Loewe, HSA, and
Bliss—evaluate synergy in different ways. First, Loewe Additivity is the strictest model
since it assumes that two drugs with similar effects should act additively. As a result, it
often gives lower synergy scores and may underestimate synergy. However, it is useful for
avoiding false positives, making it a good choice for verifying strong synergies. Second,
ZIP is a more balanced model. It considers dose-response relationships, meaning it detects
synergy that occurs across different concentration levels. It is less strict than Loewe but
still prevents extreme synergy overestimations. Additionally, HSA is more lenient since
it only compares the combination to the most effective single drug. If the combination
outperforms one of the two drugs, it is considered synergistic. This method tends to
find more synergy but may also produce some false positives. Lastly, Bliss Independence
assumes drugs work independently and measures synergy based on probabilities. It is the
most sensitive method, often detecting the highest synergy values, which can sometimes
lead to overestimated synergy scores.

Based on the results of this study, Loewe produced the most conservative scores,
while Bliss and HSA detected higher synergy values. ZIP provided a balanced approach.
Because Loewe detected many negative scores and outliers, it may not be the best choice for
selecting promising drug combinations. Instead, combinations that show strong synergy
across ZIP, HSA, and Bliss models may be more reliable. This approach helps reduce false
positives while still capturing meaningful interactions.

Future work should include integration of stage-aware transcriptomics with pro-
teomics, metabolomics, and/or single-cell/spatial data. Additionally, the most promising
stage-specific candidates should be tested experimentally: (i) assess single-agent activ-
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ity across a small MM cell-line panel and (ii) assess drug combinations using the FDA-
approved drugs as backbones along with our shortlisted candidate repurposed drugs.

6. Conclusions

We have identified a shortlist of candidate repurposed drugs inferred from analysis
of publicly available bulk RNA data, in a stage-specific manner. We derive the most
enriched pathways detected through our differentially expressed genes, and through
the gene targets of our top candidate repurposed drugs we detected the most enriched
pathways targeted by them. Lastly, we detect which are the structurally similar candidate
repurposed drugs to the current clinical trials for MM and its preceding stages. Lastly, we
propose drug combinations of the FDA-approved drugs of MM along with our proposed
repurposed drugs. While MM is a complex disease, we anticipate that our proposed
drug candidates, along with the drug combinations, offer valuable molecular insights and
highlight promising directions for future therapeutic development. Figure S5. Differences
in model behaviour. A. Boxplots of synergy scores across the four models, illustrating their
respective ranges, median values, and outliers. B. The heatmap displays synergy scores for
individual drug combinations across all four models. It shows the highest (red) to lowest
(blue) synergy scores observed across the n different models.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/cancers17183045/s1, Figure S1. GO enrichment analysis of
biological processes (BPs) of MMGUS sMM and MM. The transition in colour from red to blue
represents the adjusted p-value, while the size of the dot is proportional to the number of genes
enriched in that particular process or pathway. Figure S2. Heatmap of hierarchical clustering of
enriched terms for the three clusters (MGUS, sMM and MM). Circle sizes indicate gene number
per term. The enriched GO terms were further clustered in different colours. The subtrees are
labelled with high-frequency words. The clustering was generated using the ClusterProfiler R
package. Figure S3. Distribution of synergy scores across different drug combinations. These
histograms categorise combinations based on their synergy strength to illustrate the frequency of
highly synergistic interactions. Figure S4. Commonalities among the synergy models used in the
analysis. The figure highlights the overlap between models and the number of drug combinations
identified as synergistic by multiple models. Figure S5. Differences in model behaviour. A. Boxplots
of synergy scores across the four models, illustrating their respective ranges, median values, and
outliers. B. The heatmap displays synergy scores for individual drug combinations across all four
models. It shows the highest (red) to lowest (blue) synergy scores observed across the n different
models. Table S1: differential expression analysis of the GSE36474 dataset. Differentially expressed
genes were selected based on a log fold change (log2FC) threshold of < —1 and > 1, and an adjusted
p-value (adj. p) < 0.05. Table S2: differential expression analysis of the GSE5900 dataset. Differentially
expressed genes were selected based on a log fold change (log2FC) threshold of < —1 and > 1,
and an adjusted p-value (adj. p) < 0.05. Table S3: differential expression analysis of the GSE6477
dataset. Differentially expressed genes were selected based on a log fold change (log2FC) threshold
of < —1and > 1, and an adjusted p-value (adj. p) < 0.05. Table S4: differential expression analysis
of the GSE13591 dataset. Differentially expressed genes were selected based on a log fold change
(log2FC) threshold of < —1 and > 1, and an adjusted p-value (adj. p) < 0.05. Table S5: differential
expression analysis of the GSE47552 dataset. Differentially expressed genes were selected based
on a log fold change (log2FC) threshold of < —1 and > 1, and an adjusted p-value (adj. p) < 0.05.
Table S6: differential expression analysis of the GSE80608 dataset. Differentially expressed genes were
selected based on a log fold change (10g2FC) threshold of < —1 and > 1, and an adjusted p-value
(adj. p) < 0.05. Table S7: Merged pathway rankings according to our scoring scheme (see methods)
for MGUS. Table S8: Merged pathway rankings according to our scoring scheme (see methods) for
sMM. Table S9: Merged pathway rankings according to our scoring scheme (see methods) for MM.
Table S10: All candidate repurposed drugs proposed for mgus according to our scoring scheme for
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MGUS. Table S11: All candidate repurposed drugs proposed for mgus according to our scoring
scheme for Smm. Table S12: All candidate repurposed drugs proposed for mgus according to our
scoring scheme for MM. Table S13: Top candidate repurposed drugs proposed for MGUS along with
the drug targets. All drug targets were extracted from the Drug repurposing hub. Table S14: Top
candidate repurposed drugs proposed for sMM along with the drug targets. All drug targets were
extracted from the Drug repurposing hub. Table S15: Top candidate repurposed drugs proposed for
MM along with the drug targets. All drug targets were extracted from the Drug repurposing hub.
Table S16: Top proposed candidate repurposed drugs containing information on clinical trials and
pre-clinical studies, and also mechanisms of action of the drugs. Table S17: Detailed synergy scores
for each drug combination, before any threshold cut-offs. Table S18: All commonalities presented
in the Venn diagram across the different models. Table S19: Results from DrugComb database on
synergies of the FDA drugs. Highlighted in orange colour are the combinations that contain drugs
that were also detected from our proposed repurposed list. In green, a drug is highlighted for which
an analogue was identified among our proposed candidate repurposed drugs.
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