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SUMMARY

Computational structural biology aims to accurately predict biomolecular complexeswith AlphaFold 3 spear-
heading the field. However, challenges loom for structural analysis, especially when complex assemblies
such as the pyruvate dehydrogenase complex (PDHc), which catalyzes the link reaction in cellular respiration,
are studied. PDHc subcomplexes are challenging to predict, particularly interactions involving weaker,
lower-affinity subcomplexes. Supervised modeling, i.e., integrative structural biology, will continue to play
a role in fine-tuning this type of prediction (e.g., removing clashes, rebuilding loops/disordered regions,
and redocking interfaces). 3D analysis of endogenous metabolic complexes continues to require, in addition
to AI, precise and multi-faceted interrogation methods.
INTRODUCTION

Prediction of biomolecular complex structure and dynamics at

atomic resolution, i.e., an accurate three-dimensional model of

its function, is the holy grail of computational structural biology.

During recent years, a revolution in this field is ongoing, with al-

gorithms such as AlphaFold1 and RoseTTAFold2 spearheading

the field, initially predicting only static—and often the most sta-

ble—conformation of the given target. Despite AlphaFold and

RoseTTAFold not including the time component in predicting

biomolecular structures, progress in interpreting predicted

models in the context of conformational states is rapidly

evolving3 (reviewed elsewhere4). Applications of those algo-

rithms, due to their accessible nature, are many,5,6 and the

scientific community has made progress in addressing previ-

ously thought intractable challenges; these include, but are

not limited to, protein-protein interactions,7 protein design,8

conformational changes,4 protein dynamics,9 antibody-antigen

interactions,10 pathogenic SNP identification,11 and, even, bio-

molecular stoichiometry.12 Besides these, integration of experi-

mental data with computationally predicted models, pioneered

by HADDOCK,13 has also seen major progress, with the release

of entirely new software that combines AI tools with, e.g., cryoe-

lectron microscopy (cryo-EM) data14 and cross-linking data.15

The new release of AlphaFold 316 sparked another wave of

excitement in the scientific community. This is not only because

AlphaFold 3 predicts protein complexes more accurately than its

predecessor (76.6% vs. fidelity 67.5% for AlphaFold 2.3 Multi-

mer).1,16 Note that already AlphaFold 2.3 Multimer outperformed

traditional protein complex prediction algorithms.7 AlphaFold 3
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now has the important capability to accurately model biomole-

cular complexes that include, other macromolecules (DNA

and RNA), residue modifications, lipids, cofactors, and ions.

Currently, AlphaFold 3 is available as a webserver (https://

golgi.sandbox.google.com/) with limited options to model co-

factors and with no access to or sharing any computation of

the model, except the output. This limitation hampers the sys-

tematic and coherent structural analysis of biomolecules. As a

result, exploring the full predictive power of AlphaFold 3 is pres-

ently impossible due to these closed-source constraints. This

black-box solution eventually confines scientific development

in biomolecular structure analysis and also restricts our own

analysis performed in this perspective to elucidate strengths

and weaknesses of AlphaFold 3. Currently, its output ‘‘. cannot

be used in docking or screening tools or to train machine learning

models or related technology for biomolecular structure predic-

tion similar to AlphaFold Server’’ (https://alphafoldserver.com/

about). In addition, AlphaFold 3 introduced a new method for

estimating the computational complexity of each prediction:

the tokenization of amino acids, nucleotide bases, ligand atoms,

ions, etc. Tokenization might impose boundaries on structure

prediction, particularly for large-scale projects and laboratories

with limited funding. However, we should note that supplemen-

tary material of the published manuscript openly and in detail re-

ports the updated algorithmic structure as well as the datasets

used for training/validation; in addition, the DeepMind team ex-

pects to release the executable—including (algorithm) model

weights—by the end of 2024. Thinking of such details, it will

be of no surprise if AlphaFold 3-inspired code is released

soon with a performance equivalent, or even higher, than that
ober 3, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1555
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reported16; this was witnessed with AlphaFold 2-inspired soft-

ware, such as ColabFold17 and OpenFold.18

As structural biologists, we teach biochemistry in the Univer-

sity of Halle-Wittenberg and adapted course material to include

AI tools to train biochemists.19 Research-wise, we communi-

cated AlphaFold 2 applications,14,20 as well as AlphaFold 2 inte-

gration with other machine learning software to predict biomole-

cular interactions from protein complexes identified in native cell

extracts.21 We are currently interested to address the detailed

structure-function connections underlying the pyruvate dehy-

drogenase complex22—a 10 megadalton wonder of a molecule

which oxidizes pyruvate and generates acetyl-CoA and CO2.

This ancient catalytic reaction, present in all organisms23—and

in the case of eukaryotes localized within the mitochondrial

matrix—fuels the Krebs cycle24 and has numerous other func-

tions, e.g., moonlighting in the eukaryotic nucleus for histone

acetylation25 and is a central pathway during the Warburg

effect.26

In essence, the eukaryotic core pyruvate dehydrogenase

complex (PDHc) comprises approximately 176 polypeptide

chains27; we will be focusing here on the fungal PDHc, but the

overall architecture must be conserved across eukaryotes with

slight modifications.22 Moderate modifications can also exist,28

but still, architecturally, PDHc must be comparable across the

tree of life.22,23 This is possibly because if a central reaction

has been discovered in evolution, it is very hard to re-invent it

or to subject it to faster evolutionary rates. A well-known

example of such mechanism lies behind the genetic code, which

has remained almost the same across most organisms, too.29

The PDHc reaction, dubbed as the link reaction in cellular

respiration, is known30—within PDHc, there are multiple copies

of three key enzymatic components: pyruvate dehydrogenase

(E1), dihydrolipoamide acetyltransferase (E2), and lipoamide de-

hydrogenase (E3). PDHc facilitates the oxidative decarboxyl-

ation of pyruvate, yielding acetyl-CoA and CO2. Mechanisti-

cally,31 pyruvate and thiamine pyrophosphate (TPP or vitamin

B1) bind to E1, leading to a CO2 release by pyruvate decarbox-

ylation and the formation of a hydroxyethyl derivative bound to

TPP. Subsequently, the C2-body is transferred to an oxidized lip-

oamide, covalently bound at a lysine residue in the E2 lipoyl do-

mains (LDs). After translocation to the E2 active site, the acetyl

group is then transferred to E2-bound coenzyme A (CoA), gener-

ating acetyl-CoA. Finally, the flavoprotein dihydrolipoamide de-

hydrogenase (E3) catalyzes the re-oxidation of the now fully

reduced LD to produce lipoamide-E2 and NADH. This transfer

is achieved by a flexible arm which includes the LD and travels

from one enzymatic site to another (E1/E2/E3). Additionally,

in eukaryotes, a fourth subunit, E3BP, binds to the E2 core, an-

chors E3 near the core,27,32 and also includes LDs, thus forming

the entire metabolon.

The overall architecture of the complex is generally known, as

electron microscopy images33 and crystal structures of the indi-

vidual domains22 have been communicated since decades. With

the ‘‘resolution revolution’’32 in cryo-EM, our laboratory21,27,34

and others28,32,35–37 have provided an entirely new view of this

metabolon. Although we have made significant progress in un-

derstanding the structure-function relationships of PDHc, the

complex architecture is still elusive and a plethora of questions

remain regarding its structure, catalysis, composition, interac-
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tions, cellular localization, role of its flexible regions, regulations

of its interfaces by kinases and phosphatases, among others.

For starters, no model of the complete PDHc exists to start

addressing such questions, although efforts were indeed

made38,39; these models, although useful, neither harnessed

the current structural knowledge for PDHc nor the power ofmod-

ern AI tools.

Therefore, we sought to model the fungal PDHc using

AlphaFold 3. The discussion here is based on AlphaFold 3 server

models that we generate for the purpose of this perspective and

are freely downloadable.40 For the evaluation of the derived data,

we will deliberately comment on and treat generated solutions in

a similar way as performed during manual scoring submissions

in the Bonvin group during a critical assessment of prediction

of interactions (CAPRI) experiment,41 mainly visualizing those

and evaluating the models based on experience. We will also

briefly comment on the predicted local distance difference test

(pLDTT) and predicted aligned error (PAE) scores. In short, the

pLDDT score indicates the confidence of a single residue,

whereas the PAE score indicates the confidence in spatial place-

ment (detailed explanation in the AlphaFold paper16). The pLDTT

score is quite decent for high-confident regions (e.g., structured

domains) but not for flexible regions, which is by now common

knowledge and is used for visualization of AlphaFold models in

the open-access AlphaFold database.42 In the following text,

we will also show that PAE scores decrease with increased

complexity of the analyzed PDHc subcomplex.

AlphaFold 3 accurately models individual PDHc
enzymatic components
Briefly, we have previously usedmodeling approaches based on

known templates (termed as homology modeling) and data-

driven docking (before AlphaFold 2 came out) to accurately

model theChaetomium thermophilumE1, E2, E3, and E3BP sub-

complexes.27 After the release of AlphaFold 2, we immediately

predicted its E2 core structure (and corrected it with cryo-EM

data21), as well as its E320 (for another keto-acid dehydrogenase

complex because it is a shared subunit). We also predicted the

binding of the lipoyl arm to the various PDHc components,

and, due to the open-source nature of AlphaFold 2, we were

able to tune the generated models to recapitulate the biochem-

ically known distances of the lipoyl with the binding sites across

enzymes involved in the keto acid dehydrogenase reaction.20

Overall, we observed that AlphaFold 2 was ideal to predict

highly stable/permanent biomolecular complexes, especially

when homologs were structurally known. A prominent example

was the generation of the AlphaFold-guided cryo-EM structure

of C. thermophilum fatty acid synthase: AlphaFold 2 efficiently

predicted its higher-order A6B6 state,21 although it was never

trained to account for protein-protein interaction principles.

Tuning AlphaFold 2 was pivotal to generate models of PDHc

enzymatic components, consistent with biochemical knowl-

edge; such adjustments are impossible to perform with the cur-

rent AlphaFold 3 release, consequently limiting our analysis

described in this perspective article.

All these structures mentioned earlier have structural homo-

logs of relatively high similarity determined by crystallography

or cryo-EM; therefore, such modeling of orthologs, could be

considered quite trivial by relatively experienced molecular



Figure 1. Predicted structures of PDHc components using Alphafold 3
(A–C) Predicted structure of pyruvate dehydrogenase complex (PDHc) components E1, E2, and E3 from Chaetomium thermophilum. (C) Enriched structure of
PDHc components with ions and co-factors using AlphaFold 3.
(D–F) Predicted models of E1 (D), E2 (E), and E3 (F) in complex with the E2 lipoyl domain (LD).
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modelers—but in our opinion, the importance of modeling must

not be underestimated. Analyzing such protein complexes

without selecting templates, manually editing sequence align-

ments, or predicting flexible loop regions to be removed from

the alignments, has been liberating. Therefore, we always use

AlphaFold 2 for most modeling tasks, carefully evaluating

derived models with biochemical consistency. Although, still,

homology models, especially for structure-based drug design

can well be of higher accuracy than the equivalent AI-generated

ones—this is because side-chain rotamers, waters, and ions in

active sites or interfaces could be critical for hit identification.

AlphaFold 3 can efficiently generate models of the component

enzymes that assemble the pyruvate dehydrogenase complex
metabolon22: Briefly, E1 is an obligate heterotetramer, the E2

from eukaryotes is an obligate 60-mer with remarkable icosahe-

dral symmetry, and the E3 is an obligate dimer. Recently, fungal

E3BP has also been analyzed, and is a trimer,27,32,34,35 residing

within the E2 core in 4 distinct copies. Its structure in higher eu-

karyotes, e.g. humans, follows a substitution model, in which

E2 and E3BP form a heterotrimeric core assembly with a stoi-

chiometric ratio of 4:1.43 AlphaFold 3 models of the fungal

C. thermophilum E1, E2, and E3 are almost flawless

(Figure S1). The models are also enriched with ions and co-fac-

tors when AlphaFold 3 is applied (Figures 1A–1C), are highly like

those generated by AlphaFold 2, and are closer-to-expectations,

after comparing to the derived homology models.27 This, on its
Structure 32, October 3, 2024 1557
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own merit is outstanding;these PDHc components can be

analyzed to understand the individual pyruvate oxidation reac-

tions. Still, 3D modeling of TPP or (acetyl-)CoA is not currently

available in the AlphaFold 3 server, but simple superposition

of those ligands is entirely feasible, e.g., manually or with

AlphaFill.44

Prediction of the binding the lipoyl domain binding
modes is incomplete
However, to properly understand each of these reactions during

pyruvate oxidation, the interactions of each of those enzymes

with the LD are critical as it is the carrier of the lipoyl. We have

re-modeled all these complexes with the bound LD from both

E2 and E3BP sub-sequences and found out that AlphaFold 3

cannot effectively predict these complexes as indicated by the

high error in the PAE heatmap (Figure S2). Due to its working

mode, AlphaFold 3 will produce atomic models, and these are

often in close proximity. We believe, that this is the consequence

of limiting the Cartesian box in which AlphaFold 3 will generate

the model. In the atomic model, the LD is often in close contact

with its binder, but the aforementioned PAE-scores will tell, that

this spatial placement is of low confidence. In fact, the top-

ranking solution included the interaction of the LD to the E2

core in the atomic model, but this was not observed to be popu-

lated in the cryo-EM data.21 This was the case in the highly

related keto acid dehydrogenase complex that produces succi-

nyl-CoA and CO2 (the oxoglutarate dehydrogenase complex,

OGDHc). Anyhow, this transient interaction, mediated by elec-

trostatics,20 has also been recently reported from the bacterial

ortholog,37 and therefore, it is not surprising that AlphaFold 2

could indeed frequently predict this binding mode.20

Furthermore, human supervision revealed that derivedmodels

were not highly accurate when PDHc was studied in solution.

Cross-linking data supported the interaction of the LD with the

different subunits to cover a broader interaction surface, i.e., a

guiding surface,20 and not a highly specific orientation of the

LD to the E1, E2, and E3 binding sites. Therefore, we conclude

from the AlphaFold 3 models of E1, E2, and E3 in complex

with the LD that such transient interactions are still challenging

to predict without supervision (Figures 1D–1F, Figure S2). LD is

predicted to be in proximity to the active site of E1 (Figure 1D);

it is also spread over the surface of the E2 but does not cover

known binding modes (Figure 1E); and finally, it is not in reactive

distance to the correctly modeled FAD and NAD of E3

(Figure 1F). Aforementioned results might improve if the lipoyl

modification becomes available in future releases of AlphaFold

3. Additionally, due to the transient nature of the LD-E1/E2/E3 in-

teractions, integration with biochemical knowledge, proteomics

analysis, and molecular biophysics of non-covalent bonds will

better address this structural question (as aiming for an

AlphaFold model that can satisfy the reactive distance of the

lipoyl is possible but not enough for describing transient binding

in general). These LD-mediated transient interactions provide

activity to the PDHc—if the interaction was too strong it could

hamper its normal shuttling function. This makes it an interesting

test case for prediction since evolutionary pressure has likely

made it weaker than the type of interactions that AlphaFold is

trained to detect. Another factor that contributes to this pressure

is the integration of the LD to the polypeptide chains of E2 and
1558 Structure 32, October 3, 2024
E3BP, which increases the effective concentration and concom-

itantly the equilibrium constant for binding. Besides reaction

states within PDHc, it is also of note that the simple modeling ex-

ercise of the structural protein, the full-length E3BP homotrimer,

cannot derive the known trimeric interface (Figure S3).35

Prediction of inter-subcomplex interactions is
challenging within PDHc
Until thispoint,PDHcsubcomplexesand their interactionswith the

LD were considered for modeling. However, PDHc is a 10-MDa

complex in eukaryotes, includes multiple copies of each of these

enzymes,has12copiesof a structural protein (E3BP), and its elab-

orate architecture is organized by flexible regionswhich puzzlingly

bring these enzymes in proximity to eventually produce the oxida-

tion products, acetyl-CoA and CO2. It is known that the peripheral

subunit-binding domain (PSBD) of the E2 binds the E1 heterote-

tramer45—the stoichiometry or saturation degree are both un-

known, but here, for simplicity, we assume a 3:1 stoichiometry.27

AlphaFold 3 placed E1 in the correct face of the E2 (Figure 2A).

The atomic model is tethered by the three PSBD domains of E2

and the three LD domains are located at around the E1 tetramer

(Figure 2B). As previously already mentioned, AlphaFold is bound

by its own restriction—namely the prediction box size and the

user’s input. Taking the PAE scoring (Figure S4A) into account,

AlphaFold 3 shows elevated confidence for two out of the three

PSBDs (Figure S4A, red and orange box), as well as higher confi-

dence for a single LD domain (Figure S4B, blue box).

The interface predicted is, taking only the atomic coordinates,

unlikely in the actual metabolon; however, deconvoluting all re-

sults supplied by AlphaFold, atomic model, and PAE scores,

the actual metabolon’s interfaces can be recapitulated—with

the human touch.

The twoPSDBswithhigherspatial confidenceareC2symmetric

(Figure S4B), having an all-atom root-mean-square deviation

(RMSD) of 0.419 Å. Due to experimental data, we know that the

binding of a PSDB to E1 is mutually exclusive, resulting in a 1:1

PSDB:E1 stochiometry.46 Due to this symmetry and AlphaFold’s

workingmode (‘‘predict everything, the user prompts’’), bothbind-

ing modes are saturated with similar PAE scores. Out of the three

LD domains, only one showed elevated PAE scoring. Visualizing

the atomic structure, this LD is in fact bound close to the region

it is supposed to bind (Figure S3C), whereas the two others are

bound off-target. Additionally, the a helix capping the E2 active

site is found in endogenous cell extracts to acquire both unfolded

and foldedconformations,34whereasAlphaFold 3 alwayspredicts

this a helix in a folded conformation with high confidence both in

per-residue (pLDDT) and spatial placement (PAE) scoring

(Figure S1B). This observed secondary structure plasticity implies

that theE2binding site for the LD is additionally involved to localize

the E1 relative to the E2—E1 can bemuch further thanwhat is pre-

dictedcurrently in theAlphaFold3model if thisahelix isdisordered

(e.g., >10 Å). AlphaFold 3 tends in this case to confidently predict

the most stable state—a folded a helix with an additional b shee-

t,instead of a flexible linker, losing the metabolons’ intrinsic flexi-

bility, needed for efficient substrate shuttling. Thepredictedmodel

also shows physically questionable entanglement (Figure 2C), a

limitation the AlphaFold 3 team has explicitly acknowledged

in their recent publication,16 which may become progressively

more apparent in 3D models of increased complexity.



Figure 2. Challenges in predicting subcomplexes within the PDHc metabolon
(A) Predicted complex of E1 and E2 showing the extensive interface mediated by the PSBD.
(B) Zoomed view of the predicted interface between E1 and E2 mediated by 3 PSBDs.
(C) Prediction challenges related to forcibly organized flexible regions in proximity to the complex.
(D) Inaccurate prediction of the fungal E2-E3BP subcomplex.
(E) Accurate prediction of the E3BP trimer in the E3BP-E3 subcomplex which should not have an extensive interface.
(F) Concerns regarding false-positive predictions driven by surface complementarity in the E3BP-E3 subcomplex.
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The fungal E2-E3BP subcomplex35 is not predicted correctly;

Here, 6 E2s and 3 E3BPs were used as input to generate the

complex, similar to the resolved structure35 deposited in the Pro-

tein Data Bank (PDB, www.pdb.org). Apart from the fact that the

E2 multimer has substantial limitations in being generated as a

face or an edge-vertex-edge configuration, the E3BP is not pre-

dicted to trimerize and is only sometimes localized inwards
pseudosymmetrically (Figure 2D). This challenge in predicting

this interface can stem from various issues, some of them being

(1) absence of this interface from the training data (with conse-

quences related to generalizability); (2) predicting a sub-stoichio-

metric core complex instead of the 60-mer/12-mer stoichiometry

(however, this complex is too large for the server to predict); and

(3) presence of the LD domain in the E3BP sequence. This
Structure 32, October 3, 2024 1559
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structural domain presumably forces the E2-E3BP complex to

adopt conformations that are a consequence of the ambiguous

binding (according to PAE) of the E3BP LD to the E2.

Interestingly, in the E3BP-E3 subcomplex, the E3BP trimeric

nature is now revealed (Figure 2E) while in the previous example

(E2-E3BP), its trimeric form was not captured (Figure 2D). This

shows that the presence of another complex may influence pre-

dicted oligomerization state. Furthermore, by visualizing the

E3BP-E3 subcomplexes, one with experience in biomolecular

docking directly contemplates that these solutions require

manual intervention: They appear to be driven by extensive sur-

face complementarity principles, something that has haunted

protein-protein docking algorithms in retrieving false positives

during scoring for decades. Taking the PAE heatmap into ac-

count, AlphaFold 3 seems not to overestimate shape comple-

mentary, as a very unlikely spatial interaction is reported.

Instead, the structure reveals an intrinsic challenge of the

AlphaFold 3 generative intelligence workflow: the input is most

likely treated to result in a globular protein structure, and its pre-

diction box size is a function of the number of amino acids.

Whereas this makes absolute sense for monomeric proteins

and also is most resource effective; this will always produce

‘‘globularized’’ dense protein-protein interactions in multi-

domain proteins. This is clearly visible in the arbitrary shape

complementarity of the E3BP trimer and the E3 dimer (Figure 2F).

Conclusion
Overall, stable PDHc enzymatic subcomplexes with AlphaFold 3

are near-perfect predictions. However, increased complexity of

the system is underlined by predictions with highly complemen-

tary structural interfaces and the positioning of flexible linkers in

direct proximity and periphery of the generated solutions. Espe-

cially for the structural component, the E3BP, the trimeric inter-

face can sometimes be predicted but only in the presence of

another subcomplex. Implications of this observation indicate

that a binding partner can be relevant for accurate protein com-

plex modeling. Including this information during AlphaFold 3

modeling is currently impossible, which again makes using

AlphaFold 2, despite its limitations, preferable. Clearly, at least

for the PDHc, which has been showcased herein, such higher-

order assemblies—and the provided orientation of the flexible

linkers, are consistently against current biochemical evidence.

It is essential for any user to consult the PAE scores in order to

evaluate generated complexes;atomic models from AlphaFold

come with quality criteria and must always be considered. The

absence of high PAE scores shows that PDHc has a highly intri-

cate architecture, which AlphaFold 3 could only partially recapit-

ulate; Therefore, de novomodeling a eukaryotic mini-PDHc (e.g.,

inspired by the integrative model of the bacterial one28) is not

currently realistic. It is evident from our preview here that the

more composite a biological system becomes, the tougher

would be for AI to approximate the unsupervised modeling of

its architecture. However, we cannot exclude that by utilizing

open-access tools developed for AlphaFold 2 predictions, as

mentioned in the introduction, many more insights can be

derived for the structure and function of PDHc addressing the

aforementioned challenges in analyzing intrinsic flexibility, dy-

namics, multimerization, and protein interactions. Such analysis

goes beyond merely analyzing AlphaFold 3 predicted models
1560 Structure 32, October 3, 2024
and would constitute integrative work that tests the limits of

what is achievable for endogenous metabolon modeling in gen-

eral. Here, we should also point out that traditional docking and

molecular dynamics simulation algorithms are also likely to cap-

ture the complex dynamics within PDHc—methods which our

group has previously applied to this family of complexes.20,27,34

Finally, PDHc and related keto acid dehydrogenase complexes

embed nearly all categories of biomolecular interactions (e.g.,

enzyme-ligand and enzyme-enzyme complexes; homo- or het-

ero-multimeric interfaces; permanent and transient complexes;

interactions of (dis)ordered regions and their role in regulating

enzymatic motions). Such abundance of different structural in-

teractions can serve as an inspiration to other structural biolo-

gists and how they can approach their own systems of interest.

Tomake things short, to solve the structure of the PDHc (or any

otherendogenous,nativemetabolon in thatmatter), and therefore,

to understand cellular respiration in a holisticmanner,more than a

cluster of GPUs running advanced AI software is needed. Howev-

er, AlphaFold 3 represents a leap forward in structural biology,

particularly for elucidating the intricate architecture of smaller or/

and higher affinity protein complexes. As the technology con-

tinues to develop and integrate with established biochemical

and biophysical methods, AlphaFold 3 holds immense promise

for unraveling the complexities of larger assemblies and transient

interactions within the crowded cellular environment. This collab-

orative approach, combining the power of AI with human exper-

tise, will unlock a new era of innovation in structural biology.
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