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Abstract: Background/Objectives: Strawberries are highly appreciated for their rich
phytochemical composition, but rapid postharvest deterioration limits their shelf life and
nutritional quality. This study aimed to investigate the metabolic changes occurring in both
strawberry fruits and leaves during storage and to evaluate the NADPH oxidase 2 (NOX2)
inhibitory potential of strawberry-derived metabolites. Methods: Untargeted LC-MS/MS
analysis was conducted on fruit and leaf tissues stored at 8 ± 0.5 ◦C. A total of 37 metabolites
were identified, including organic acids, phenolic acids, flavonoids, and hydroxycinnamic
acid derivatives. Multivariate statistical analyses (ANOVA, PLS-DA, and volcano plots)
were used to assess temporal and tissue-specific metabolic shifts. Additionally, a machine
learning-based predictive model was applied to evaluate the NOX2 inhibitory potential of
24 structurally characterized metabolites. Results: Storage induced significant and tissue-
specific metabolic changes. In fruits, malic acid, caffeic acid, and quercetin-3-glucuronide
showed notable variations, while ellagic acid aglycone and galloylquinic acid emerged as
prominent markers in leaves. The predictive model identified 21 out of 24 metabolites as
likely NOX2 inhibitors, suggesting potential antioxidant and anti-inflammatory bioactivity.
Conclusions: These findings provide new insights into postharvest biochemical dynamics
in both strawberry fruits and leaves. The results highlight the value of leaves as a source
of bioactive compounds and support their potential valorization in functional food and
nutraceutical applications.

Keywords: strawberry; postharvest metabolism; LC-MS/MS; chemometric analysis; phenolic
compounds; flavonoids; organic acids; plant secondary metabolites; NOX2 enzyme

1. Introduction
Strawberries (Fragaria × ananassa) are among the most widely consumed fruits glob-

ally, appreciated for their vibrant color, distinct aroma, and rich nutritional profile. They
are an excellent source of vitamins, organic acids, flavonoids, and phenolic compounds,
which contribute to their high antioxidant capacity and associated health benefits [1–3].
However, despite their nutritional and economic value, strawberries are highly perish-
able, exhibiting rapid postharvest deterioration due to their high water content, metabolic
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activity, and susceptibility to microbial decay [4–6]. Understanding the biochemical mech-
anisms underlying postharvest changes is crucial for developing strategies to enhance
fruit quality, extend shelf life, and reduce postharvest losses. Once harvested, strawber-
ries undergo significant biochemical changes, including the degradation of organic acids,
enzymatic oxidation of phenolic compounds, and fluctuations in antioxidant metabolites,
leading to quality deterioration and reduced storage stability. Among these metabolic
changes, organic acid metabolism plays a central role in maintaining fruit acidity, flavor,
and overall metabolic balance [7]. Malic and citric acids are the predominant organic
acids in strawberries, and their degradation has been linked to postharvest senescence,
affecting taste and overall fruit stability [8]. In parallel, phenolic compounds, including
flavonoids and phenolic acids, are vital for the fruit’s antioxidant defense and structural
integrity [9]. During storage, these compounds undergo significant transformations due
to oxidative stress and enzymatic degradation, impacting the fruit’s nutritional value and
quality [10,11]. Therefore, strawberries were selected for this study due to their global
economic and nutritional significance, as well as their high postharvest perishability. While
the fruit is widely consumed and well characterized, the leaves are often discarded despite
accumulating evidence of their rich phenolic content and potential health benefits [4].

While much research has focused on postharvest changes in strawberry fruit, the
metabolic responses of strawberry leaves during storage remain largely unexplored.
Strawberry leaves contain a diverse array of secondary metabolites, including terpenes,
flavonoids, and hydroxycinnamic acid derivatives, which are integral to plant defense
mechanisms and environmental adaptation [12,13]. However, their metabolic stability
or transformations during storage remain poorly understood, raising questions about
how their biochemical composition compares to fruit metabolic shifts. Investigating these
changes can provide insight into the bioactive potential of strawberry leaves, which are
often discarded as waste. Identifying their storage-dependent metabolic profile may open
new avenues for their valorization as functional ingredients, aligning with current goals in
sustainable food systems and circular agriculture.

Additionally, there is growing interest in identifying dietary antioxidants, that can
attenuate enzyme-driven reactive oxygen species (ROS) generation and inflammatory
signaling [14]. NADPH oxidase 2 (NOX2) is a major enzymatic source of ROS that drives
oxidative stress and persistent inflammation, a key mechanism in chronic diseases such
as diabetes and cardiovascular disorders [15]. Notably, strawberry fruit-derived phenolic
compounds have demonstrated the capacity to reduce oxidative stress and inflammation,
providing a strong rationale for applying machine learning to systematically evaluate
strawberry metabolites as potential NOX2 inhibitors [16].

Therefore, this study investigates the postharvest metabolic shifts in strawberry fruits
and leaves through LC-MS/MS-based metabolite profiling, providing insights into storage-
induced biochemical changes. By examining both fruit and leaf tissues, this study aims to
better understand postharvest metabolic changes and explore opportunities for valorizing
strawberry by-products. By analyzing fluctuations in key metabolites during storage, the
study clarifies their roles in fruit senescence and leaf metabolic adaptation. Advanced multi-
variate statistical analyses, including Partial Least Squares Discriminant Analysis (PLS-DA)
and volcano plot analysis, were employed to identify metabolic markers that differentiate
early and late storage stages. This dual focus supports a more holistic and sustainable ap-
proach to crop utilization, aligned with current trends in functional foods and plant-based
bioactives. Additionally, a machine learning-based evaluation of the NOX2 inhibitory
potential of strawberry-derived metabolites was performed to systematically assess their
role as potential modulators of oxidative stress pathways. By integrating biochemical
profiling, statistical modeling, and predictive machine learning, this research enhances the
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understanding of postharvest metabolic differentiation between fruits and leaves, with
implications for optimizing storage conditions, preserving antioxidant properties, and
improving postharvest management strategies.

2. Materials and Methods
2.1. Strawberry Fruit and Leaf Samples and Storage Conditions

This study was conducted on hydroponically cultivated strawberries (Fragaria × ananassa
cv. Marisol), sourced from K & K GREEN FARMS, Kyllíni, Greece. The strawberries and
their attached leaves were harvested at their commercially mature stage and promptly
transported under cold chain conditions to the laboratory within 24 h postharvest. The
initial day of storage (day 1) was defined as the day they arrived at the laboratory.

To assess postharvest metabolic changes, the samples were stored under controlled
environmental conditions in a refrigerated incubator (POL-EKO Cooled Incubator ST 3,
POL-EKO-APARATURA) set at 8.0 ± 0.5 ◦C, with relative humidity maintained at 60 ± 2%.
Storage continued until spoilage rendered the samples unfit for analysis. The fruits were
monitored for up to 11 days, while the leaves were analyzed until day 8, as they exhibited
visible deterioration beyond this point.

Before storage, the strawberries and leaves were visually inspected, and any damaged,
over-ripe, or diseased samples were removed to ensure experimental consistency. Through-
out storage, representative samples were collected at five predefined time points (days 1,
4, 6, 8, and 11 for fruit; days 1, 4, 6, and 8 for leaves) to evaluate progressive metabolite
changes. At each time point, 12 individual fruits and their corresponding leaves were
randomly selected for metabolite extraction and subsequent analysis.

2.2. Metabolite Extraction from Strawberry Fruits and Leaves

To analyze postharvest metabolic changes, metabolite extraction was performed on
both strawberry fruits and leaves at designated storage time points (days 1, 4, 6, 8, and
11 for fruit; days 1, 4, 6, and 8 for leaves). At each sampling point, 12 unique fruits or
leaves were used to create equal number of sample replicates (12 replicates). For each
replicate, 1 g of fresh strawberry fruit or leaf tissue was collected from a single whole fruit
(not pooled), comprising both external and internal tissue for fruits, to reflect the overall
metabolic composition. The same procedure was followed for leaf tissue. Prior to extraction,
each sample was finely chopped and homogenized using a mechanical blender to ensure
uniform consistency and maximize the release of the compounds. The homogenized tissue
was then mixed with 80% aqueous methanol (v/v) in a 1:5 (w/v) ratio, ensuring the efficient
extraction of both polar and semi-polar metabolites as described by Ladika et al. [17].
The use of 80% aqueous methanol (v/v) was based on its well-documented efficiency in
extracting a wide range of polar and semi-polar metabolites, and it has been widely used
due to its ability to disrupt cell walls and solubilize both hydrophilic and moderately
lipophilic compounds, ensuring broad metabolite coverage [18,19]. The mixture was
vortexed for 1 min and subsequently incubated at 20 ◦C for 24 h in sealed containers,
allowing for optimal metabolite solubilization. After incubation, the extracts were filtered
under vacuum using a Buchner funnel to remove solid residues. The resulting filtrate
was then centrifuged at 10,000 rpm for 10 min at 4 ◦C to further clarify the extract. The
supernatant was carefully collected and adjusted to a final volume of 10 mL with 80%
aqueous methanol to ensure standardization across all samples. The extracts were then
stored at −80 ◦C until LC-MS/MS analysis to prevent potential degradation. For LC-
MS/MS analysis, 1 mL of each extract was acquired and then, the solvent was evaporated
to obtain the dry residue containing the metabolites of interest. The extract residues were
then reconstituted in 1 mL of LC-MS-grade methanol containing 0.1% v/v formic acid. In
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preparation for analysis, all the reconstituted samples were filtered using Chromafil Xtra
PET 0.45 µm syringe filters (Macherey-Nagel, Düren, Germany).

2.3. LC-MS/MS Analysis

The extracted metabolites from strawberry fruits and leaves were analyzed using
Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry (LC-ESI(-)-
MS/MS) to investigate postharvest metabolic alterations. The chromatographic system
consisted of an Agilent 1200 HPLC (Agilent Technologies, Santa Clara, CA, USA) coupled
to a 3200 Q TRAP triple-quadrupole linear ion trap mass spectrometer (Sciex, Framingham,
MA, USA) equipped with an ESI source operating in negative ionization mode, which is
favorable for the analysis of phenolic compounds. Separation was achieved on an Eclipse
Plus C18 reversed-phase column (50 mm × 2.1 mm i.d., 3.5 µm particle size) with an
in-line filter (2.1 mm, 0.2 µm). The mobile phase consisted of water with 0.2% (v/v) formic
acid (Solvent A) and acetonitrile with 0.1% (v/v) formic acid (Solvent B), applied in a
binary gradient.

Mass spectrometric data were acquired in information-dependent acquisition (IDA)
mode using enhanced product ion (EPI) scans for MS/MS fragmentation. The mass
accuracy parameters were set at 0.1 Da for MS and 0.5 Da for the MS/MS spectra. All
instrument settings followed previously validated protocols developed by our research
group [20,21]. Data analysis was performed using Analyst 1.6 software, and metabolite
semi-quantitative comparisons were based on relative peak intensities. Each sample was
analyzed in triplicate. All samples were subjected to analysis in a random order.

For metabolite identification, the MS/MS fragmentation spectra were compared with
previously reported data from published studies on strawberry and other plant-derived
metabolites [12,22–31]. Tentative identification was achieved when at least two characteristic
fragment ions and the parent (precursor) ion matched the fragmentation patterns described in
the literature, ensuring higher confidence in the annotation of the detected compounds.

2.4. Statistical Analysis

The metabolic dataset obtained from LC-MS/MS analysis was subjected to statistical
analysis to assess postharvest metabolic fluctuations in strawberry fruits and leaves. All
statistical analyses were performed using the MetaboAnalyst 6.0 platform. To determine
significant differences in metabolite intensities across storage days, one-way analysis of
variance (ANOVA) was performed, followed by Tukey’s Honest Significant Difference
(HSD) post hoc test. A significance threshold of p < 0.05 was used to identify metabolites
with statistically significant differences over time.

Additionally, volcano plot analysis was employed using a Wilcoxon non-parametric
test, considering metabolites with p < 0.05 and a fold change greater than 1.0 as significant.
In these plots, the x-axis represents the log2 fold change (log2(FC)) to indicate the magnitude
and direction of metabolite variation, while the y-axis displays the −log10 (p-value) to
highlight statistical significance.

For multivariate analysis, data normalization was applied, including autoscaling, to
ensure comparability between metabolites with different concentration ranges. Supervised
Partial Least Squares Discriminant Analysis (PLS-DA) was then applied to assess whether
metabolite fluctuations could differentiate storage time points. The quality of the PLS-DA
models was evaluated based on the goodness-of-fit parameter (R2) and predictive ability
(Q2). The reliability of the classification models was further validated using permutation
tests (n = 1000).
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2.5. Machine Learning-Based Evaluation of Strawberry Metabolites for NOX2 Inhibitory Potential
2.5.1. Curation of NOX2 Inhibitor Dataset and Molecular Descriptors Calculation

Testing compounds against NADPH oxidase 2 (NOX2) were retrieved from the
ChEMBL database (https://www.ebi.ac.uk/chembl/) (accessed on 8 February 2025), en-
suring only high-quality entries with verified biological activity were included. Specifically,
a dataset of 179 compounds including 107 actives (30 nM < IC50 < 99 uM) and 72 not-active
compounds (IC50 > 100 uM) was created. The molecular descriptors of the dataset were
calculated using RDKit (Release_2025.03.1), an open-source cheminformatics software
(https://www.rdkit.org/) (accessed on 8 February 2025), to characterize the chemical and
physicochemical properties relevant to bioactivity prediction.

Feature (i.e., descriptor) reduction was used to lessen the number of descriptors
to a subset of high-discrimination descriptors before being used to design the machine
learning system (ML-system). The descriptors’ importances were evaluated using the
model.feature_importance_ function provided by the scikit-learn library, where “model”
is the used machine learning classifier. We employed four (4) classifiers (Random Forest,
CART, XGBoost, and ExtraTrees) to evaluate the importance of the descriptors. Next,
descriptors were ranked according to their discriminatory importance. Descriptors’ fre-
quencies of occurrence, at highly ranked positions of importance, were recorded using the
4 classifiers over 100 repetitions to evaluate the above-named function, i.e., 400 descriptor-
importance evaluation cycles in total. The highest ranked 16 descriptors that consistently
exhibited high importance in all evaluation cycles were used in the design of the ML-system.

2.5.2. Machine Learning Analysis

Each of the four classifiers (Random Forest, CART, XGBoost, and ExtraTrees) was
separately trained on the retrieved ChEMBL dataset and the 16 highly important descriptors.
Thus, the dataset consisted of two classes, the active class of 107 active molecules of
16 descriptors and the not-active class of 72 not-active molecules of 16 descriptors.

The best ML-system was designed using the following procedure. First, the dataset
was randomly split into two parts; the first contained 70% of the data, called the training
dataset, and it was used for the design of the ML-system, and the second, called the testing
dataset, comprised 30% of the data, and was used for evaluating the performance of the
designed ML-system on unseen dataset, i.e., how well the designed ML-system would
perform when presented at its input with a new dataset for classification. Second, the data
of the training dataset was normalized (Equation (1)) by subtracting from each descriptor
value its mean value (over both classes) and dividing this by the corresponding standard
deviation (again over both classes).

normalized value = (descriptor value-mean)/standard deviation (1)

Third, both classes (active and not-active) of the training dataset were equalized in
terms of numbers of members using the SMOTE function of the scikit-learn library for
classifier performance reasons. Fourth, for a particular classifier and an increasing number
of the 16 high-importance descriptors (i.e., the first 2, 3, . . .,16 features), the ML-system was
designed, and its performance at each descriptor combination was evaluated using the
repeated KFOLD method from the scikit-learn library. The highest-performing ML-system
design for the particular classifier and the best descriptor combination was used to classify
the left-out testing dataset. Before being presented at the input of the best ML-system, the
testing dataset underwent normalization similar to that of the training dataset; however,
this used the mean value and the standard of the training dataset. Fifth, the whole process
of the 4 previous steps was repeated 5 times, and the classification accuracy, active-class

https://www.ebi.ac.uk/chembl/
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accuracy, not-active-class accuracy, and the area under the curve (AUC) of the Receiver
Operating Characteristic curve (ROC_AUC) were recorded. Finally, the whole process of
the 5 design steps was repeated for each one of the 4 classifiers, and it was thus possible
to identify the best-performing design, i.e., the combination of the classifier (XGBoost)
and the number of features (the first 11 features of high importance) employed in the best
ML-system design.

2.5.3. Machine Learning System Deployment to Predict Bioactivity of Identified Strawberry
Metabolites by LC-MS/MS Analysis

Following the design of the best ML-system, the latter was redesigned, but this time,
the total of the dataset from the ChEMBL library (170 compounds, 107 active and 72 not-
active) was employed to construct the ML-system using the best-performing classifier and
descriptors. The ML-system was next saved on a disk together with the means and standard
deviations of the employed descriptors. The bioactivity of the metabolites, identified by the
LC-MS/MS analysis of strawberry fruits and leaves, was then checked by the ML-system.
Specifically, 24 out of the 37 metabolites were selected, since they were described by an
accurate molecular structure. Their SMILES structures were retrieved and their descriptors
were calculated using the RDKit python library. Next, the values of the 11 best descriptors
were normalized using the saved means and standard deviations of the designed ML-
system. The 24 metabolites and the 11 descriptors were presented at the input of the ML-
system. The latter were read from disk and used to classify the 24 LC-MS/MS-identified
metabolites into active or not active. The classification was recorded.

The above process was repeated for each of the 3 remaining classifiers included in
the present study (Random Forest, CART, ExtraTrees). Metabolites classified into the same
class by all 4 classifiers were accepted as of true bioactivity indication.

The following figure (Figure 1) is a representative flowchart of the above-mentioned
machine learning procedure.
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3. Results
3.1. Metabolite Profile of Strawberry Fruits and Leaves

The application of LC-MS/MS analysis led to the identification of 37 metabolites in
the strawberries’ fruits and leaves belonging to various biochemical classes, including
organic acids, phenolic acids, flavonoids, hydroxycinnamic acid derivatives, amino acids,
terpenoids, and fatty acid glycosides. The metabolite distribution varied distinctly between
the fruits and leaves, reflecting differential tissue-specific metabolic pathways and physio-
logical functions. Among these, 25 metabolites were found in the fruit, 22 were found in
the leaves, and 10 were found in both. The presence of common compounds suggests coor-
dinated metabolic pathways or potential metabolite transfer between the fruit and leaves,
while exclusive compounds highlight tissue specialization. A comprehensive overview of
these metabolites, including their molecular weight (MW), negative [M−H]− ions, MS/MS
fragmentation information, retention time, and tissue distribution, is presented in Table 1.
The identification of phenolic compounds was achieved through the comparative analysis
of the parent ions (m/z) obtained from the MS spectra and the fragments from the MS/MS
spectra with corresponding literature data.

Among the organic acids, malic and citric acids were detected in both strawberry
fruits and leaves, while L-ascorbic and dehydroascorbic acids were found exclusively in the
fruits. Phenolic acids such as caffeic acid, ellagic acid aglycone, and caffeic acid hexoside
were present in both tissues. Gallic acid monohydrate, coumaric acid hexose, and dicaf-
feoylquinic acid were specific to strawberry fruits, while p-coumaroyl ester, galloyl hexose,
coumaroylquinic acid, and galloylquinic acid were exclusive to leaves. Flavonoids were
found to be distributed widely in both tissues. Epicatechin, quercetin-3-glucuronide, flavan-
3-ol derivatives, kaempferol coumaroyl hexose, phloridzin, and kaempferol rutinoside
were detected in both strawberry fruits and leaves. Conversely, apigenin-7-O-glucoside,
kaempferol glucuronide, kaempferol acetylglucoside, and quercetin hexoside were exclu-
sive to the fruits, while kaempferol hexose, kaempferol pentose glucuronide, and quercetin
rutinoside were detected only in the leaves. Hydroxycinnamic acid derivatives were
identified in both tissues. Ferulic acid hexose derivative was found only in strawberries’
fruits, while dihydroferulic acid 4-O-glucuronide and di-coumaroyl hexose were found
exclusively in the leaves. Ellagic acid deoxyhexose was present in both tissues. Salidroside,
a phenolic glycoside with known bioactivity, was detected only in the leaves. Distinct
separation was also seen in terpenoids and fatty acid derivatives. Sesquiterpenoids and sa-
pogenins were fruit-specific, while octadecatrienoic acid glycoside was exclusive to leaves.
Tryptophan, the only identified amino acid, was detected only in the fruits.
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Table 1. Identified metabolites in strawberry fruits and leaves.

No Tentative Identification Group MW MS (m/z), ID MS/MS Retention Time
(min) Reference Strawberry Fruits

/Leaves **

1 Malic acid Organic acids 134.0578 133.12 115.31; 89.30; 71.22 0.654
[24], https://hmdb.ca/spectra/
ms_ms/2254556, accessed on

8 February 2025
+/+

2 Dehydroascorbic acid
Vitamin and

vitamin
derivatives

174.0165 173.01 155.22; 111.31;
87.20; 85.23 0.836

[24], https://www.hmdb.ca/
spectra/ms_ms/283274,

accessed on 8 February 2025
+/−

3 L-ascorbic acid
Vitamin and

vitamin
derivatives

176.0685 175.05 131.01; 115.20;
113.10; 87.42 1.584

[24], https://hmdb.ca/spectra/
ms_ms/1473014, accessed on

8 February 2025
+/−

4 Caffeic acid Phenolic acids 180.0423 179.04 135.11; 107.21;
91.10 11.856

[25], https://hmdb.ca/spectra/
ms_ms/2234953, accessed on

8 February 2025
+/+

5 Gallic acid monohydrate Phenolic acids 188.0321 187.16 169.24; 125.40;
97.45 4.781 [25] +/−

6 Citric acid Organic acids 192.0271 191.12 173.42; 129.40;
111.22 0.737 [24,26] +/+

7 Tryptophan Amino acids 204.0899 203.16 186.61; 142.32;
116.33 1.335 [24] +/−

8 (-) Epicatechin Proanthocyanidins 290.2681 289.20
245.80; 205.50;
203.21; 179.60;

109.12
1.671 [27,28] +/+

9 Salidroside Phenolic
glycosides 300.0852 299.27 179.54; 137.00;

89.43 1.062 [12] −/+

10 Ellagic acid aglycone Phenolic acids 302.0067 301.31
300.51; 284.52,
257.51; 229.53;

200.34
4.101 [24] +/+

11 Coumaric acid hexose Phenolic acids 326.1011 325.24 163.42; 145.31 1.855 [24] +/−
12 Galloyl hexose Phenolic acids 332.0752 331.10 169.31; 123.50 0.837 [12] −/+
13 Coumaroylquinic acid Phenolic acids 338.1013 337.27 191.52; 173.50 4.100 [12] −/+

14 Caffeic acid hexoside Phenolic acids 342.0951 341.32 179.31; 161.30;
135.12 0.611 [29] +/+

15 Galloylquinic acid Phenolic acids 344.0753 343.23 191.00; 169.61;
93.42 0.800 [12] −/+

16 p-Coumaroyl-ester Phenolic acids 356 * 355.24 295.91; 193.41;
175.10; 134.51 3.486 [23] −/+

https://hmdb.ca/spectra/ms_ms/2254556
https://hmdb.ca/spectra/ms_ms/2254556
https://www.hmdb.ca/spectra/ms_ms/283274
https://www.hmdb.ca/spectra/ms_ms/283274
https://hmdb.ca/spectra/ms_ms/1473014
https://hmdb.ca/spectra/ms_ms/1473014
https://hmdb.ca/spectra/ms_ms/2234953
https://hmdb.ca/spectra/ms_ms/2234953
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Table 1. Cont.

No Tentative Identification Group MW MS (m/z), ID MS/MS Retention Time
(min) Reference Strawberry Fruits

/Leaves **

17 Dihydroferulic acid
4-O-glucuronide

Hydroxycinnamic
acids 372.1056 371.31 209.82; 193.51 3.564 [26] −/+

18 Apigenin-7-O-glucoside Flavonols 432.3775 431.28 270.82; 269.54;
225.22 2.927 [26,29] +/−

19 Phloridzin Flavonoid
glycosides 436.1369 435.24 273.51; 167.33;

125.23 5.061 [26] +/+

20 Ellagic acid deoxyhexoside Hydroxycinnamic
acid derivatives 448.0641 447.29

302.20; 301.50;
300.51; 257.52;

229.51
3.892 [27,30] +/+

21 Ferulic acid hexose
derivative

Hydroxycinnamic
acids 450 * 449.29 355.61; 287.52;

269.52; 193.83 3.147 [22,29] +/−

22 Kaempferol glucuronide Flavonols 462.3604 461.25
285.50; 257.51;
229.60; 175.60;
163.51; 113.21

4.609 [24,31] +/−

23 Quercetin hexoside Flavonoid
glycosides 464.3763 463.53 300.50; 271.61;

255.72; 179.52 4.232 [27,29,31] +/−

24 Sesquiterpenoid
Terpenoids and

related
compounds

464.2628 463.55 417.81; 255.51;
161.31 5.308 [24] +/−

25 Kaempferol hexose Flavonols 466.1118 465.28 447.30; 285.62;
241.63; 151.40 3.333 [12,24] −/+

26 Di-coumaroyl hexose Hydroxycinnamic
acid derivatives 472.1383 471.24 163.52; 145.31 5.236 [12] −/+

27 Quercetin-3-glucuronide Flavonoid
glycosides 478.3598 477.27

301.63; 255.71;
179.51; 151.34;

121.30
4.253 [12,29] +/+

29 Sapogenin
Terpenoids and

related
compounds

488.3515 487.54 469.81; 407.80;
135.51 6.451 [24] +/−

30 Kaempferol acetyl
glucoside Flavonols 490.4136 489.28 447.93; 285.62;

255.42 4.957 [27] +/−

31 Octadecatrienoic acid
glycoside

Fatty acid
derivatives 560.3221 559.47 513.90; 277.71;

253.71; 161.50 7.670 [12] −/+
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Table 1. Cont.

No Tentative Identification Group MW MS (m/z), ID MS/MS Retention Time
(min) Reference Strawberry Fruits

/Leaves **

32 Dicaffeoylquinic acid Phenolic acids 562.2996 561.61 515.30; 191.82;
161.42 6.961 [24] +/−

33 Flavan-3-ol derivative Proanthocyanidins 578.1647 577.27
425.94; 407.82;
289.60; 269.51;

147.60
3.374 [24,27] +/+

34 Kaempferol coumaroyl
hexoside Flavonols 594.5196 593.34 447.52; 285.84;

255.41 6.126 [27] +/+

35 Kaempferol-rutinoside Flavonols 594.1585 593.12 547.53; 327.51;
308.80; 285.60 6.111 [32] +/−

36 Kaempferol pentose
glucuronide Flavonols 594.1244 593.24 307.63; 285.62;

113.31 6.008 [12] −/+

37 Q-rutinoside Flavonoid
glycosides 610.1533 609.26 301.50; 179.41;

151.42 3.856 [23] −/+

* MW accuracy may vary for compounds with partially unknown structures or literature-based tentative identifications. ** ‘+’ indicates presence and ‘−’ indicates absence of metabolite
in respective tissues (fruit or leaf).
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3.2. Statistical Analysis of Metabolite Changes During Storage in Strawberry Fruits
3.2.1. ANOVA Post Hoc Analysis of Metabolite Fluctuations in Strawberry Fruits

A one-way analysis of variance (ANOVA) with Tukey’s HSD post hoc test was con-
ducted to assess the significant fluctuations in metabolite intensities over different days
of storage in strawberries. The analysis revealed seven metabolites that exhibited statis-
tically significant changes (p < 0.05), indicating metabolic shifts during the postharvest
storage period (11 days). Among the organic acids, malic acid demonstrated a steady
decrease over the 11-day storage period, while citric acid exhibited an initial increase
before stabilizing. Phenolic acids displayed distinct trends, with caffeic acid showing a
continuous decrease, suggesting progressive metabolic transformation or degradation,
while ferulic acid hexose derivative and dicaffeoylquinic acid exhibited fluctuations during
storage. Kaempferol glucuronide also varied significantly over time, suggesting changes
in flavonoid metabolism during storage. The statistical significance of these fluctuations
is summarized in Table 2, while box plots illustrating the key metabolites’ trends are
illustrated in Figure S1 (Supplementary Materials).

Table 2. Strawberry fruit metabolites showing statistically significant changes during storage, based
on one-way ANOVA followed by Tukey’s HSD post hoc test (p < 0.05). Among-days comparison
indicates time points with significant differences in metabolite intensity.

Metabolites p-Value Significant Differences (Tukey’s HSD) *

Caffeic Acid 2.59 × 10−7 Day 11 vs. Day 1, Day 6 vs. Day 4, Day 11 vs. Day 4, Day 11 vs. Day 6,
Day 11 vs. Day 8

Malic Acid 6.12 × 10−5 Day 8 vs. Day 1, Day 11 vs. Day 1, Day 8 vs. Day 4, Day 11 vs. Day 4,
Day 8 vs. Day 6

Citric Acid 7.50 × 10−5 Day 6 vs. Day 1, Day 8 vs. Day 1, Day 6 vs. Day 4, Day 8 vs. Day 4,
Day 11 vs. Day 8

Ferulic Acid Hexose
Derivative 0.000481 Day 6 vs. Day 4, Day 8 vs. Day 4, Day 11 vs. Day 4

Coumaric Acid
Hexose 0.003591 Day 11 vs. Day 1, Day 11 vs. Day 4

Dicaffeoylquinic Acid 0.008077 Day 6 vs. Day 1, Day 8 vs. Day 6
Kaempferol
Glucuronide 0.008119 Day 4 vs. Day 1, Day 11 vs. Day 4

* Day X vs. Day Y indicates comparison of metabolite levels at day X relative to day Y.

3.2.2. Discriminant Analysis of Metabolite Variability in Strawberry Fruits During Storage

To discriminate between storage days, Partial Least Squares Discriminant Analysis
(PLS-DA) was conducted. When considering all storage days, no strong classification
accuracy was observed. However, a subtle trend of metabolic changes from day 1 to day
11 was observed, as presented in Figure 2a. This finding suggests that postharvest metabolic
variability may occur progressively rather than in sharply defined phases. A focused
comparison of the first (day 1) and last (day 11) storage days resulted in a substantial
improvement in classification accuracy (0.95), confirming that metabolic changes led to
a distinct differentiation between the early and late storage stages. The scatter plots
of the discriminant analysis for all storage days, as well as the focused comparison of
day 1 and day 11, are shown in Figure 2. The validity and robustness of the PLS-DA
model designed to discriminate between the first and last day of storage was confirmed
through a permutation test, and the corresponding permutation plot, as well as a table
summarizing the model parameters (R2, Q2, and the two-component accuracy), can be
found in Figure S2 in the Supplementary Materials.
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its reliability in identifying storage-related metabolic shifts. 

The variable importance in projection (VIP) plot identified the key metabolites 
responsible for differentiating between day 1 and day 11. Caffeic acid exhibited the 
highest VIP score, highlighting its significant depletion over storage and reinforcing its 
role as a major antioxidant compound. Malic acid was also identified as a significant 
metabolite, reflecting its steady consumption as a respiratory substrate throughout the 
storage period. Phloridzin, a dihydrochalcone glycoside, emerged as another key 
contributor, exhibiting fluctuations potentially linked to sugar metabolism and structural 
defense. Its involvement in regulating cell wall integrity and reactive oxygen species has 

Figure 2. Partial Least Squares Discriminant Analysis (PLS-DA) scatter plots showing metabolic
differentiation in strawberry fruits during storage: (a) a comparison across all storage days and (b) a
focused comparison between day 1 and day 11. While Component 1 and Component 2 individually
explain a relatively small percentage of the total variance—an expected outcome in complex datasets—
together they capture a meaningful separation between time points. The model focusing on early-
and late-stage changes (b) was validated through permutation testing, confirming its reliability in
identifying storage-related metabolic shifts.

The variable importance in projection (VIP) plot identified the key metabolites re-
sponsible for differentiating between day 1 and day 11. Caffeic acid exhibited the highest
VIP score, highlighting its significant depletion over storage and reinforcing its role as a
major antioxidant compound. Malic acid was also identified as a significant metabolite,
reflecting its steady consumption as a respiratory substrate throughout the storage period.
Phloridzin, a dihydrochalcone glycoside, emerged as another key contributor, exhibiting
fluctuations potentially linked to sugar metabolism and structural defense. Its involvement
in regulating cell wall integrity and reactive oxygen species has been demonstrated in other
plant systems, where it plays a crucial role in development and pathogen resistance [33].
Additional contributors included coumaric acid, flavan-3-ol derivatives, ferulic acid hexose
derivative, caffeic acid hexoside, and quercetin-3-glucuronide, all of which are involved
in antioxidant defense, flavonoid metabolism, and structural modifications [34–37]. The
ranking of these metabolites based on their VIP scores is shown in Figure 3.
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The volcano plot of the day 1 vs. day 11 comparison of strawberries revealed key
metabolites contributing to the metabolic differentiation between the early and late stor-
age stages (Figure 4 and Table S1 in the Supplementary Materials). Several metabolites
demonstrated significant and substantial alterations. Caffeic and malic acid were among
the most reduced on day 11, as indicated by their positive log2 (FC) values (1.08 and 1.03,
respectively) and significant p-values (<0.001 and <0.05, respectively), suggesting their de-
pletion during storage. In contrast, quercetin-3-glucuronide exhibited the most pronounced
increase, with a log2 (FC) of −1.99 and a highly significant p-value (<0.001), pointing to
its marked accumulation. Phloridzin, coumaric acid hexose, flavan-3-ol derivative, and
caffeic acid hexoside also increased significantly (p < 0.05) during storage, consistent with
a progressive alteration of flavonoid and phenolic acid metabolism. Finally, ferulic acid
hexose derivative exhibited a significant (p < 0.05) decrease.
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3.3. Statistical Analysis of Metabolite Changes During Storage in Strawberry Leaves
3.3.1. ANOVA Post Hoc Analysis of Metabolic Alterations in Strawberry Leaves

A one-way analysis of variance with Tukey’s HSD post hoc test was conducted to
examine whether any metabolic changes occurred in strawberry leaves across different
storage days. Nine metabolites displayed statistically significant changes (p < 0.05), thus in-
dicating metabolic alterations in response to postharvest storage conditions. The statistical
significance of these alterations is outlined in Table 3, and a graphical representation of the
key metabolites’ trends is presented in Figure S3 (Supplementary Materials).

Table 3. Strawberry leaf metabolites showing statistically significant changes during storage, based
on one-way ANOVA followed by Tukey’s HSD post hoc test (p < 0.05). Among-days comparison
indicates time points with significant differences in metabolite intensity.

Metabolites p-Value Significant Differences (Tukey’s HSD) *

Galloyl Hexose 5.8522 × 10−8 Day 4 vs. Day 1, Day 6 vs. Day 4, Day 8 vs. Day 4
Ellagic Acid Aglycone 8.7371 × 10−8 Day 4 vs. Day 1, Day 6 vs. Day 1, Day 8 vs. Day 1, Day 6 vs. Day 4, Day 8 vs. Day 4
Caffeic Acid Hexoside 1.0295 × 10−5 Day 6 vs. Day 1, Day 6 vs. Day 4, Day 8 vs. Day 6

Salidroside 2.6579 × 10−5 Day 4 vs. Day1, Day 6 vs. Day 1, Day 8 vs. Day 4, Day 8 vs. Day 6
Phloridzin 2.8896 × 10−5 Day 4 vs. Day 1, Day 6 vs. Day 4, Day 8 vs. Day 4
Malic Acid 0.00079905 Day 4 vs. Day 1, Day 6 vs. Day 4

Galloylquinic Acid 0.0035448 Day 4 vs. Day 1, Day 6 vs. Day 1
Citric Acid 0.0076111 Day 4 vs. Day 1, Day 8 vs. Day 4

Flavan-3-ol Derivative 0.018281 Day 8 vs. Day 4

* Day X vs. Day Y indicates comparison of metabolite levels at day X relative to day Y.
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Among the organic acids, malic acid levels exhibited temporal alterations throughout
storage, while citric acid levels initially increased on day 4 and subsequently decreased on
later storage days. Salidroside, identified as a phenolic glycoside, also exhibited significant
variations, with a notable rise on day 4 followed by a gradual decline toward the end of
storage. Ellagic acid aglycone increased progressively to day 8, indicating a potential role in
stress adaptation. Hydroxycinnamic acid derivatives, such as galloylquinic acid and galloyl
hexose, demonstrated dynamic shifts, with galloylquinic acid reaching a marked peak
on day 4. Flavonoid-related metabolites, including caffeic acid hexoside and flavan-3-ol
derivative, fluctuated during storage, ultimately showing a decreasing trend by the end of
the storage period.

3.3.2. Discriminant Analysis of Metabolite Variability in Strawberry Leaves During Storage

Partial Least Squares Discriminant Analysis (PLS-DA) was performed over all the
time points. The model achieved a classification accuracy of 0.78, with a permutation test
yielding p = 0.04, thus confirming the robustness of the discriminant analysis. Subsequently,
discriminant analysis was performed, focusing on the initial (day 1) and final (day 8) stor-
age days, with the objective of comprehensively understanding the metabolic alterations
between the early and late stages of storage. The scatter plots for both discriminations
are presented in Figure 5. The validity and robustness of the PLS-DA model designed to
discriminate between the first and last day of storage (Figure 2b), along with a table summa-
rizing the model parameters, can be found in Figure S4 of the Supplementary Materials.

Metabolites 2025, 15, x FOR PEER REVIEW 15 of 29 
 

 

significant variations, with a notable rise on day 4 followed by a gradual decline toward 
the end of storage. Ellagic acid aglycone increased progressively to day 8, indicating a 
potential role in stress adaptation. Hydroxycinnamic acid derivatives, such as 
galloylquinic acid and galloyl hexose, demonstrated dynamic shifts, with galloylquinic 
acid reaching a marked peak on day 4. Flavonoid-related metabolites, including caffeic 
acid hexoside and flavan-3-ol derivative, fluctuated during storage, ultimately showing a 
decreasing trend by the end of the storage period. 

3.3.2. Discriminant Analysis of Metabolite Variability in Strawberry Leaves During 
Storage 

Partial Least Squares Discriminant Analysis (PLS-DA) was performed over all the 
time points. The model achieved a classification accuracy of 0.78, with a permutation test 
yielding p = 0.04, thus confirming the robustness of the discriminant analysis. 
Subsequently, discriminant analysis was performed, focusing on the initial (day 1) and 
final (day 8) storage days, with the objective of comprehensively understanding the 
metabolic alterations between the early and late stages of storage. The scatter plots for 
both discriminations are presented in Figure 5. The validity and robustness of the PLS-
DA model designed to discriminate between the first and last day of storage (Figure 2b), 
along with a table summarizing the model parameters, can be found in Figure S4 of the 
Supplementary Materials. 

(a) (b) 

Figure 5. PLS-DA scatter plots illustrating the metabolic changes in strawberry leaves during 
storage: (a) across all sampling days; (b) a comparison between day 1 and day 8. The low variance 
explained by Component 1 and Component 2 reflects the high dimensionality and subtle variability 
inherent in metabolomics data. Despite this, the model summarizing the metabolic alterations 
between early and late storage stages (b) exhibited good classification accuracy and passed 
permutation testing, supporting its robustness in distinguishing between early and late storage 
stages. 

The VIP plot identified the most important metabolites driving the metabolic changes 
between day 1 and day 8 (Figure 6). The metabolites that most significantly contributed 
to the discrimination included ellagic acid aglycone, which exhibited the strongest 
contribution, followed by galloylquinic acid, galloyl hexose, octadecatrienoic, caffeic acid 
hexoside, malic acid, flavan-3-ol derivative, salidroside, and epicatechin. These 

Figure 5. PLS-DA scatter plots illustrating the metabolic changes in strawberry leaves during storage:
(a) across all sampling days; (b) a comparison between day 1 and day 8. The low variance explained
by Component 1 and Component 2 reflects the high dimensionality and subtle variability inherent in
metabolomics data. Despite this, the model summarizing the metabolic alterations between early
and late storage stages (b) exhibited good classification accuracy and passed permutation testing,
supporting its robustness in distinguishing between early and late storage stages.

The VIP plot identified the most important metabolites driving the metabolic changes
between day 1 and day 8 (Figure 6). The metabolites that most significantly contributed to
the discrimination included ellagic acid aglycone, which exhibited the strongest contribu-
tion, followed by galloylquinic acid, galloyl hexose, octadecatrienoic, caffeic acid hexoside,
malic acid, flavan-3-ol derivative, salidroside, and epicatechin. These metabolites played a
significant role in distinguishing the metabolic state of the leaves at the beginning and end
of storage.
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day 8).

To further explore the key contributors and the magnitude of the metabolic changes
during storage, a volcano plot analysis was performed for day 1 vs. day 8 in strawberry
leaves (Figure 7). The results of the analysis indicated that ellagic acid aglycone underwent
the most significant increase, with a log2 (FC) of −2.25 and a p-value of 0.002, suggesting
a pronounced accumulation during storage. Galloylquinic acid and galloyl hexose also
showed significant (p < 0.05) increases, while octadecatrienoic acid glycoside, caffeic acid
hexoside, and flavan-3-ol derivative showed significant (p < 0.05) reductions. These findings
reveal that both phenolic acids and flavonoid-related compounds underwent marked
fluctuations. The exact fold changes and p-values for the significantly altered metabolites
are provided in Table S2 (Supplementary Materials).
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metabolites, respectively.

3.3.3. Machine Learning-Based Evaluation of NOX2 Inhibitory Potential

Four classifiers (Random Forest, CART, XGBoost, and ExtraTrees) were employed to
rank the molecular descriptors concerning their discriminatory importance. Sixteen (16)
descriptors were found to be of high importance regarding NOX2 inhibitory activity for
the CHEMBL database compounds. The selected descriptors, presented in Table 4, repre-
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sent essential physicochemical properties of molecules that demonstrate their importance
for bioactivity.

Table 4. A table of the 16 selected descriptors. The whole process was repeated 100 times, giving
(4 × 100 = 400 feature-importance cycles). The ranking was performed by means of how many times
each feature appeared in the feature-importance cycles.

Features’ Ranking by
Importance Feature Names (Descriptors) Frequency of Appearance

1 BCUT2D_MWHI 381
2 PEOE_VSA6 375
3 Chi2v 357
4 BCUT2D_MRHI 298
5 qed 282
6 SMR_VSA10 278
7 VSA_EState2 272
8 SlogP_VSA6 257
9 FractionCSP3 257
10 VSA_EState6 251
11 BCUT2D_MWLOW 248
12 EState_VSA7 233
13 MinAbsEStateIndex 231
14 Chi2n 228
15 VSA_EState8 223
16 PEOE_VSA9 213

The BCUT2D descriptors, including BCUT2D_MWHI, BCUT2D_MRHI, and
BCUT2D_MWLOW, emerge as the top features since they function as eigenvalue met-
rics from weighted molecular adjacency matrices. BCUT2D indices demonstrate how
molecular size and shape together with atomic weight distribution reveal that molecular
bulk and polarizability determine NOX2 inhibitory potential. The top-ranking descriptors
include several Van der Waals surface-area-based features such as PEOE_VSA6/9 and
SMR_VSA10 along with SlogP_VSA6 and VSA_EState2/6/8. The descriptors categorize
molecular surface areas by partial charge (PEOE), polarizability (SMR), and lipophilicity
(SlogP), which indicates that balancing polar and hydrophobic regions on the surface is cru-
cial for activity. The surface area descriptors PEOE_VSA6 and PEOE_VSA9 illustrate that
an ideal polar surface interaction with the NOX2 enzyme is essential. Also, VSA_EState de-
scriptors indicate that certain electron-rich or electron-deficient surface areas are associated
with inhibitory functionality. The valence and simple connectivity indices of order 2 (Chi2v
and Chi2n) are presented with high importance because they connect molecular topology
and branching patterns to biological activity, such as aromatic ring presence or substituent
complexity. The sp3 carbon fraction (FractionCSP3) serves as a critical feature because it
displays that enzyme activity depends on the level of saturation which differentiates be-
tween aliphatic and aromatic content, as structures with high aromaticity (low sp3 fractions)
exhibit different interaction capabilities compared to aliphatic structures. The presence
of the quantitative estimate of drug-likeness (QED) among leading features denotes that
tested NOX2 inhibitors manifest a balanced combination of physicochemical properties
(such as molecular weight and lipophilicity). The significance of the MinAbsEStateIndex
(minimum absolute electrotopological index) reveals how extreme electronic environments
including powerful electron-withdrawing/donating substituents and symmetrical charge
distributions influence activity [38].

Using these 16 key descriptors, a total of four ML-systems based on four different
classifiers (Random Forest, CART, XGBoost, and ExtraTrees) were designed. The best
performance was achieved by the XGBoost-based ML-system, and a combination of the first
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11 descriptors (Table 4) was utilized for the model generation. The variability of the specific
descriptors along the two categories is illustrated in Figure S5 (Supplementary Materials).
The XGBoost classifier performed with five epochs resulted in a mean accuracy of 91.2%
and demonstrated balanced performance in predicting active and not-active compounds
with 89.1% sensitivity for active and 93.1% specificity for not-active compounds. Figure 8a
presents the Receiver Operating Characteristic (ROC) curves for five independent epochs of
training/testing. The area under each curve (AUC) quantifies the classification performance
for NOX2 inhibitor prediction. AUC values close to 1.0 indicate excellent model accuracy,
with the mean AUC reaching 0.970, reflecting high sensitivity and specificity. In parallel,
Figure 8b shows the descriptors’ importance ranking, identifying the relative contribution
of the top molecular descriptors used by the XGBoost classifier. These features, such as
BCUT2D_MWHI and PEOE_VSA6, were identified as the most influential in distinguishing
active from inactive compounds, based on their role in minimizing classification error. The
table represents the five-epoch overall, not-active, and active accuracy, as well as the area
under the curve value.
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The designed model was then utilized to predict NOX2 inhibitory potential in
24 metabolites derived from strawberries identified via LC-MS/MS analysis. These metabo-
lites represent various chemical classes such as phenolic acids, flavonoids, tannins, ter-
penoids, and organic acids.

Considering only metabolites classified into the same class by all four of the ML-
systems, 21 out of the 24 (88%) tested metabolites were predicted to be potential NOX2 in-
hibitors with high confidence. The classification of 21 compounds as “Active” highlights
the potential of structurally diverse strawberry phytochemicals as potential inhibitors of
the NADPH oxidase (NOX2) enzyme complex. The full list of the tested metabolites, along
with their corresponding SMILES structures, and the ML prediction is provided in Table 5.
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Table 5. A list of the strawberry-derived metabolites predicted as NOX2 inhibitors, with the corresponding SMILES annotations and ML-system predictions. The @
and @@ symbols in the SMILES strings indicate stereochemistry and are part of the standard notation used in cheminformatics to describe chiral centers.

Compound Chemical
Formula SMILES ML-System

Prediction

Epicatechin C15H14O6 O[C@H]1CC2=C(O)C=C(O)C=C2O[C@H]1C1=CC(O)=C(O)C=C1 Active
Apigenin-7-O-glucoside C21H20O10 OCC1OC(OC2=CC(O)=C3C(=O)C=C(OC3=C2)C2=CC=C(O)C=C2)C(O)C(O)C1O Active

Sesquiterpenoid C15H18O3 C[C@@H]1[C@@H]2CC[C@]3(C)C=CC(=O)C(C)=C3[C@@H]2OC1=O Not Active
Sapogenin C30H50O3 C[C@H]1CC[C@@]2([C@H]([C@H]3[C@@H](O2)C[C@@H]4[C@@]3(CC[C@H]5[C@H]4CCC6[C@@]5(CCCC6)C)C)C)OC1 Active
Salidroside C14H20O7 OCC1OC(OCCC2=CC=C(O)C=C2)C(O)C(O)C1O Active

Quercetin-3-glucuronide C21H18O13 OC1C(O)C(OC2=C(OC3=CC(O)=CC(O)=C3C2=O)C2=CC=C(O)C(O)=C2)OC(C1O)C(O)=O Active
Procyanidin dimer C30H26O12 [H][C@]1([C@@H](O)[C@H](OC2=CC(O)=CC(O)=C12)C1=CC(O)=C(O)C=C1)C1=C2O[C@@H]([C@H](O)[C@@]([H])(C3=C(O)C=C(O)C4=C3O Active

[C@@H]([C@H](O)C4)C3=CC(O)=C(O)C=C3)C2=C(O)C=C1O)C1=CC(O)=C(O)C=C1
p-Coumaroyl-ester C16H14O5 O[C@@H]1C[C@](O)(C[C@@H](OC(=O)\C=C/C2=CC=C(O)C(O)=C2)[C@@H]1O)C(O)=O Active

Malic acid C4H6O5 OC(CC(O)=O)C(O)=O Not Active
L-ascorbic acid C6H8O6 OCC(O)C1OC(=O)C(O)=C1O Active

Kaempferol C15H12O6 OC1=CC=C(C=C1)C1=C(O)C(=O)C2=C(O1)C=C(O)C=C2O Active
Kaempferol acetylhexose C23H22O12 OCC1OC(OC2C(O)C(O)C(CO)OC2OC2=C(OC3=CC(OC4OC(C(O)C(O)C4O)C(O)=O)=CC(O)=C3C2=O)C2=CC=C(O)C=C2)C(O)C(O)C1O Active

Isorhamnetin hexose C22H20O12 COC1=C(OC2OC(CO)C(O)C(O)C2O)C=CC(=C1)C1=C(O)C(=O)C2=C(O)C=C(O)C=C2O1 Active
Galloylquinic acid C16H12O10 OS(=O)(=O)OC(=O)C1=CC=CC=C1 Active

Gallic acid monohydrate C7H6O5 C(O)(=O)C1=CC(O)=C(O)C(O)=C1.[H]O[H] Active
Ellagic acid deoxyhexose C20H16O12 OC1=CC=C(\C=C\C2=CC(O)=CC(O)=C2)C=C1 Active

Ellagic acid C14H6O8 OC1=C(O)C2=C3C(=C1)C(=O)OC1=C3C(=CC(O)=C1O)C(=O)O2 Active
Dicaffeoylquinic acid C25H24O12 O[C@H]1[C@H](OC(=O)\C=C\C2=CC=C(O)C(O)=C2)C[C@@](O)(C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1)C(=O)O Active
Dehydroascorbic acid C6H6O6 [H][C@@]1(OC(=O)C(=O)C1=O)[C@@H](O)CO Not Active
Coumaroylquinic acid C16H16O9 O[C@@H]1C[C@@](O)(C[C@@H](OC(=O)\C=C\C2=CC=C(O)C=C2)[C@H]1O)C(O)=O Active

Citric acid C6H8O7 OC(=O)CC(O)(CC(O)=O)C(O)=O Not Active
Catechin C15H14O6 O[C@H]1CC2=C(O)C=C(O)C=C2O[C@@H]1C1=CC(O)=C(O)C=C1 Active

Caffeic acid C9H8O4 OC(=O)\C=C\C1=CC(O)=C(O)C=C1 Active
Tryptophan C11H12N2O2 NC(CC1=CNC2=C1C=CC=C2)C(O)=O Active
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4. Discussion
This study provides a comprehensive investigation into the postharvest metabolic

dynamics of strawberry fruits and leaves using LC-MS/MS characterization combined
with multivariate statistical and cheminformatics tools. Postharvest quality loss and the
underutilization of plant by-products remain major challenges in horticulture and food
systems. By profiling metabolite alterations during storage, we gain valuable insights into
the biochemical shifts that underpin fruit senescence and leaf degradation. These findings
not only contribute to our understanding of strawberry postharvest physiology but also
highlight the untapped potential of strawberry leaves as reservoirs of bioactive compounds.
The integration of the identified metabolites with statistical modeling and bioactivity
prediction enables a multidimensional evaluation of plant material, supporting its more
sustainable use and value-added applications in both food- and health-related industries.

4.1. Metabolic Changes in Strawberry Fruits During Storage

The observed metabolic alterations in strawberries during storage highlight key bio-
chemical processes affecting organic acid, phenolic acid, and flavonoid metabolism. The
significant decrease in malic acid suggests its active participation as a respiratory substrate
in the TCA cycle, supporting previous studies reporting the involvement of organic acids
in sustaining energy demands in stored strawberries [39]. The initial increase in citric
acid, followed by stabilization, may be attributed to the conversion of malic acid to citric
acid via oxaloacetic acid, a mechanism previously described in strawberries under storage
conditions [40]. This suggests that, rather than being rapidly degraded, organic acids are
initially transformed into other metabolites, leading to their gradual decrease throughout
the storage period. However, the overall decrease in both malic and citric acids in this
study confirms that organic acids are progressively exhausted during storage, supporting
findings that their depletion contributes to postharvest metabolic adjustments in straw-
berries [41,42]. Regarding phenolic acid metabolism, a significant decrease in caffeic acid
and ferulic acid hexose derivative was observed, suggesting active phenolic degradation
during storage, as has been reported by various studies [41,43]. The decreasing trend of
ferulic acid hexose aligns with previous reports stating that ferulic acid derivatives reduce
due to oxidative stress and enzymatic degradation, leading to reduced antioxidant capac-
ity in stored strawberries over time [44]. Conversely, dicaffeoylquinic acid exhibited an
increasing trend over storage, suggesting its role as a secondary metabolite accumulating
in response to postharvest conditions. This finding is consistent with the observations
made in over-ripe strawberries, where dicaffeoylquinic acid accumulation has been linked
to enzymatic transformation during senescence [45]. Its accumulation may be driven by
oxidative-stress-related enzymatic activity, contributing to phenolic metabolism during
storage. A similar trend was observed in blackthorn (Prunus spinosa L.) fruits, where di-
caffeoylquinic acids were identified in over-ripe samples, indicating their association with
fruit maturation and senescence processes [46]. Flavonoid metabolism followed a mixed
trend. While most flavonoids degraded over time, kaempferol acetylglucoside remained
relatively stable, aligning with studies showing that some flavonoids accumulate under
specific storage conditions [45,47,48]. The variations observed in kaempferol derivatives
suggest that, while oxidative stress depletes some flavonoids, others may be upregulated
in response to storage conditions.

Multivariate statistical analysis using PLS-DA revealed that metabolic changes in
strawberries possibly occurred progressively throughout storage, with a clear discrimi-
nation between days 1 and 11, suggesting that specific metabolic markers characterize
postharvest biochemical differentiation. VIP scores highlighted caffeic acid, phloridzin,
malic acid, and coumaric acid hexoside as the most important contributors, emphasizing
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their involvement in organic acid metabolism, phenolic degradation, and flavonoid stability
during storage. These findings align with previous studies identifying organic acids and
flavonoids as key metabolic markers of storage-related transformations [47,49]. Notably,
phloridzin exhibited significant variations, which could reflect its sensitivity to oxidative
and metabolic changes during storage. This aligns with its known role as a flavonoid in-
volved in stress responses in plant tissues [50]. The volcano plot analysis further pinpointed
caffeic acid, quercetin-3-glucuronide, phloridzin, coumaric acid hexose, malic acid, caffeic
acid hexoside, flavan-3-ol derivative, and ferulic acid hexose derivative as significantly
altered metabolites. The reduction in ferulic acid hexose derivative suggests that oxidative
degradation pathways contribute to postharvest quality loss, as research indicates that
postharvest decay in strawberries can result from physiological factors, including oxidative
stress, leading to the degradation of phenolic compounds like ferulic acid derivatives [51].
Meanwhile, the presence of quercetin-3-glucuronide and flavan-3-ol derivatives as sig-
nificantly altered metabolites suggests that flavonoids undergo structural modifications
during storage, potentially as part of oxidative stress responses. Taken together, the PLS-DA
and volcano plot analysis consistently revealed that caffeic acid, malic acid, phloridzin,
and quercetin-3-glucuronide are critical markers of postharvest metabolic differentiation,
highlighting the key roles of phenolic acid metabolism, flavonoid transformations, and
organic acid utilization during strawberry storage.

4.2. Metabolic Changes in Strawberry Leaves During Storage

Unlike strawberry fruits, strawberry leaves exhibited a different metabolic response
to storage, particularly in terms of organic acids and phenolic compounds metabolism.
While malic acid decreased in the fruit, its levels in leaves fluctuated over time, suggesting
that organic acid metabolism in the leaves is less focused on energy production and more
linked to metabolic buffering or stress adaptation. This trend aligns with findings that malic
acid in leaves plays diverse roles beyond respiration, including stress tolerance, osmotic
regulation, and antioxidant defense [52–54]. Flavonoid-related compounds, including
caffeic acid hexoside and flavan-3-ol derivative, underwent moderate fluctuations but
ultimately decreased by the end of storage. Similarly, in blueberry leaves, flavonoid content
was shown to be highly dependent on environmental conditions, with certain compounds
persisting under stress-related conditions [55].

The discriminant analysis (PLS-DA) effectively distinguished metabolic changes in
strawberry leaves during storage. This result suggests that storage duration significantly
influences the leaf metabolite profile, even though some metabolites exhibit variations
rather than linear degradation. The discrimination between day 1 and day 8 highlights
a systematic progression of metabolic changes over the storage period. The VIP scores
identified ellagic acid aglycone, galloylquinic acid, galloyl hexose, octadecatrienoic acid
glycoside, caffeic acid hexoside, malic acid, flavan-3-ol derivative, and salidroside as the
most important metabolites contributing to classification. An interesting finding was the
detection of salidroside, a phenolic molecule characterized by low toxicity and protective
effects on the neurological, cardiovascular, hepatic and renal systems, as well as anti-cancer
and anti-inflammatory properties [56]. Ellagic acid aglycone was the most significant
contributor, supporting the observation that ellagitannin hydrolysis occurs as a response to
storage conditions, potentially as a mechanism to enhance antioxidant protection or regu-
late oxidative stress [57]. Galloylquinic acid increased over storage, suggesting that galloyl
derivatives may be actively produced or retained as part of a protective response. The
volcano plot analysis further highlighted caffeic acid hexoside and flavan-3-ol derivative as
significantly altered metabolites, both of which decreased over storage. The reduction in
caffeic acid hexoside aligns with findings that hydroxycinnamic acids degrade due to enzy-
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matic oxidation, contributing to reduced phenolic stability during postharvest storage [58].
According to Simões et al. [59] enzymatic activity in combination with storage temperature
affects the metabolism of phenolic compounds and their concentration in leafy vegetables.
Similarly, the decrease in flavan-3-ol derivative suggests a progressive depletion of flavan-
3-ols, which play a key role in antioxidant defense and structural integrity [60]. These
reductions indicate that phenolic metabolism in leaves undergoes active modifications over
time, likely in response to oxidative stress or enzymatic breakdown processes.

4.3. NOX2 Inhibitory Potential of Strawberry Metabolites

According to machine learning predictions, strawberries contain a wide range of
metabolites that may inhibit NOX2 activity. Despite their structural diversity, 21 of the
24 tested metabolites were characterized as active, indicating that various phytochemical
classes converge on a shared ability to inhibit the NADPH oxidase (NOX2) enzyme complex
and its oxidative products. These metabolites possess structural features that match known
inhibitors of the NOX2 enzyme from various sources. The phenolic compounds identified
in strawberries, such as caffeic acid, which is a dihydroxycinnamic acid, alongside epicate-
chin, which is a flavan-3-ol, demonstrate the presence of catechol moieties or polyphenolic
structures. In accordance with our findings, methoxy-catechol apocynin and glycosylated
polyphenol myricitrin serve as known inhibitors of NOX2-derived reactive oxygen species
according to Shubina et al. [61]. The ability of these functional groups to conduct redox re-
actions and scavenge radicals mirrors how established NOX2 inhibitors function to inhibit
the enzyme. The predicted active compounds identified by the model include flavonoids
such as quercetin-3-glucuronide and kaempferol alongside tannin derivatives like procyani-
din dimer, which are supported by studies showing that various polyphenols suppress
NADPH oxidase activity or expression [61]. Quercetin displays inconsistent outcomes in
direct NOX2 inhibition tests where full effects need metabolic activation [61]. The computa-
tional findings demonstrate that the polyphenol chemical group present in strawberries
possesses essential structural features crucial for NOX2 inhibition. Strawberries are rich
in antioxidants, including vitamin C, and polyphenols, along with ellagitannins [62]. The
ROS-generating NOX2 enzyme system shows predicted interference abilities which parallel
the antioxidant profile of strawberries. The 21 metabolites exhibit diverse characteristics,
yet their molecular classifications link to specific patterns which influence the model’s
predictions. Flavonoids and polyphenols like quercetin-, kaempferol- and catechin-related
compounds typically display planar aromatic ring structures with numerous hydroxyl
groups [63]. The molecular descriptors show low FractionCSP3 and large polar surface
areas, which indicate high aromaticity and are considered essential for NOX2-inhibiting
activity. The model’s main descriptors, the VSA_EState and PEOE_VSA bins, probably
identified the electron-abundant aromatic areas and hydrogen-bonding abilities of these
substances which support NOX2 binding or radical intermediate scavenging [14]. The
phenolic acids, caffeic acids, and ellagic acids, with their glycosides, are small yet highly
conjugated molecules that contain polar functional groups including carboxylic acids and
multiple hydroxyl groups: these compounds show moderate molecular weight combined
with high polarity and extensive negative charge distribution, which align with specific
descriptor parameters (e.g., PEOE_VSA6 for near-neutral polar surfaces and MinAbsES-
tateIndex for strong electron-withdrawing groups) [64]. The model’s ability to predict these
acids as actives demonstrates that lower-molecular-weight antioxidants meet the necessary
requirements, which aligns with studies showing that phenolic acid derivatives inhibit
NOX2 when hydrophobic substitutions enable membrane access [65]. The chemistries
of the terpenoid-derived metabolites listed show significant differences via their largely
aliphatic structure and higher FractionCSP3, which indicates more sp³ carbons, as well
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as an increased potential hydrophobic surface area, demonstrated by SlogP_VSA6 and
other relevant descriptors. The model’s prediction of these molecules as active suggests
that their lipophilic nature allows them to interact with membrane-bound oxidase com-
plexes and inhibit NOX2. Lipophilicity is believed to improve membrane enzyme inhibitor
attachment [66]. The decision boundary of the model shows different chemical signa-
tures from the phenolic, flavonoid, and terpenoid classes (polar aromatic vs. non-polar
aliphatic), leading to active predictions. Multiple chemical scaffolds can functionally reduce
NOX2 activity by directly inhibiting the enzyme or acting through indirect antioxidant
mechanisms [67]. The role of strawberry metabolites as antioxidants represents a com-
mon functional theme that directly relates to NOX2’s biological role. The main duty of
NOX2 is to generate superoxide radicals which play a crucial part in oxidative bursts
during immune defense [68]. Potent antioxidant compounds can interfere with this process
by capturing produced radicals or by disrupting ROS enzyme production [69]. The active
metabolites predicted in strawberries contain recognized dietary antioxidants including
vitamin C (ascorbic acid), ellagic acid, catechin/epicatechin, and caffeic acid. Ascorbic acid
functions by scavenging superoxide directly and recycling additional antioxidants, and its
inclusion in the active list matches its role in diminishing oxidative stress within biological
systems [70]. The polyphenolic compound catechins and caffeic/ferulic acid derivatives
function as free radical neutralizers while also binding metal ions and controlling cell
signaling pathways that respond to oxidative stress [71]. Analysis through the model
identified essential molecular features such as catechol groups and conjugated double
bonds, along with suitable lipophilicity, that enable molecules to effectively neutralize ROS
and engage with redox enzymes [72].

The in silico results should be evaluated together with the postharvest storage modifi-
cations and biological functions of the previously mentioned metabolites. The metabolites
expected to inhibit NOX2 activity include those which exhibited storage-related dynamic
changes in fruits and those recognized for their plant defense functions. Data analysis
revealed that caffeic acid, along with its derivative caffeic acid hexoside, faced considerable
depletion throughout strawberry storage because of oxidative consumption. ML findings
indicate caffeic acid as a potent NOX2 inhibitor which, when depleted during storage,
reduces antioxidant capacity in fruit and diminishes the health benefits associated with
NOX2 inhibition. The storage of strawberries led to a reduction in ferulic acid hexose
derivative levels. Given the predicted NOX2 inhibitory activity of this compound, it can be
inferred that fresh strawberries, with higher concentrations of this metabolite, may exhibit
enhanced NOX2 modulation compared to those subjected to prolonged storage. During
the later stages of fruit senescence, dicaffeoylquinic acid levels rise, which points toward
a possible compensatory mechanism where the fruit produces alternative active antioxi-
dants that might also inhibit NOX2. The fruit employs an inherent defense mechanism
through the preservation of certain metabolites, like ellagic acid derivatives, which main-
tain antioxidant protection and demonstrate NOX2 inhibition capabilities when consumed.
During storage, strawberry leaves contain salidroside and ellagic acid aglycone, which
serve as main antioxidants for defense [73,74]. In this study, we chose to highlight only
those metabolites with well-documented structures and established bioactivities in order
to ensure clarity and scientific accuracy. Additional identified compounds may also hold
biological relevance and merit further investigation.

5. Conclusions
This study provides a comprehensive evaluation of postharvest metabolic shifts in

strawberry fruits and leaves using LC-MS/MS-based profiling, multivariate statistical anal-
yses, and machine learning approaches. Significant alterations were observed in organic
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acids, phenolic acids, and flavonoids during storage, underscoring dynamic biochemical
changes across tissues. In the fruits, the decrease in malic and caffeic acids highlighted their
roles in respiration and antioxidant defense, while the accumulation of dicaffeoylquinic
acid indicated a possible compensatory response to oxidative stress. In contrast, the leaves
exhibited a more variable metabolic response, with fluctuations in flavonoid and phenolic
acid levels, reflecting their function in storage-related stress and structural integrity. Key
metabolic markers distinguishing the early and late storage stages were identified through
PLS-DA and volcano plot analyses. In the fruits, metabolites such as caffeic acid, malic acid,
phloridzin, and quercetin-3-glucuronide were the most indicative of storage-driven changes.
Meanwhile, dynamic alterations in flavonoids and hydroxycinnamic acid derivatives re-
flected ongoing metabolic adjustments associated with oxidative stress and senescence. In
the leaves, ellagic acid aglycone, galloylquinic acid, galloyl hexose, and flavan-3-ol deriva-
tive were identified as principal contributors to metabolic differentiation, associated with
oxidative stress responses and tissue-specific defense mechanisms. Furthermore, machine
learning predictions revealed that 21 out of 24 structurally diverse metabolites, including
phenolic acids, flavonoids, tannins, terpenoids, organic acids, phenolic glycosides, and
amino acids, were classified as potential NOX2 inhibitors. These findings suggest that
strawberries are a rich source of phytochemicals capable of modulating oxidative stress
through NADPH oxidase inhibition, complementing their well-established antioxidant
properties. Overall, these findings emphasize the complexity of biochemical responses
in both fruit and leaf tissues under storage conditions and provide valuable insights into
the regulation of postharvest quality. Additionally, this integrative approach highlights
the value of combining LC-MS/MS profiling and machine learning modeling to eluci-
date storage-related metabolic pathways and identify bioactive compounds with potential
health benefits. Further biological validation is warranted to confirm the NOX2-inhibitory
potential of key strawberry metabolites and explore their applications in functional foods
or nutraceuticals.

To conclude, the present study not only offers insights into the temporal metabolic
changes occurring in postharvest strawberry fruits and leaves but also underscores their
value beyond conventional consumption. The identification of key bioactive metabolites
with antioxidant properties and predicted NOX2 inhibitory activity suggests that both
tissues could serve as underutilized sources of health-promoting compounds. This high-
lights their potential for application in the food industry as natural functional ingredients,
and in the biomedical field as candidates for further exploration in anti-inflammatory or
oxidative-stress-reducing interventions. The valorization of these postharvest tissues also
supports sustainable and circular food system approaches, reducing waste while adding
value to agricultural by-products.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo15050321/s1, Figure S1: Box plots showing temporal variation in
key metabolites in strawberry fruit during storage: (a) caffeic acid, (b) malic acid, (c) citric acid,
(d) coumaric acid hexose, (e) ferulic acid hexose derivative, (f) kaempferol glucuronide, (g) di-
caffeoylquinic acid; Figure S2: Permutation test and model validation parameters (R2, Q2, and
classification accuracy) for PLS-DA model applied to strawberry fruit metabolite data during storage;
Figure S3: Box plots showing temporal variation in key metabolites in strawberry leaves during
storage: (a) malic acid, (b) citric acid, (c) salidroside, (d) ellagic acid aglycone, (e) galloylquinic acid,
(f) galloyl hexose, (g) caffeic acid hexoside, (h) flavan-3-ol derivative, (i) phloridzin; Figure S4: Permu-
tation test and model validation parameters (R2, Q2, and classification accuracy) for PLS-DA model
applied to strawberry leaf metabolite data during storage; Figure S5: Variation in descriptors among
studied categories (active/not active); Table S1: Differentially altered metabolites in strawberry fruit
during storage (day 1 vs. day 11) based on volcano plot analysis, including log2 fold change and
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statistical significance (p-value); Table S2: Differentially altered metabolites in strawberry leaves
during storage (day 1 vs. day 8) based on volcano plot analysis, including log2 fold change and
statistical significance (p-value).
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