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Abstract: The DNA damage response (DDR) network and the mitogen-activated protein kinase
(MAPK) signaling pathway are crucial mechanisms for the survival of all living beings. An accumu-
lating body of evidence suggests that there is crosstalk between these two systems, thus favoring
the appropriate functioning of multi-cellular organisms. On the other hand, aberrations within
these mechanisms are thought to play a vital role in the onset and progression of several diseases,
including cancer, as well as in the emergence of drug resistance. Here, we provide an overview of the
current knowledge regarding alterations in the DDR machinery and the MAPK signaling pathway
as well as abnormalities in the DDR/MAPK functional crosstalk in multiple myeloma, the second
most common hematologic malignancy. We also present the latest advances in the development of
anti-myeloma drugs targeting crucial DDR- and MAPK-associated molecular components. These
data could potentially be exploited to discover new therapeutic targets and effective biomarkers as
well as for the design of novel clinical trials. Interestingly, they might provide a new approach to
increase the efficacy of anti-myeloma therapy by combining drugs targeting the DDR network and
the MAPK signaling pathway.

Keywords: multiple myeloma (MM); DNA damage response (DDR); mitogen-activated protein
kinase (MAPK); DDR/MAPK interplay; combination therapy

1. Introduction

Multiple myeloma (MM) is a hematologic malignancy characterized by the overpro-
duction of monoclonal immunoglobulins and the clonal proliferation of long-lived plasma
cells [1,2]. Monoclonal gammopathy of undetermined significance (MGUS) is a prema-
lignant condition, which may progress to MM [3,4]. Three to four percent of people over
the age of fifty have MGUS. Recent data suggest that chronic antigenic stimulation, black
race, older age, male sex, diabetes, certain pesticides, family history, inflammatory con-
ditions, and obesity are risk factors for developing MGUS [3,5–7]. Moreover, smoldering
MM (SMM), an intermediate more advanced premalignant stage, is clinically identified in
certain patients [8,9]. Annually, ~1% of MGUS cases progress to SMM; for those with SMM,
the relevant risk of developing MM is much higher: ~10% per year for the first five years
and 3% per year for the subsequent five [10,11].

Treatment of MM is a multifaceted approach that depends on various factors, includ-
ing the stage of the disease, the patient’s overall health, and individualized treatment
goals [12–14]. It involves combinations of drugs with several mechanisms of action, such
as corticosteroids, including dexamethasone and prednisolone [15]; alkylating agents,
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namely melphalan [16] and cyclophosphamide [17]; histone deacetylase inhibitors (HDACi;
panobinostat) [18]; anthracyclines, for instance doxorubicin [19]; proteasome inhibitors (PIs;
bortezomib, carfilzomib and ixazomib) [20]; immunomodulatory drugs (IMID; thalidomide,
lenalidomide and pomalidomide) [21]; high-dose chemotherapy followed by autologous
stem cell transplantation [22]; monoclonal antibodies (mAbs; elotuzumab, daratumumab,
isatuximab) [23]; chimeric antigen receptor (CAR) T-cell therapy; etc. [24–26]. Despite
these advancements, MM remains an incurable disease, and the need for new treatment
strategies is mandatory.

Using modern biology technologies, molecular characteristics of MGUS and SMM as
well as the progression to active MM are now better understood [27]. Interestingly, several
reports identified mutations in genes involved in the DNA damage response (DDR) network
and the mitogen-activated protein kinase (MAPK) system [28]. Therefore, in this review,
we provide data from the current literature regarding aberrations in the DDR network,
the MAPK system, and their interplay that are involved in the onset and progression of
MM and the development of drug resistance. The latest advances in anti-myeloma drugs
targeting critical DDR- and MAPK-related components are also elucidated.

2. The DDR Network

Damage to DNA occurs due to external [ultraviolet (UV) and ionizing radiation,
genotoxic drugs] or internal factors (oxidative stress, telomere erosion, replication fork
collapse) [29]. To overcome these alterations in the chemical structure of DNA, cells have de-
veloped a complex system of pathways, called the DDR network, that recognize and resolve
the damage, thus protecting the integrity of the genome [30]. DDR is triggered following
the detection of a DNA lesion. Next, a signal transduction cascade is activated and results
in the stimulation of sophisticated mechanisms for genome protection, including DNA
repair pathways, cell cycle checkpoints, and apoptosis. On the other hand, deregulated
DDR may result in mutagenesis and genomic instability [31]. Given that DDR regulates
the cellular decision to remove the DNA damage or to activate apoptosis, it is involved in
the onset and progression of several diseases, including MM (Figure 1), as well as in the
response to therapeutic interventions.
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Figure 1. Deregulated DNA repair pathways involved in myelomagenesis. “BioRender.com (accessed
on 18 June 2024)”.

2.1. Deregulation of the DDR Network in the Onset and Progression of MM

Previous studies have shown that DNA repair mechanisms are altered in MM (Table 1).
In fact, deregulation in the Base Excision Repair (BER) pathway plays an important role in
MM progression. For example, Liao and colleagues reported that two major BER-related
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apurinic/apyrimidinic nucleases (APEX1 and APEX2) crosstalk with p73, a transcriptional
regulator of RAD51, and results in its transcriptional upregulation, thus increasing the
efficiency of homologous recombination (HR) and driving genomic instability in MM [32].
Moreover, a study of polymorphisms of BER-associated genes correlates alterations in
APEX1 with a reduction in MM patients’ overall survival [33]. In patients’ samples, both
APEX1 and APEX2 gene expressions were increased during myelomagenesis [34]. Also,
researchers found that high expressions of certain BER genes, such as MPG (N-methylpurine
DNA glycosylase) and PARP3 [Poly(ADP-ribose) polymerase 3], are linked to improved
overall survival in MM patients who received autologous stem cell transplantation. On the
other hand, increased expressions of PARP1 and POLD2 (DNA polymerase delta subunit 2)
are associated with worse outcomes in MM, suggesting that targeting the BER pathway
might improve treatment effectiveness [35–37].

Table 1. Alterations in DDR-related genes in MM.

DDR Pathway Gene Alteration Results Ref.

BER

RAD51 Up Increased HR/R efficiency and
genomic instability [32]

APEX1 Up Reduced OS, increased expression
in myelomagenesis [33,34]

APEX2 Up Increased expression in myelomagenesis [34]
MPG Up Increased OS in pts receiving ASCT [35–37]

PARP3 Up Increased OS in pts receiving ASCT [35–37]
PARP1 Up Worse outcome in MM [35–37]
POLD2 Up Worse outcome in MM [35–37]

NER ERCC3 Up Poorer survival in NDMM [38]

MMR
hMSH2 Down Aggressive biologic behavior [39]
hMLH1 Down Disease progression [39,40]
hPMS1 Down Aggressive biologic behavior [39]

HR

RAD50 Up Higher HR/R activity, mutations,
drug resistance [41]

RAD51 Up Higher HR/R activity, mutations, drug
resistance, progression [41,42]

BRCA1 SNPs Therapy outcome [42,43]
RAPR1 Up/SNPs Reduced survival, therapy outcome [42,43]

MUTYH SNPs Disease progression [42]
OGG1 SNPs Disease progression [42]
PCNA SNPs Disease progression [42]
TPMT SNPs Disease progression [42]
XPC SNPs Disease progression [42]

NHEJ,
alt-NHEJ

XRCC4 SNPs Risk of developing MM [44,45]
XRCC5 Up/SNPs OS, risk of developing MM [45,46]

LIG4 SNPs Risk of developing MM [47]
DCLRE1C/Artemis Up OS, Risk of developing MM [46]

NSD2 Up/Down Drug resistance, accumulation of
DNA damage [48,49]

LIG3 Up Reduced survival in advance stages,
drug resistance [50]

FA FANCF Depletion Overcome resistance [51]

Up: upregulated, Down: downregulated, OS: overall survival, pts: patients, ASCT: autologous stem cell trans-
plantation, MM: multiple myeloma, NDMM: newly diagnosed MM.

Moreover, the gene expression patterns in normal plasma cells and newly diagnosed
MM samples revealed that upregulation of the Nucleotide Excision Repair (NER) protein
ERCC3 (excision repair cross-complementation group 3) is linked to poorer survival. Ad-
ditionally, researchers have identified 34 NER-related genes with differential expression
in MM plasma cells, along with 23 genes with copy-number variations [38]. Interestingly,
polymorphisms of NER have been shown to impact treatment outcomes in MM patients
undergoing autologous bone marrow transplantation [52].

It is known that the defective Mismatch Repair (MMR) mechanism results in increased
mutation rates, particularly in microsatellite DNA regions. This defect, known as mi-
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crosatellite instability, was observed in many MM patients and becomes more common as
the disease progresses and during relapse [53]. Alterations in MMR genes (hMSH2, hMLH1,
and hPMS1) have been identified in malignant disorders of B-cells and were associated with
aggressive behavior [39,40]. Defective MMR is also implicated in drug resistance [54,55].

The homologous recombination repair (HR/R) mechanism removes DSBs that are
formed following therapeutic treatment with several anti-myeloma drugs, such as topoiso-
merase inhibitors and DNA crosslinking agents. Previous studies have shown elevated
expressions of HR/R-associated genes, namely RAD50 and RAD51, and increased HR/R
activity in MM cell lines and primary MM cells compared with normal plasma cells [41,47].
Since HR/R plays an important role in the recovery of the stalled replication fork and the
repair of interstrand cross-links (ICLs), it is of particular importance in drug resistance of
the fraction of proliferating MM cells. Indeed, previous studies have shown that following
treatment of MM patients with high-dose melphalan (HDM) and autologous stem cell
transplantation (ASCT), higher expressions of BRCA1, PRKDC (DNA-PK), and PARP1 genes
are linked to poorer outcomes [43]. Moreover, genetic variations in PARP, RAD51, MUTYH,
OGG1, PCNA, TPMT, and XPC are associated with disease progression [42].

Studies in mice have highlighted the crucial roles of core proteins involved in Non-
Homologous End Joining (NHEJ) repair mechanism in preserving genomic stability [56]. In
some MM cell lines, such as RPMI-8226, NHEJ activity appears to be compromised, while
it remains functional in others, including U266 and OPM2 [57]. A study on MM patients
treated with thalidomide also revealed that those with specific gene polymorphisms in
ERCC1, ERCC5, or XRCC5 (KU80) had higher response rates with longer overall survival
being associated with polymorphisms in ERCC1 and XRCC5. Polymorphisms or abnor-
mal expression of genes such as XRCC4, XRCC6 (KU70), DCLRE1C/Artemis, and DNA
ligase IV (LIG4) have also been linked to MM risk [44,45,47]. Indeed, increased levels of
DCLRE1C/Artemis, DNA–PKcs, and XRCC4 proteins were observed in MM cells, while ele-
vated expressions of XRCC5 and DCLRE1C/Artemis genes were linked to poorer prognosis
in MM patients [46]. Previous reports have also shown that NSD2 (Nuclear Receptor Bind-
ing SET Domain Protein 2), a factor with many biological functions, including DNA repair,
plays a crucial role in MM relapse and treatment resistance [48]. In line with these data,
loss of NSD2 function reduces the expression of DNA repair genes like RAD51, TP53BP1,
and XRCC4 and enhances DNA damage accumulation. On the other hand, overexpression
of NSD2 increases DNA repair efficiency, which may contribute to drug resistance, particu-
larly in t(4;14) MM cases [49]. Alternative NHEJ (alt-NHEJ) is a DNA repair pathway that
is vital for genomic instability and the survival of MM cells. Higher gene expression of
LIG3 (component of alt-NHEJ; also involved in NER and BER) in MM patients is linked to
shorter survival, especially in advanced disease stages. LIG3 protein levels are elevated in
bortezomib-resistant compared to bortezomib-sensitive MM cells; knocking down LIG3
increases DNA damage and inhibits MM cell growth both in vitro and in vivo [50].

Fanconi anemia (FA) is a rare chromosomal instability syndrome, which has been
linked to pathogenic variations in at least 22 genes that make up the FA pathway. Inter-
estingly, FA patients’ cells are very sensitive to ICL-inducing drugs, suggesting that FA
pathway is implicated in the repair of ICLs [58]. In line with these data, melphalan-resistant
myeloma cells express high levels of FANCF (FA Complementation Group F) and RAD51C;
depletion of FANCF helps overcome resistance [51].

Gene expression analyses of MM patients treated with HDM and ASCT have revealed
the prognostic significance of genes involved in several DNA repair pathways, including
NHEJ, HR/R, FA, NER, MMR, and BER [59]. Among 84 examined genes, 22 were found to
have prognostic value for both event-free and overall survival. These genes included five
related to NHEJ [three with negative (NSD2, RIF1, XRCC5/KU80) and two with positive
prognostic value (PNKP and POLL)], six to HR/R [five with negative (EXO1, BLM, RPA3,
RAD51, MRE11) and one with positive prognostic value (ATM)], three related to FA [all with
negative prognostic value (RMI1, FANCI and FANCA)], eight to NER [six with negative
(PCNA, RPA3, LIG3, POLD3, ERCC4, POLD1) and two with positive prognostic value
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(ERCC1, ERCC5)], two involved in MMR [both with negative prognostic value (EXO1 and
MSH2)], and one in BER with negative prognostic value (LIG3).

One of the most important independent prognostic factors associated with poor clini-
cal outcome in MM is the deletion of the short arm of chromosome 17 (del(17p)), where
the tumor suppressor TP53 gene is located [60–62]. It is widely accepted that deregula-
tion of the TP53 gene is important in the onset of several types of cancer, including MM.
Three subtypes of deregulated TP53 are found in newly diagnosed MM patients: monoal-
lelic deletion as part of the del(17p) (8%), monoallelic mutations (6%), and biallelic inacti-
vation of TP53, that is a deletion and a mutation, known as Double Hit MM (4%) [62–64].
While it is not clear how monoallelic mutations affect prognosis, biallelic and del(17p)
patients seem to have the worst prognosis [65].

2.2. The DDR Network in the Outcome of Anti-Myeloma Therapy

Extensive observations suggest that the DDR network is implicated in the outcome of
genotoxic therapy. Indeed, studies have shown that in vitro resistance to the nitrogen mus-
tard melphalan [16] is linked to increased efficiency of DNA repair mechanisms, including
ICL repair [66] and FA/BRCA pathway [51]. In order to elucidate the role of DDR in the
outcome of melphalan-treated patients, previous studies reported the formation and repair
of DNA damage in peripheral blood mononuclear cells (PBMCs) and bone marrow plasma
cells (BMPCs) following in vivo (therapeutic) or ex vivo melphalan treatment [67–70]. The
authors reported that MM patients, responders to melphalan therapy, are characterized by
lower DNA repair capacity and higher accumulation of melphalan-induced DNA damage
than non-responders, suggesting that quantification of drug-induced DNA damage forma-
tion/repair may help in the selection of patients who may profit from melphalan therapy.
Interestingly, they reported that DSB repair (DSB/R) inhibitors, such as the NHEJ inhibitor
SCR7, significantly enhanced the cytotoxicity of melphalan against malignant plasma cells,
suggesting a promising strategy for the treatment of MM [69].

DSB/R inhibitors are not the only DDR modifiers used in MM therapy. Indeed, previ-
ous studies have shown that the combined treatment with inhibitors of ATM (KU-55933)
and ATR (VE-821) seriously reduced survival of MM cell lines that exhibited high levels
of endogenous DNA damage [71]. Also, PIM-2, a serine/threonine kinase that interacts
with DDR and plays a critical role in promoting cell survival and preventing apoptosis, is
commonly found upregulated in MM [72,73]. Another study has shown that LT-171-861, a
synthetic new PIM-2 inhibitor, induced DNA damage by inhibiting the HR/R pathway, ac-
tivated apoptosis in MM cells, and suppressed tumor growth in MM xenograft models [74].
Moreover, the PARP inhibitor olaparib could amplify the anticancer effect of LT-171-861 by
reducing the growth of tumors in MM xenografted nude mice.

Panobinostat is an HDACi, which blocks cell cycle progression, induces apoptosome
formation, and down-regulates the anti-apoptotic Bcl-2 gene [75]. Panobinostat showed
synergistic anti-MM effects when combined with genotoxic drugs in vitro [76]. Indeed,
in a recent report, the authors studied the biological effects of the ex vivo co-treatment of
panobinostat and melphalan in BMPCs and PBMCs from MM patients [77]. They found
that this combination treatment reduced the efficiency of critical DNA repair mechanisms
(NER and DSB/R), augmented the accumulation of cytotoxic DSB lesions, and induced
apoptosis in BMPCs but not in PBMCs from the same patients or healthy controls. These
data suggest that, compared with melphalan alone, the combined treatment of melphalan
and panobinostat showed increased anti-myeloma efficacy and lower side effects.

3. The MAPK System

The MAPK signaling pathways organize a network that is highly interconnected and
regulates many cellular processes, including cell growth, differentiation, inflammation, cell
stress response, proliferation, metabolism, migration, and apoptosis [78]. MAPK is a very
complicated network. Indeed, 24 MAP3Ks regulate 7 MAP2Ks, which in turn regulate
14 MAPKs, making up the MAPK signaling network [79]. In mammals, between the
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14 MAPKs, three signaling pathways, namely MEK/ERK, c-Jun N-terminal kinase (JNK),
and p38, are determined by their genome homology, functional redundancy, and shared
activation mechanisms [78,80–82]. Interestingly, disruption of the MAPK signaling cascade
plays a role in the pathogenesis of different human cancer types [81,83,84].

3.1. MAPK Signaling Pathways and Myelomagenesis

Using the next-generation sequencing (NGS) technology, a deeper understanding of
the molecular characteristics of MGUS/SMM and the progression toward active MM has
become possible [85]. Numerous mutations were discovered by whole-exome sequencing
(WES), with MAPK signaling being one of the most commonly affected pathways. Sev-
eral reports identified that the NRAS, KRAS, and BRAF mutation frequency rises from
24% in SMM [86] to 50% in newly diagnosed MM cases [87–91] and up to 80% in re-
lapsed/refractory MM (RRMM) patients [92,93].

RAS proteins belong to a family of GTP hydrolases (GTPases) that are frequently
mutated in human malignancies [94,95]. There are three major isoforms of the RAS gene
(NRAS, KRAS, and HRAS) that have a significant role in cell proliferation, survival, and
differentiation. Although in human cancers, all three isoforms are commonly mutated
oncogenes, most tumors have mutations in the KRAS gene [95]. In MM patients, the
mutation incidence is 22–25% for KRAS and 20–25% for NRAS. The most common hotspot
mutations are in the codons 12, 13, and 61 of the NRAS and KRAS genes; Q61 mutations
(i.e., substitutions of glutamine at amino acid 61 by another amino acid) for NRAS gene
are also common in MM [96]. These mutations mostly affect the activity of NRAS and are
linked to a more aggressive phenotype and shorter overall survival [97]. Accordingly, in
relapsed MM, NRAS mutations are linked to decreased susceptibility to the proteasome
inhibitor bortezomib [98].

The development of several cancer types is also associated with mutations in the
BRAF proto-oncogene. Among the most frequent mutations observed in the BRAF gene
are those encoding the V600E mutant, which results in continuous activation and signal
transduction, irrespective of external stimuli. Consequently, cell proliferation and invasion
are increased in cancer patients harboring such mutations [99]. The V600E mutation has
been specifically associated with melanoma, metastatic colorectal cancer, MM, and several
other cancer types [100]. The prevalence of the BRAF V600E mutation is high among
patients diagnosed with MM, with a frequency ranging from 2% to 4% in newly diagnosed
cases and rising to approximately 8% in patients with relapsed/refractory disease or
extramedullary involvement [97]. A study of 223 newly diagnosed MM patients exploring
gene expression profiles and clinical data detected BRAF mutations in 11% of patients with
an unfavorable prognosis [101]. The authors detected both BRAF V600E and non-V600E
BRAF mutations, 58% of which were hypoactive or kinase inactive. It is worth noting
that 44% of the hypoactive/kinase inactive BRAF patients displayed concurrent mutations
in NRAS or KRAS, indicating their involvement in the pathogenesis of the disease by
promoting the activation of MAPK via upstream mutated elements.

3.2. MM Therapy: Targeting MAPK Signaling Pathways

Since the MAPK pathway is mutated in many cancer types, including MM, it is
considered to be a major therapeutic target (Table 2) [102,103]. In fact, the FDA has
approved four MEK1/2 inhibitors, namely, binimetinib, trametinib, cobimetinib, and
selumetinib [104], and three BRAF inhibitors (vemurafenib, dabrafenib, and encorafenib)
for the treatment of several malignancies [102,103].

MEK inhibitors monotherapy in MM has shown mixed results. Indeed, the inhibition
of MEK with selumetinib in MM showed a low response in relapsed/refractory MM [105].
On the other hand, trametinib had better response rates in MM patients with MAPK
activation [103]. Also, a clinical trial (NCT03312530) evaluating the safety and the efficacy
of cobimetinib showed promising results when this MEK inhibitor was administrated alone



Int. J. Mol. Sci. 2024, 25, 6991 7 of 18

or in combination with venetoclax (BCL-2 inhibitor) with or without atezolizumab (PD-L1
inhibitor) in t(11;14) MM patients [106,107].

Table 2. MAPK inhibitors in MM therapy.

MAPK Pathway
Inhibitors Clinical Trial Regimes Clinical Outcome Ref.

MEKi

Selumetinib NCT01085214 Mono Low response
in RRMM [105]

Trametinib - Mono Better response in
MAPK-activated pts. [103]

Cobimetinib NCT03312530

Mono Moderate

[106,107]+ venetoclax or +
venetoclax with

atezolizumab

Higher activity
in t(11;14)

BRAFi Vemurafenib - Mono
Rapid response in
1 pt., RRMM with

BRAF V600E
[108]

BRAFi + MEKi

Vemurafenib +
cobimetinib - Combo

Promising in relapse
MM pts. with
BRAF V600E

[109,110]

Encorafenib +
binimetinib NCT02834364 Combo

Highly effective in
RRMM pts. with
BRAF V600E/K

[111,112]

RO-5126766
(also known as

CH5126766
and VS-6766)

NCT02407509 Mono
Activity in MM pts.

with MAPK
pathway mutations

[113]

RAFi

Sorafenib - + rapamycin Anti-MM actions
in vitro [114]

Sorafenib NCT00303797 + bortezomib Preliminary efficacy [115]

Sorafenib NCT00253578 Mono Partial response in
2/11 pts. in RRMM [116]

p38i

Talmapimod NCT00087867 Mono or
+ bortezomib

Encouraging
response in RRMM [117]

Plitidepsin NCT00229203

Mono 13% response
in RRMM

[118]
+ dexamethasone Up to 22% response

in RRMM

Mono: monotherapy, Combo: combined, RRMM: relapsed/refractory multiple myeloma, MM: multiple myeloma,
pts.: patients.

Concerning BRAF inhibition, Andrulis and colleagues examined the mutation status
of BRAF V600E in primary tumor samples from 379 MM patients and correlated it with
disease outcome [108]. They found that the presence of the BRAF V600E mutation was
linked to the development of aggressive extramedullary diseases and shorter overall
survival. Moreover, they presented a case study of an MM patient diagnosed with a BRAF
V600E mutation and experiencing a relapse of myeloma accompanied by widespread
extramedullary involvement; this patient exhibited a rapid and sustained positive response
to low doses of vemurafenib.

While most cancer patients show favorable initial responses to BRAF inhibitors, resis-
tance occurs once the ERK pathway is reactivated. To overcome this problem, combina-
tional therapies including BRAF and MEK inhibitors or the use of new second-generation
multiple inhibitors, such as the pan-RAF inhibitor tovorafenib (TAK-580; an inhibitor of
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wildtype BRAF, BRAF V600E, and CRAF) and avutometinib (RO-5126766, also known
as CH-5126766; a dual inhibitor of Raf and MEK), were developed [119,120]. Indeed,
combined regimes of cobimetinib and vemurafenib showed promising anti-MM results
in advanced RRMM [109,110]. Moreover, in a phase II clinical trial (NCT02834364), com-
bined treatment with encorafenib and binimetinib showed positive results in RRMM
patients carrying a BRAF V600E mutation [111]. Also, Guo and colleagues reported that the
RAF–MEK inhibitor RO-5126766 had antitumor activity against several solid tumors and
MM with RAF–RAS–MEK pathway mutations [113]. Interestingly, in a GMMG-BIRMA
phase II study (NCT02834364), the combination of binimetinib and encorafenib in RRMM
patients with a BRAF V600E or a BRAF V600K mutation showed an 82% overall response
rate with 9 out of 11 MM patients having at least partial response [111,112]. In addition,
in vitro combination treatment of sorafenib (a RAF and VEGF2 inhibitor) and rapamycin (a
potent immunosuppressive drug) showed improved results [114]. Also, a phase I clinical
trial using a combination treatment of sorafenib and bortezomib found promising results
in several malignancies [115]. However, when investigated in a phase II clinical trial for
metastatic or unresectable renal cell carcinoma, the response rates and the progression-free
survival were similar to sorafenib monotherapy [121]. In another small study on MM pa-
tients, a partial response and a continuous stable disease were observed in 2/11 individuals
after sorafenib treatment [116].

The use of p38 MAPK inhibitors, such as talmapimod, plitidepsin, and ralimetinib
(LY2228820), has shown good preclinical efficacy. Indeed, results from a phase II trial with
talmapimod alone or in combination with bortezomib have shown encouraging response
rates in the RRMM patients who had previously failed bortezomib monotherapy [117].
Moreover, plitidepsin monotherapy showed a 13% response rate in RRMM patients, and
when it was combined with dexamethasone, response rates reached as high as 22% [118].
However, due to infections, short-lived clinical efficacy, and skin damage, to date, there are
no FDA-approved drugs against p38 MAPK.

4. The DDR Network and the MAPK System Are Coordinately Activated

A series of studies have indicated that the DDR network and the MAPK signaling
pathway are activated in concert. Indeed, following the activation of DDR, the MEK/ERK
pathway is also activated, thus facilitating the proper induction of DDR checkpoints to
arrest cell division [122]. Inhibition of the ERK/MAP kinase abrogates cell cycle checkpoint
activation and results in cell proliferation in the presence of DNA lesions, thus triggering
the accumulation of mutations and development of tumors [123]. On the other hand,
abrogation of checkpoint activation may also induce apoptosis or cell catastrophe, thereby
enhancing the efficacy of chemotherapy [124].

4.1. Induction of DDR Activates MAPK

Phosphorylation of the ERK/MAP kinase delivers a survival signal that counteracts
pro-apoptotic effects associated with JNK and p38 MAPK activation [125–127]. On the
other hand, Wang and colleagues found that in HeLa and A549 cell lines, the activation of
ERK/MAP kinase is crucial for the induction of cisplatin-induced apoptosis [128]. Indeed,
treatment of HeLa cells with cisplatin caused dose- and time-dependent activation of the
MEK/ERK signaling pathway, which ultimately led to apoptosis (Figure 2). In line with
these data, the pretreatment of HeLa cells with TPA (12-O-tetradecanoylphorbol-13-acetate),
an activator of the ERK/MAP kinase signaling pathway, enhanced their sensitivity to
cisplatin. Moreover, when HeLa cells were pretreated with an MEK1/2 inhibitor (PD98059
or U0126), cisplatin-induced apoptosis was prevented, while cisplatin-resistant HeLa cell
variants showed reduced ERK phosphorylation [128]. Together, these data indicate that
ERK activation is a fundamental mediator of cisplatin-induced apoptosis that functions
upstream of caspase activation to start the apoptosis pathway. However, this is not a
universal feature, since Chu and colleagues found that inhibition of ERK activity in PC-3
prostate cancer cells did not change their sensitivity to cisplatin [129].
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Previous studies have shown that cisplatin-associated ERK/MAP kinase activation
precedes p53-mediated DDR. Indeed, ERK phosphorylates p53, causing increased expres-
sion of the p21CIP1, MDM2 (mouse double minute 2 homolog), and GADD45 (45kd-growth
arrest and DNA damage) genes [130]. As such, the activation of ERK may result in cell cycle
arrest, providing time for the repair of cisplatin-induced DNA damage via p53. Moreover,
p53 affects the sensitivity to apoptosis by activating the transcription of apoptotic genes
(BAX) and repressing the transcription of apoptosis-inhibition genes (BCL-2) [131]. On
the other hand, inhibition of cisplatin-induced ERK activation increases the sensitivity of
cisplatin and decreases the levels of p21CIP1, MDM2, and GADD45 [127].

Other DNA damaging factors, including etoposide, adriamycin (doxorubicin), or
UV irradiation, also stimulate ERK1/2 MAP kinase in several cell lines [127,128,132].
Interestingly, in response to high or low intensity DNA insults, ERK/MAP kinase activation
triggers apoptosis or cell cycle arrest, respectively [133]. Following these results, abrogation
of ERK/MAP kinase activation was found when cells pretreated with MEK1/2 inhibitors
were exposed to DNA damaging factors, thus verifying the role of MEK1/2 in mediating
DNA damage-induced ERK activation [128]. Moreover, treatment with MEK1/2 inhibitors
caused inhibition of ERK/MAP kinase and attenuation of p21CIP1 induction, resulting in
the release of etoposide-induced G2/M cell cycle arrest. Furthermore, MEK1/2 inhibitors
attenuated apoptosis that was induced by high doses of DNA-damaging agents. On the
other hand, the excessive expression of the MEK1Q56P gain-of-function variant forced the
activation of the ERK1/2 MAP kinase, making cells more susceptible to DNA damage-
induced apoptosis [133]. Together, the phosphorylation and activation of the ERK/MAP
kinase in the presence of DNA damage contribute to cell cycle arrest and apoptosis, thus
explaining why cancer cells with high levels of ERK activation are more sensitive to DNA-
damaging agents.

Interestingly, previous research showed that sirtuin 6 (SIRT6; deacetylase involved in
DDR) interacts with the ERK signaling-related gene and the ERK-induced transcription
factor ELK1 [134]. SIRT6 inhibits the expression of genes involved in the MAPK signaling
pathway by interacting with their promoters and deacetylating H3K9 at these locations.
In addition, inhibition of the ERK2/p90RSK signaling pathway induced by high SIRT6
levels increases the DNA repair by CHK1 (checkpoint kinase 1) and the resistance to DNA
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damage [135]. In fact, in vitro experiments and human MM xenograft models showed a
relationship between SIRT6 and genomic instability of MM cells. That is, they found that
MM cells have high amounts of SIRT6, which inhibit the activity of the target genes ELK1,
RSK2 (ribosomal S6 kinase 2), and ERK2 in response to continuous DNA damage and genomic
instability. The persistent DNA damage in MM causes SIRT6 to be recruited to DSBs and the
downregulation of genes involved in MEK/ERK signaling. On the other hand, depletion
of SIRT6 activates several ERK-related genes, including MAPK-activated RSK2 and ELK1-
mediated transcriptional activity, thus blocking the G2/M cell cycle checkpoint [135].

In addition to ERK/MAP kinase signaling, the JNK pathway is also activated as a
result of DNA damage. Indeed, following treatment with cisplatin, DNA damage results in
the stabilization and activation of p73, which creates a complex with JNK and triggers drug-
induced apoptosis [136]. Moreover, several stress stimuli, including environmental stress,
are mediators of cisplatin-induced apoptosis through the activation of the p38 MAPK
family of signaling proteins. A previous report has shown that cisplatin causes EGFR
(epidermal growth factor receptor) internalization through the phosphorylation, and thus
activation, of the receptor by p38 MAPK [137]. Also, cisplatin induces stabilization of p18
Hamlet, a protein controlled by p38 MAPK, thus increasing the p53′s capacity to bind
with and activate the pro-apoptotic genes PUMA (p53 upregulated modulator of apoptosis)
and PMAIP1 (phorbol-12-myristate-13-acetate-induced protein 1; also known as NOXA) [138].
Together, these results suggest that the p38 MAPK pathway plays an important role in the
regulation of cisplatin-induced apoptosis.

The involvement of the JNK pathway in the response to cisplatin has been confirmed
by the inhibition of the JNK that reduced cisplatin-induced apoptosis in cervical can-
cer cells [139]. In contrast, blocking the p38 MAPK pathway increased reactive oxygen
species levels, activated the JNK pathway, and made human tumor cells more susceptible
to cisplatin-induced cell death [140]. This is also consistent with another study, which
found that in epithelial renal tubule cell lines, p38 MAPK inhibition increased cisplatin-
induced cell death via glutathione depletion and drug transport alteration [141]. In addition,
treatment of several myeloma cell lines (NCI-H929, OPM2, RPMI-8226, U266) with the
bifunctional mechlorethamine derivative bendamustine causes cleavage of caspase 3 and in-
duction of apoptosis, while all cell lines experienced G2 cell cycle arrest [142]. Interestingly,
the selective p38 MAPK inhibitor SB202190 dramatically boosts bendamustine-induced
apoptosis and abrogates G2/M cell cycle arrest, suggesting that the combined treatment
with MAPK and DDR modifiers might be used as novel anticancer therapy.

4.2. Induction of MAPK Activates DDR

Progression of the cell cycle from the G0/G1 to the S phase is induced by growth factors
and depends on the ERK family of MAP kinases (Figure 2). Interestingly, ERK/MAP kinase
activation must be continuous to trigger S phase entry [143,144]. Immediate early genes
and cyclins, among other ERK-dependent upregulated genes, are essential for promoting
cell cycle progression. Therefore, growth factor-stimulated continuous ERK activation
could ensure G1 phase progression by upregulating genes that promote proliferation and
by downregulating genes that inhibit it. The inactivation of ERK by an MEK inhibitor or
a dominant negative MEK1 at any point before the onset of the S phase decreased the S
phase entry rate [145].

Prior research suggests that BRAF inhibition upregulates the expression of p21CIP1
and p27 and downregulates the expression of retinoblastoma protein (pRb), cyclin D, and cy-
clin E genes that are implicated in G1 cell cycle progression [146]. For example, vemurafenib
promotes cell cycle arrest at the G0/G1 phase and causes apoptosis in melanoma-sensitive,
but not in melanoma-resistant, cell lines harboring the BRAF V600E mutation [147]. Inter-
estingly, in vemurafenib-sensitive cell lines, the combination of HDACi suberoylanilide
hydroxamic acid (SAHA) with vemurafenib induced both G0/G1 arrest and apoptosis,
while in vemurafenib-resistant cells, the same combination induced G0/G1 and G2/M
arrest, resulting in dramatic cytostasis. It is noted that in vemurafenib-resistant cells, data
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from a gene expression study found MAPK hyperactivation and dysregulation of cyclins
and CDKs, alterations that are consistent with the cytostatic effects of SAHA.

Even though p38 MAPK is not necessary for the DNA damage-induced G2/M check-
point activation, it performs a crucial pro-survival role during this cell cycle arrest through
the overexpression of Bcl2 family proteins. In line with these data, inhibition of p38 during
G2/M checkpoint arrest results in the simultaneous reduction of Bcl2 protein levels and
triggers apoptosis in a p53-independent manner [148]. Another report has shown that
p38 MAPK promotes DDB2 degradation and chromatin relaxation, thus stimulating the
repair of UV-induced DNA damage by the NER pathway [149]. In fact, following UV irradi-
ation, DDB2 is recruited to the damaged DNA sites, while p38 MAPK rapidly activates and
helps DDB2 ubiquitylation. Consequent degradation of DDB2 results in the recruitment
of the XPC (xeroderma pigmentosum complementation group C) protein involved in the
recognition of DNA damage through global genome repair (GGR), a critical subpathway
of NER. Additionally, p38 MAPK helps to unfold the compacted chromatin by enhancing
histone modifications, thus making UV lesions more accessible to NER factors.

CHK1, a serine/threonine protein kinase, is essential for protecting cells from stress
and DNA damage during DNA replication [150]. Inhibition of this kinase causes accu-
mulation of DNA damage, possibly due to increased replication stress. Indeed, Dai and
colleagues investigated the role of the RAS/MEK/ERK pathway in relation to DNA dam-
age in human MM cells exposed to CHK1 inhibitors and found that RAS/MEK/ERK
signaling disruption significantly augmented DNA damage induced by CHK1 inhibitors
and increased cells’ sensitivity [122].

Moreover, an accumulating body of evidence suggests that MAPK signaling regulates
the HR/R mechanism in human cells, with JNK and ERK/MAPK pathways being positive
and p38 being negative regulators of HR/R [151]. More specifically, the inhibition of
MEK/ERK signaling compromised ATM activity and reduced ATM phosphorylation and
localization to foci, suggesting that ERK signaling affects the formation or the stability of
repair protein complexes and/or the localization of ATM required for effective HR/R. On
the other hand, inhibition of ATM kinase reduced ERK phosphorylation, suggesting that
ATM modulates the ERK/MAPK signaling pathway. Therefore, a regulatory feedback loop
may control DDR and ERK/MAPK signaling.

Also, using siRNA screening, Köpper and colleagues revealed kinases that contribute
to the increased phosphorylation of H2AX at Ser139 (γH2AX) after UV-induced replication
stress [152]. They found a dramatic reduction in γH2AX after the knockdown of the
MAPK-activated protein kinase 2 (MK2), a kinase implicated in p38 stress signaling and
G2 arrest. These results suggest that the cellular response to replication stress and the
subsequent accumulation of DNA damage are directly influenced by the p38 MAPK
signaling pathway [152,153].

5. Conclusions

Living organisms are protected against endogenous and exogenous hazards by a
tightly regulated process that includes the synergistic action of the DDR network and
the MAPK system. The DDR machinery, an organized network of molecular interactions,
appears to play a major role in several biological pathways, including the repair of DNA
lesions, the cell cycle, and cell death, with deregulation of the network resulting in mutage-
nesis and genomic instability. Moreover, the MAPK system regulates a variety of biological
processes, such as proliferation, differentiation, inflammation, migration, metabolism, and
cell survival or death. Guided by this notion, aberrations in these networks may contribute
to the pathogenesis and progression of several diseases, including MM. Since these alter-
ations may also be involved in the development of drug resistance, they might be exploited
as novel therapeutic targets. Indeed, recent studies have reported that several drugs tar-
geting the DDR network and the MAPK system are in various stages of development. It
is worth noting that compared with monotherapy, combination therapy can bring several
clinical benefits, including increased treatment effectiveness, decreased treatment failure
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rate, lower drug concentrations for each drug, fewer side effects, and lower risk of relapse.
Therefore, the results presented herein potentially offer a new approach to enhance the
efficacy of anti-myeloma therapy by combining DDR modulators with drugs targeting the
MAPK signaling cascade.
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