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Abstract

Motivation: While high-throughput sequencing technologies have dramatically accelerated genomic data generation, the
manual processes required for dataset annotation and metadata creation impede the efficient discovery and publication
of these resources across disparate public repositories. Large Language Models (LLMs) have the potential to streamline
dataset profiling and discovery. However, their current limitations in generalizing across specialized knowledge domains,
particularly in fields such as biomedical genomics, prevent them from fully realizing this potential. This paper presents
Pre-Meta, an LLM-agnostic and domain-independent data annotation pipeline with an enriched retrieval procedure that
leverages related priors–such as pre-generated metadata tags and ontologies–as auxiliary information to improve the
accuracy of automated metadata generation.
Results: Validated using five selected metadata fields sampled across 1500 papers, the Pre-Meta assisted annotation
experiment–without finetuning and prompt optimization–demonstrates a systemic improvement in the annotation task:
shown through a 23%, 72%, and 75% accuracy gain from conventional RAG adoptions of GPT-4o mini, Llama 8B, and
Mistral 7B respectively.
Availability: The code, data access, and scripts are available at: https://github.com/SINTEF-SE/LLMDap.

1 Introduction

The sharing of data in biomedical and genomic research

is essential for accelerating scientific discovery. The main

challenge lies in effectively discovering, sharing, integrating

and analyzing biomedical datasets in various isolated portals

and databases (Byrd et al. 2020). The Research Data

Repository Registry1, a comprehensive global registry, lists

more than 2,000 repositories across various disciplines, with

a significant portion dedicated to biomedical sciences. For

example, the National Center for Biotechnology Information

(NCBI)2 maintains several databases, including GenBank,

which, as of 2023, contains more than 2 billion sequences.

Similarly, NCBI’s Gene Expression Omnibus (GEO) archives

gene expression data from over 100,000 experiments. The

European Bioinformatics Institute (EBI) hosts ArrayExpress3,

1 https://www.re3data.org
2 https://www.ncbi.nlm.nih.gov
3 https://www.ebi.ac.uk/biostudies/arrayexpress

including data from more than 70,000 assays. Collectively, these

repositories house millions of datasets, each varying in size and

complexity.

Published datasets are accompanied by metadata that

provide descriptive information about the data. To enhance

data discovery, it is crucial to annotate datasets with

rich, high-quality metadata. However, fragmentation of

data repositories creates significant obstacles for both data

submission and discovery, which are crucial tasks in biomedical

research. In data discovery, searching across multiple

platforms is time-consuming and often results in incomplete

or inconsistent findings due to differences in data formats,

metadata descriptions, and access policies. In data submission,

researchers face difficulties navigating the diverse requirements

and formats imposed by different repositories when submitting

datasets, thus necessitating extensive reformatting and manual

curation, which increases the overall workload and risk of

errors.

Large Language Models (LLMs), an increasingly powerful

auto-regressive text generation technology based on the

1
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2 Tinn et al.

Transformer architecture (Vaswani et al. 2023), hold great

potential in facilitating the processing and standardization

of diverse metadata formats, thereby enhancing searchability

and interoperability across disparate repositories. Retrieval-

Augmented Generation (RAG) (Lewis et al. 2021) systems can

further support discovery by retrieving relevant information

from multiple sources and generating context-aware insights,

minimizing the need for manual searches (Yang et al.

2025). In data submission, LLMs can assist researchers

by automating metadata generation, ensuring adherence to

repository requirements, and streamlining data formatting,

ultimately reducing administrative burden.

Currently, several genomic data repositories are available,

such as ArrayExpress4, GEO5, and cBioPortal6. Each portal

has its own defined metadatasets, but there is no harmonization

across portals. For example, the metadata field of "study

type" in ArrayExpress maps directly to "experiment type"

in GEO, whereas cBioPortal uses fields such as "type of

cancer", "genetic alteration type" and "study description"

to define the characteristics of the dataset. Furthermore,

repositories such as ArrayExpress and GEO differ in their

metadata annotation schemas, with ArrayExpress employing

the MAGE-TAB format (Brazma et al. 2001) and GEO

utilizing the MINiML schema (Barrett et al. 2006), reflecting

different priorities in metadata structuring. This heterogeneity

means that data providers must use portal-specific metadata

formats and follow distinct submission procedures, while data

consumers must use different methods (e.g., APIs, filters, or

interfaces) that may return inconsistent or incomplete results

due to inadequate dataset annotation. As a result, researchers

often resort to searching the literature for dataset discovery

rather than relying on data portals, highlighting the urgent

need for more structured and harmonized metadata annotation.

A reliable approach to addressing these inconsistencies is

the use of biomedical ontologies, which provide structured

vocabularies for dataset annotation in a standardized way.

Ontologies such as the Ontology for Biomedical Investigations

(OBI)7 and the Experimental Factor Ontology (EFO)8 define

hierarchical relationships between biological concepts, enabling

better metadata annotation and semantic interoperability

across repositories. ArrayExpress, for instance, integrates EFO

to ensure metadata consistency, while GEO aligns with NCBI’s

ecosystem, incorporating structured metadata formats that

facilitate machine-readability. Ontologies are also foundational

in clinical and translational research, where resources such

as SNOMED CT and MeSH support standardization in

electronic health records (EHRs) and biomedical literature

indexing (Bodenreider, Cornet, and Vreeman 2018). Despite

their transformative potential, biomedical ontologies are often

underutilized in dataset annotation, limiting their impact on

improving metadata discoverability and usability.

Recent advances in LLMs have demonstrated their ability

to understand and generate structured and unstructured

biomedical data, offering potential solutions to metadata

fragmentation. However, LLMs are inherently biased due to

their reliance on training data, which can be incomplete,

imbalanced, or outdated (Thapa and Adhikari 2023). These

4 https://www.ebi.ac.uk/biostudies/arrayexpress
5 https://www.ncbi.nlm.nih.gov/geo
6 https://www.cbioportal.org
7 https://obi-ontology.org
8 https://www.ebi.ac.uk/efo/index.html

biases manifest as an over-representation of well-studied

diseases, datasets, and populations, while under-representing

rare conditions, minority groups, and non-English sources (Nazi

and Peng 2024). Furthermore, discrepancies in terminology,

ontologies, and regional clinical practices often lead LLMs to

propagate inconsistencies in metadata generation (Ayoub et al.

2024). This underscores the importance of integrating curated

biomedical ontologies and leveraging domain-specific priors to

improve the reliability of LLM-generated metadata annotations

and dataset discovery.

Relevant methodologies can be inferred from the adjacent

area of the Extreme Multi-label Classification (XMC) problem,

which refers to a supervised learning setting in which a data

point may be associated with multiple labels drawn from an

extremely large label space (Bhatia et al. 2016). Relevant

XMC works thus far have focused mostly on fine-tuning

(Remy, Demuynck, and Demeester 2022), prompt optimization

(D’Oosterlinck et al. 2024), and multiplying the use of

LLM calls (Zhu and Zamani 2023) to improve classification

performance (further described in Section 4.4 Related Work);

they have yet to be tested and extended to accommodate

the diversity of data model standards seen across repositories

and the heterogeneity of metadata fields inherent in genomic

datasets.

To address these gaps, this research aims to leverage

accessible structured data and Generative AI to provide

rich, context-aware, and high-quality metadata annotation

for biomedical datasets in an automated and efficient

manner, supporting compliance with biomedical ontologies and

repository/federating standards, such as Beacon V2 (Rueda et

al. 2022a) defined by the Global Alliance for Genomics and

Health (GA4GH).

In this paper, we introduce Pre-Meta, an LLM-based RAG

pipeline for genomic metadata extraction that incorporates

controlled vocabularies–in the form of pre-generated metadata

and ontologies–as auxiliary data to improve annotation

accuracy. Pre-Meta is model- and domain-agnostic, meaning

that it provides a generic and adaptable metadata annotation

procedure that is independent of both the LLM models

used and the target metadata schema. We evaluated Pre-

Meta using state-of-the-art open-weight and proprietary LLM

models on real-world datasets curated from ArrayExpress

and Europe PubMed Central (Europe PMC) and assessed

its performance across five representative metadata fields.

The results demonstrate that Pre-Meta significantly improves

metadata annotation accuracy and highlight several systematic

barriers that warrant further investigation. Furthermore, our

work contributes to improving data stewardship promoted

through FAIR principles (Findable, Accessible, Interoperable,

Reusable) by reducing human intervention in the general

process of data profiling, harmonization, and their downstream

applications for data discovery.

2 Pre-Meta

2.1 Task Definition
We define the task of data annotation as a process that, for

a dataset or an asset of interest for (re)annotation, fills out a

given form with metadata about the asset, using values that

conform to the schema. The process takes as input:

• A textual description x of the asset, such as a published

paper, research log, etc.
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Pre-Meta: Priors-augmented Metadata Generation 3

Fig. 1. The Pre-Meta data annotation pipeline consists of four components: a) an auxiliary data processing step that takes a schema and references

related to a domain (e.g. pre-generated metadata tags, ontologies, etc.) and outputs representations of the auxiliary data as useful prior knowledge

to facilitate the retrieval process; b) a chunking step that segments the input document into suitable chunk sizes; c) a retrieval step that takes prior

knowledge from the auxiliary data processor and text nodes from the chunking step, and outputs top k candidate contexts for prediction generation; d)

a generation module taking k contexts and auxiliary information as hints for generation, and applies a user-defined LLM to predict a metadata field.

• A data model or schema s chosen among formats related to

a data portal, sharing protocol, or newly defined metadata

fields.

• Some auxiliary information or prior knowledge zd related

to each metadata field d in schema s, such as a description,

pre-generated metadata, or similar example values e.g. from

related ontologies.

The process can be represented as an RAG function f(·) that

predicts each metadata label yd as an annotation to the target

asset based on its textual description x:

ŷd = f(x, zd), ∀ d ∈ s (1)

2.2 Implementation
The Pre-Meta data annotation pipeline contains two main

parts: first, the auxiliary data processing step shown in

Figure 1-a; second, a simplified RAG defined as Eq. 1 consisting

of three blocks of processes illustrated in Figure 1 b-c-d:

chunking, retrieval, and generation. Given a dataset of interest

requiring (re)annotation, the dataset’s textual references are

processed by a chunking step, which outputs chunks of text

to the retrieval module. The retrieval module uses various

representations of auxiliary information to identify k relevant

contexts. The generation module, for each field of the target

schema, proposes an annotation based on relevant contexts.

2.2.1 Auxiliary Data Processing

For the task of data annotation, given a data schema of interest,

we considered three types of auxiliary information: 1) a set

of pre-generated metadata tags associated with each schema

field which is known to the user or accessible through related

instances of data annotations on existing data portals; 2)

an ontology of the associated knowledge domain, with nodes

similar to the expected values of the field, and 3) example values

provided in the given schema.

The processor (Figure 1-a) takes the data schema in the

form of a pydantic object which characterizes each metadata

field as a Literal type accompanied by a Field description. We

also follow this convention to format pre-generated metadata

tags as a Literal list (e.g. Literal[’rna assay’, ’dna assay’,

’protein assay’] as shown in Figure 1) for use in both retrieval

and generation steps. For ontologies, we selected a node

and used all its descendant nodes (i.e. the nodes in the

subtree/subontology with the selected node as root node).

To do that, we used the owlready2 package (Lamy 2017) to

operate on each .owl file. As an example, for the field "assay

by molecule", we used the Internationalized Resource Identifier

(IRI) code OBI 0000070 to locate the "assay" node object in

the OBI ontology. Then we collated all descendant nodes for

their descriptions without maintaining their tree structure. The

resulting list of subontology information would then be passed

onto the retriever for context ranking (Figure 1-c).
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4 Tinn et al.

2.2.2 Chunking

The chunker (Figure 1-b) loads full text of papers and textual

documents in .xml format using UnstructuredXMLLooader9,

which is then cleaned by removing noisy text headers and

tags using LangChain’s MarkdownHeaderTexSplitter and split

into smaller chunks, Chunks(x) = {x1, x2, ..., xj}, using

the RecursiveCharacterTextSplitter10. Finally, the resulting

chunks are stored as LlamaIndex’s TextNode data object (Liu

2022).

2.2.3 Retrieval

The retriever (Figure 1-c) embeds the document chunks and

prior knowledge zd for the field using a sentence transformer

(Reimers and Gurevych 2019) all-MiniLM-L6-v2 from Hugging

Face, and compares these using cosine similarity to rank the

chunks based on the relevance for the field. The retriever allows

for a list of n queries, zd = z1
d, z

2
d, ...z

n
d , where each string zi

d is

embedded separately. The string zi
d with maximum similarity

to each chunk xj is used for the ranking:

relevance of chunk xj = max
i≤n

(
cos sim(emb(z

i
d), emb(xj))

)
(2)

Top k chunks with highest similarity scores are concatenated in

text as one candidate context and provided to the generation

module through a prompt template (the ”candidate context”

part as shown in Figure 1-1).

2.2.4 Generation

Generation (Figure 1-d) is independent of LLM models. Each

target metadata field is annotated by feeding the generation

model a prompt following the template in Figure 1, filled with

the retrieved context and field property values (name, hints

and description). Constrained generation is used to ensure

an output format in line with the field hints. This works by

masking the probabilities of the tokens not leading to allowed

tags given as hints, before sampling the next token, thereby

always ending up with a compliant output. The output can be

an integer, a string with possible length constraint, or, as in

our experiments, one of several listed possible strings. To do

this, we use the outlines package (Willard and Louf 2023) for

open-weight models, and OpenAI’s native structured outputs

for OpenAI models.

3 Experiments

3.1 Data Schema Selection
To experiment and evaluate a new dataset annotation method,

a data schema with real-world metadata fields is preferred.

In the experiment, metadata fields from the ArrayExpress

portal were selected. ArrayExpress is one of the major

public repositories for functional genomic datasets. For our

experiment, we selected five fields shown in Table 1, based on

field relevance and technical suitability. More specifically, the

selected fields align strongly with a real-case scenario where

a biologist or other biomedical researcher performs a dataset

query, such as searching for a dataset concerning a particular

tissue (ArrayExpress field: "organism part") or experiment

design like compound treatment or time series (ArrayExpress

field: "experiment design"). In addition, they are highly

9 https://pypi.org/project/unstructured
10 https://python.langchain.com

descriptive and associable to existing ontologies, ensuring that

they can be mapped to controlled values. Finally, selected

fields from ArrayExpress are mapped to other public portals’

similar schemas for dataset access (e.g., GEO), underlying their

importance for dataset annotation.

Table 1 shows the selected fields of ArrayExpress for

evaluation, including the counterpart of each field in GEO

and the respective sample size in the test dataset. Although

cBioPortal does not offer direct equivalents for several

ArrayExpress metadata fields, relevant information can often

be included in the description field of the meta study.txt file or

within custom attributes (e.g., Tissue Site) in the clinical data

files (data clinical sample.txt or data clinical patient.txt).

3.2 Data Curation
To demonstrate the case of an automated data annotation

pipeline, we need textual records associated with real-world

biomedical datasets with the corresponding metadata that can

be used as labels. We curated a dataset A = (X,Y ) with

14,844 pairs of scientific papers and metadata files. Each pair

(x, y) ∈ A consisted of x, an open access paper in .xml format

from Europe PubMed Central (Europe PMC) and y, a set

of labels that describe the associated dataset of the paper.

The y is curated from the dataset’s metadata in .json format

downloaded from ArrayExpress.

3.2.1 Label Standardization

Each metadata file y crawled from ArrayExpress contained a

set of fields with varying quantities and consistencies of tag

values. For example, some of the fields had several hundred

or even thousands of unique tag values, many of which were

semantically equivalent but syntactically different (e.g., ”male

and female” vs. ”males and females”) as a result of the lack

of schema enforcement. We merged and discarded the low-

occurrence metadata tags, standardizing to a dataset where

each field had up to 25 different possible labels.

Each paper has values for a non-empty subset of fields and

may have several values per field; but for the experiments in

this paper we used only fields with a single value for simplicity.

The resulting sample size for each field is shown in column 4 of

Table 1.

The frequencies of the 25 possible labels were highly skewed,

and for 3 of the fields, more than half of the papers had the same

label. This leads to the potential for distributional ”cheating”,

where a model with a high chance of predicting these values

could get a high score without using the context as intended.

To combat this, a subset of 1500 pairs of paper and labels was

sampled for use in the experiments, providing 300 samples for

each field. The papers with the least frequent of the 25 possible

labels were picked first, ensuring a uniform distribution of the

labels as much as possible. The resulting label distribution for

each field is shown as the blue bars in Figure 2.

3.3 Design of Experiment
In order to easily and effectively evaluate and compare different

versions of the pipeline, we focus on the case with limited

output space by using schema fields with a predefined set

of possible values–essentially as a multiple choice task. The

alternative of using free-text fields would require a way of

measuring the similarity of the output and the correct answer,

for which embedding models are not necessarily accurate in

representing specific biomedical terminologies. As the retrieval

process is the part of the pipeline we focus on investigating
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Pre-Meta: Priors-augmented Metadata Generation 5

Table 1. A mapping of the evaluation metadata fields (Col. 1) to their respective relevance (Col. 2), their GEO analogous fields (Col. 3)

and viable sample sizes of paper per field after filtering, and finally to their associative ontologies (Col. 5) that can be pruned to subsets of

node descriptions (Col. 7) using specific entity terms (Col. 6).

Pre-generated Metadata Ontologies

Metadata Field Relevance GEO Mapping
Sample Size
(papers)

Ontology
Subtree

Top Node
No. of
Nodes

hardware
Represents sequencing or/and microarray

platform used to generate experimental data
“Platforms” 1526 OBI “DNA sequencer” 37

organism part

Represents the specific biological sample
origin, such as “liver”, “blood”, or

“tumor tissue”

“Source name” 4773 BTO
“tissues,

cell types, and

enzyme sources”

6451

experimental

design

Captures the structure and purpose of

the study (e.g., “time-course”,

“case-control”, or “dose-response”)

“Overall design” 5647 EFO “Study design” 64

study type

Represents a more concise description of
the experimental process for the dataset

generation; defines the method or approach

used in the experiment (e.g., “RNA-seq”,
“ChIP-seq”, “DNA methylation”)

“Experiment
Type”

14797 EFO “Assay” 556

assay by

molecule

Describes the molecular target of the
assay (e.g., “RNA”, “protein”, “DNA”)

“Extracted
molecule”

14344 OBI “Assay” 1656

in this work, different versions of it were tested. These

versions, presented in Section 3.3.1, are based on using varying

knowledge to represent the field. In the case of using ontologies

as auxiliary information, we retain the allowable metadata tags

as hints (Figure 1-2) for the generation process in order to

isolate the effects of the retrieval part, even though alternative

retrieval methods are meant mainly for situations where this

information is not known, such as working with open-string

fields.

3.3.1 Retrieval Methods

The following list explains the different versions of the retrieval

step of the pipeline that were used in the experiments. The first

two are meant as baselines for comparison, while the rest are

variants of Pre-Meta:

• Fullpaper: providing full text to GPT-4o mini without

RAG and the use of auxiliary information.

• Vanilla RAG: using the original field description given by

the target schema for ranking text chunks that represent

candidate contexts.

• Pre-Meta: using individually encoded known metadata

tags to rank chunks of candidate contexts using Eq. 2.

• Pre-Meta Onto: using individually encoded descriptions

from the subtree of the related ontology to rank chunks of

candidate contexts. The root nodes were chosen manually

to include nodes similar to a substantial part of the known

metadata tags, and are presented in Col. 5-7 of Table 1.

• Pre-Meta (Retrieval-only): the retrieval-only case of

Pre-Meta. Since a relevance score is calculated for each

allowable metadata tag, it is possible to simply pick the

one with the highest score as the prediction, skipping the

generation step altogether.

3.3.2 Generation

We evaluated different generation setups, including open-

weight models (Mistral-7B-v0.1-GPTQ and Meta-Llama-3.1-

8B-Instruct-GPTQ-INT4), proprietary GPT-4o mini, and one

without a generation model for the retrieval-only case of

Pre-Meta.

3.3.3 Evaluation

For each paper, a score of 1 is given if the output of field

prediction is the correct label and 0 otherwise. The reported

scores are averages over the 300 papers for each field, and

over five fields for each pipeline configuration. For fine-grain

analysis and documentation, we recorded scores both field-

by-field and as summary accuracy, together with all input

RAG parameters and prompts using an AI developer platform,

Weights & Biases11.

3.4 Results
Based on experimenting with 300 sampled paper-metadata

pairs for each of five chosen fields, we observe considerable

advantages in incorporating domain-specific auxiliary information

for the task of predicting annotations for metadata fields. The

results are illustrated as a summary of the accuracy scores

in Table 2 and as distributions of predictions versus labels in

Figure 2. We observe that the Pre-Meta retrieval methods by far

outperform conventional retrieval (Vanilla RAG), for pairing

with both GPT-4o mini and open-weight models (Llama 8B and

Mistral 7B). The accuracy gain is seen in all fields and Pre-Meta

versions, with the exception of the "experimental design" field

for GPT-4o mini, where conventional retrieval scored slightly

11 https://wandb.ai
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6 Tinn et al.

Table 2. A ranking of combinations of retrieval methods and generation models based on their accuracy scores of annotation predictions

averaged across five evaluation fields. The rows in bold text illustrate that the combination of Pre-Meta retrieval (both variants) with GPT-4o

mini as a generation model outperforms running the Fullpaper through GPT without RAG and running the GPT with Vanilla RAG.

Notably, both variants of Pre-Meta also add significant accuracy gain to Llama 8B and Mistral 7B compared to using conventional RAG. The

pairings of both Pre-Meta methods with open-weight Llama 8B achieve comparable result to that of GPT-4o mini running on conventional

RAG. Among GPT-4o mini pairings, Pre-Meta contributes the highest accuracy to the fields of hardware, organism part, and study type,

Pre-Meta Onto to the field of assay by molecule, while Vanilla RAG retains the highest on experimental design. (n=300)

Retrieval Method Generation Model

label:

hardware

label:

organism part

label:

experimental

design

label:

assay by

molecule

label:

study type Average Accuracy

Pre-Meta GPT-4o mini 0.540 0.787 0.330 0.770 0.513 0.588

Pre-Meta Onto GPT-4o mini 0.513 0.743 0.323 0.817 0.480 0.575

Pre-Meta Llama 8B 0.390 0.710 0.220 0.723 0.370 0.483

Vanilla RAG GPT-4o mini 0.323 0.673 0.343 0.627 0.367 0.467

Pre-Meta Onto Llama 8B 0.410 0.593 0.180 0.740 0.390 0.463

Fullpaper GPT-4o mini 0.340 0.730 0.160 0.683 0.270 0.437

Pre-Meta --- 0.110 0.547 0.170 0.740 0.303 0.374

Pre-Meta Mistral 7B 0.190 0.560 0.157 0.627 0.140 0.335

Pre-Meta Onto Mistral 7B 0.167 0.413 0.093 0.643 0.123 0.288

Vanilla RAG Llama 8B 0.170 0.483 0.123 0.490 0.140 0.281

Vanilla RAG Mistral 7B 0.063 0.260 0.077 0.490 0.063 0.191

better. In combination with GPT-4o mini, Pre-Meta and Pre-

Meta Onto add 26% and 23% performance gain compared

to the baseline of Vanilla RAG. The gain is especially

pronounced for the pairing with Llama 8B and Mistral 7B,

where Pre-Meta adds 72% and 75% to each respective model’s

baseline performance. The Pre-Meta (Retrieval-only) setup,

which involves directly choosing the best matching allowable

metadata tags derived from auxiliary information without using

a generation model, performs better than the baselines for the

field "assay by molecule", and is better on average than Mistral

7B with Pre-Meta. As this is a considerably cheaper method

than the others, it shows that generation models alone do not

always provide a better solution, at least for the tasks explored

in this experiment.

Through improving the context ranking in retrieval alone,

Pre-Meta methods add considerable gain in the prediction

quality to our annotation tasks for the five selected fields,

demonstrating the value of using pre-generated structured data

as auxiliary information.

4 Discussion

4.1 Error Analysis

4.1.1 Domain-related

We note the high variance across five test fields. For example,

all scores in "assay by molecule", and almost all scores in

"organism part", are higher than every score in "experimental

design". This variability reflects the inherent heterogeneity

of biomedical data and the uneven adoption of ontologies

in existing repositories. For example, nuanced fields like

"experimental design" remain challenging to annotate, as they

require more comprehension of domain-specific contexts.

Figure 2 highlights the distribution of predictions versus

labels across five field types for three different pipeline

configurations. The distributions of predictions tend to match

the labels better when using Pre-Meta, although certain field

labels are systematically over- or under-represented.

Some labels of the organism part field are not mutually

exclusive, e.g., ”peripheral blood” and ”whole blood” could be

regarded as subcategories of ”blood”. Thus, some errors can

be attributable to imperfections in the dataset and evaluation

method, not to the models. Theoretically, a merging of

semantically similar tags in the dataset or evaluation process

would result in a fairer score, but this would require a

systematic analysis of the metadata tags that was considered

outside the scope of this work.

4.1.2 Model-related

Although our work focuses mainly on retrieval, we observe

that the choice of generation models affects the resulting

performance more than the choice of retrieval methods. From

Table 2, we see that, regardless of retrieval methods, the

GPT-4o-mini model’s overall scores are better than those of

two open-weight models. Generation models are known to be

sensitive to how the task is presented. The factor that turned

out to play a considerable role in our experiment was the order

of the list of hints given to the prompt. As a result, we

shuffled the list each time to avoid systematic errors. Figure

4 shows that all generation models used in the experiment

systematically focus more on answers that appear early among

the list of hints provided to generation, even with a fairly short

list of 25 answers. The bias is similar to the observed tendency

that LLMs have in attending to information in the early and

late parts of long context windows12. This order bias in token

selection also provides us with a perspective beyond general

tasks benchmarks13 that reflect the difference between models

(e.g. Llama 8B vs GPT-4o mini) used in the experiment.

4.1.3 Retrieval by Metadata Tags vs. Ontologies

In instances where not all potential metadata tags are present,

certain tags may still be available. To emulate this for

Pre-Meta, we experimented with giving only a sampled

subset of allowable metadata tags to the retriever as auxiliary

information. The results of this sub-sampling are shown in

Figure 3 for comparison with Pre-Meta Onto pairings that

12 https://github.com/gkamradt/LLMTest_

NeedleInAHaystack
13 https://aimlapi.com/comparisons/

llama-3-1-8b-vs-chatgpt-4o-mini
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Fig. 2. A comparison of the distributions of predicted metadata (orange bar) against actual annotations (blue bar) across five field types based on

results from three GPT-4o mini pipelines (Vanilla RAG, Pre-Meta Onto, and Pre-Meta). Certain field labels, such as ”illumina hiseq 2500” in

hardware, ”skin” in organism part, and ”other” in study type show observable attenuation, while ”transcription profiling by array” in experimental design

shows further biased attention. (n=300)

2512521
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Fig. 3. A comparison of the impact on annotation accuracy given

different sampling densities applied to pre-generated metadata tags for

ranking text chunks at the retrieval stage. For all paired models, we see

comparable performance between using halved pre-generated metadata

tags (12) and using ontology subtrees as auxiliary information. Notably,

with full sampling at 25 metadata tags, the Llama 8B-paired accuracy

(red solid) slightly exceeds that of GPT-4o mini on Vanilla RAG (blue

mixed dash).

use all available subontology field descriptions. We observe

that even having a single metadata example given as a hint

can yield superior retrieval quality compared to using just the

field description itself in the Vanilla RAG baseline for Llama

8B, Mistral 7B; additionally, only two metadata examples are

needed as a hint to bring improvement over the baseline for

GPT-4o mini. Meanwhile, for all three paired models, the use

of subontologies gives better results than using half or less than

half of the available metadata tags.

4.1.4 Full Context Length vs Chunks

Overall, Vanilla RAG performs better than Fullpaper by a

slight margin (0.467 vs 0.437), although for only two of the

five metadata fields. This shows some of the reason for using

retrieval in the first place–having all the information in one

large context window is not necessarily better than having

a selection of small chunks of it, even when this selection

is suboptimal (seeing as the Pre-Meta chunk selections are

better).

4.2 Cost and computation
Table 3 itemizes the resource requirements across different

usages of LLMs in the study. Compared to running on full

paper, the use of GPT-4o mini on retrieved text chunks incurred

significantly lower dollar costs due to lower token counts. For

open-weight models running on a desktop GPU (Nvidia RTX

3090), the compute time of a few seconds per field also offers

a promising option for deployment settings without access to

non-industrial grade compute resources.

4.3 Addressing FAIR principles
The experimental results demonstrate a promising step toward

an LLM-driven automation of dataset (re)annotation. This

effort provides the community with a useful building block to

address the principle of machine-actionability (i.e., the capacity

of computational systems to find, access, interoperate and reuse

data with none or minimal human intervention) emphasized

in FAIR, in particular the characteristics stipulated in the

subprinciples F2, F4, I1, and R1.3.14

14 Relevant FAIR subprinciples are: F4. (Meta)data are

registered or indexed in a searchable resource; F2. Data
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Table 3. Computational/monetary cost of experiments for each generation model. Computation times for Llama 8B and Mistral 7B includes

just the generation step, not the document loading, retrieval and evaluation. Computation times are based on on a single unit Nvidia RTX

3090 GPU.

Generation Model Cost per field Cost of 300 papers with 5 fields

GPT-4o mini with retrieved chunks 0.0002 USD 0.3 USD / 1,878,594 input tokens

GPT-4o mini with full paper 0.0027 USD 4.1 USD / 26,992,061 input tokens

Llama 8B 3.5s 88 minutes

Mistral 7B 3.9s 98 minutes

Retrieval only 2.2s 55 minutes

4.4 Related Work
Efforts to increase the utility of LLMs in the biomedical domain

include various Question Answer (QA) benchmarks such as

BioASQ (Tsatsaronis et al. 2015), MedQA (D Jin et al. 2021),

MMLU (Hendrycks et al. 2021), MedMCQA (Pal, Umapathi,

and Sankarasubbu 2022). There are also specialized pre-trained

models like BioMedLM (Bolton et al. 2024) along with various

fine-tuned, instruction-tuned, and Reinforcement Learning-

tuned models seen on Open Medical-LLM Leaderboard (Pal,

Minervini, et al. 2024), and more recently, pipelines driven

by tool augmentations such as GeneGPT (Q Jin et al. 2024)

that incorporate in-context learning through Web APIs of

NCBI. These efforts, however, have not been extended to

performing short-form answer generation tasks at the precision

level suitable for metadata standardization.

Beacon V2 has been introduced as open source software to

facilitate the transformation of genomic metadata to conform

to a hierarchical data model with seven entities: analysis,

biosamples, cohorts, datasets, genomicVariations, individuals,

and runs (Rueda et al. 2022b). The input, notably, is an

Excel file manually completed by the end user transcribing

the metadata from the original storage format (e.g. text files,

CSV, database, PEF, Electronic Health Records, etc.) of the

metadata. Regardless of the format, the origination of the

metadata remains a user-defined process.

A potential prospect of automating the data profiling

process can be seen in Extreme Multi-label Classification

(XMC), a class of problem where a classifier selects relevant

subsets of labels from an extremely large label set (Bhatia et

al. 2016). XMC typically involves either fine-tuning a retriever

(Decorte, Verlinden, et al. 2023) over the label space or training

a binary classifier per class (Clavié and Soulié 2023), both

of which require substantial labeled data. To reduce manual

labeling, researchers use distant supervision (Decorte, Hautte,

et al. 2022), generate synthetic data with LLMs (Clavié and

Soulié 2023; De Raedt et al. 2023), or fine-tune on related

tasks with available data (Remy, Demuynck, and Demeester

2022). At inference time, performance can be boosted by

reranking candidate labels using LLMs. (Zhu and Zamani 2023)

avoids fine-tuning but relies on multiple LLM and retrieval

calls per input to generate synthetic prompts and rerank labels.

The Infer-Retriev-Rank method introduced by (D’Oosterlinck

et al. 2024) defined a multi-step, in-context interactions

between LLMs and the retriever to predict relevant queries

and interpret retrieved documents for better ranking. However,

this requires dedicated prompt optimization for different

are described with rich metadata; I1. (Meta)data use

a formal, accessible, shared, and broadly applicable
language for knowledge representation; and R1.3.
(Meta)data meet domain-relevant community standards.

https://www.go-fair.org/fair-principles

datasets. Furthermore, the method focuses on the single task

of predicting adverse drug reactions from an input document,

which does not reflect the heterogeneity of metadata inherent in

the rich description of genomic datasets. Pre-Meta, on the other

hand, focuses on the setting of labeling diverse metadata fields

through a complementary, light-weight procedure of leveraging

available priors for candidate context ranking. Its contribution

is also independent of performance gains that can be derived

from fine-tuning, prompt optimization, and multiplying the use

of LLM calls.

4.5 Limitations
Our current implementation focused on metadata that has

string/literal values in order to leverage the LLM’s capabilities

on natural languages. For other types of metadata, for example,

metadata with numerical values and alpha-numeric strings,

additional experiments and iteration of the pipeline will be

required, given the incoherent nature of the way numbers and

decimals are tokenized by language models (Marjieh et al.

2025).

Due to the lack of existing reference or benchmark datasets

for evaluating the tasks of biomedical data annotation, our

choices of the five metadata fields were naturally constrained

by the quality and availability of the metadata labels found

on ArrayExpress. To further systematize the evaluation of Pre-

Meta on a wider set and diversity of metadata fields that may

appear under a different or newly introduced schema, additional

data sources beyond ArrayExpress will need to be identified

first and evaluated. Similarly, this applies to potential adoption

of Pre-Meta to other domains. As part of further research, we

aim to facilitate the automatic identification of relevant priors,

i.e. from ontologies, that relate to specific new fields appearing

through a new schema.

From the deployment perspective, the curation of data labels

from pre-generated metadata tags in ArrayExpress required

extensive cleaning due to the lack of schema enforcement. As a

result, the raw state of metadata tags found in platforms like

ArrayExpress would not be considered ready-to-go auxiliary

information that can effectively support the implementation

of Pre-Meta on the platform. But this gap can be addressed,

portal by portal, through tailoring the auxiliary information

preprocessor to reduce the data noise accordingly.

Conclusion

This study presents Pre-Meta, an LLM-agnostic and domain-

independent data annotation pipeline designed to facilitate the

automation of data profiling and downstream discovery. By

leveraging auxiliary data–such as pre-generated metadata tags

and ontologies–for retrieval to support the pairing with LLMs,

Pre-Meta addresses key challenges in metadata standardization
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Fig. 4. The graphs show how often an answer was generated, based on

its position in the list of possible answers given in the generation prompt,

across the fields with 25 possible answers. The list was shuffled at each

LLM call. This shows that LLM models, especially Mistral 7B, have a

systematic bias towards choosing an answer appearing early in the list.

(n=10800)

and dataset interoperability, as seen across repositories like

GEO, ArrayExpress, and cBioPortal in the biomedical domain.

The scalability offered by LLMs in processing large datasets

across repositories is both an opportunity and a challenge.

While it enables the rapid annotation of diverse datasets, the

reliance on unstructured or inconsistent metadata introduces

variability in quality and interpretation (Higashi et al.

2024). Pre-Meta addresses this by promoting harmonization

through auxiliary information and ontology-driven annotation.

However, achieving full interoperability will require a broader

community effort to establish harmonized metadata frameworks

and robust cross-repository standards.

This study also emphasizes the need for benchmarkability in

the evaluation of LLMs for data annotation in the biomedical

domain. Transparent benchmarks and robust metrics are

critical for assessing model performance across domain-relevant

tasks, ensuring both accuracy and generalizability. Pre-Meta

contributes to this goal by providing a scalable and flexible

approach to metadata annotation, which lays the groundwork

for improving data sharing and discovery in biomedical

research.

Code and Data Availability

The code, data access, and pre-processing scripts are available

in the GitHub repository: https://github.com/SINTEF-SE/

LLMDap.
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