
Citation: Moore, G.J.; Ridway, H.;

Gadanec, L.K.; Apostolopoulos, V.;

Zulli, A.; Swiderski, J.; Kelaidonis, K.;

Vidali, V.P.; Matsoukas, M.-T.;

Chasapis, C.T.; et al. Structural

Features Influencing the Bioactive

Conformation of Angiotensin II and

Angiotensin A: Relationship between

Receptor Desensitization, Addiction,

and the Blood–Brain Barrier. Int. J.

Mol. Sci. 2024, 25, 5779. https://

doi.org/10.3390/ijms25115779

Academic Editor: Anne Vejux

Received: 27 March 2024

Revised: 4 May 2024

Accepted: 8 May 2024

Published: 26 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Structural Features Influencing the Bioactive Conformation of
Angiotensin II and Angiotensin A: Relationship between Receptor
Desensitization, Addiction, and the Blood–Brain Barrier
Graham J. Moore 1,2, Harry Ridway 3, Laura Kate Gadanec 4 , Vasso Apostolopoulos 4,5 , Anthony Zulli 4,
Jordan Swiderski 4 , Konstantinos Kelaidonis 6, Veroniki P. Vidali 7 , Minos-Timotheos Matsoukas 8,
Christos T. Chasapis 9 and John M. Matsoukas 2,4,6,10,*

1 Pepmetics Inc., 772 Murphy Place, Victoria, BC V8Y 3H4, Canada; mooregj@shaw.ca
2 Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary,

Calgary, AB T2N 1N4, Canada
3 Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia;

ridgway@vtc.net
4 Institute for Health and Sport, Immunology and Translational Research, Victoria University,

Melbourne, VIC 3030, Australia; laura.gadanec@live.vu.edu.au (L.K.G.);
vasso.aspostolopoulos@vu.edu.au (V.A.); anthony.zulli@vu.edu.au (A.Z.);
jordan.swiderski@live.vu.edu.au (J.S.)

5 Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS),
Melbourne, VIC 3021, Australia

6 NewDrug/NeoFar PC, Patras Science Park, 26504 Patras, Greece; k.kelaidonis@gmail.com
7 Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”,

15341 Athens, Greece; v.vidali@inn.demokritos.gr
8 Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece;

minosmatsoukas@upatras.gr
9 Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; cchasapis@eie.gr
10 Department of Chemistry, University of Patras, 26504 Patras, Greece
* Correspondence: imats@upatras.gr

Abstract: The N-terminal portion of the octapeptide angiotensin II (DRVYIHPF; AngII), a vasopressor
peptide that favorably binds to, and activates, AngII type 1 receptor (AT1R), has an important role in
maintaining bioactive conformation. It involves all three charged groups, namely (i) the N-terminal
amino group cation, (ii) the Asp sidechain anion and (iii) the Arg guanidino cation. Neutralization
of any one of these three charged groups results in a substantial reduction (<5%) in bioactivity,
implicating a specialized function for this cluster. In contrast, angiotensin A (ARVYIHPF; AngA) has
reduced bioactivity at AT1R; however, replacement of Asp in AngII with sarcosine (N-methyl-glycine)
not only restores bioactivity but increases the activity of agonist, antagonist, and inverse agonist
analogues. A bend produced at the N-terminus by the introduction of the secondary amino acid
sarcosine is thought to realign the functional groups that chaperone the C-terminal portion of AngII,
allowing transfer of the negative charge originating at the C-terminus to be transferred to the Tyr
hydroxyl-forming tyrosinate anion, which is required to activate the receptor and desensitizes the
receptor (tachyphylaxis). Peptide (sarilesin) and nonpeptide (sartans) moieties, which are long-acting
inverse agonists, appear to desensitize the receptor by a mechanism analogous to tachyphylaxis.
Sartans/bisartans were found to bind to alpha adrenergic receptors resulting in structure-dependent
desensitization or resensitization. These considerations have provided information on the mecha-
nisms of receptor desensitization/tolerance and insights into possible avenues for treating addiction.
In this regard sartans, which appear to cross the blood–brain barrier more readily than bisartans, are
the preferred drug candidates.

Keywords: addiction; arginine; angiotensin II; bisartan; blood–brain barrier; conformation of
angiotensin; coronavirus disease 2019; G-protein coupled receptor; receptor desensitization
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1. Introduction

Substance addiction is clinically defined as a chronic, relapsing neuropsychiatric
disorder characterized by a compulsive and overwhelming desire to seek and take harmful
substances (e.g., alcohol, tobacco, illicit and prescription drugs) [1–3], despite adverse
consequences, which results in psychological and/or physical dependence [4–6]. According
to the United Nations World Drug Report 2019, approximately 35 million people globally
suffer from drug use disorders while only 1 in 7 receive treatment for substance abuse [7,8].
Relapse rates after inpatient substance rehab are high: 40–60% within 3 months and 70–80%
within 12 months [9]. New therapies are crucial for better outcomes.

The blood–brain barrier (BBB) is a selective membrane of brain endothelial cells facili-
tating communication among vascular cells, neuroglia, and neurons, regulating molecular
exchange with the peripheral circulation [10–13]. The BBB is responsible for maintaining
homeostatic balance by creating a tightly controlled microenvironment [14], allowing for
(i) exchange of nutrients, hormones, ions (e.g., Ca2+, Cl−, K+ and Na+) and molecules
between the blood and brain that are necessary for optimal synaptic and neuronal activity,
(ii) removal of metabolites and waste products from the brain and (iii) protection and
defense against infiltrating pathogen insult, endogenous and exogenous neurotoxins and
other potentially dangerous substances (e.g., alcohol, cocaine, amphetamine and nicotine)
that may consequently pass from circulation into the brain [11,15,16]. The neurobiological
mechanisms underlying compulsive substance abuse and addictive potential remain rela-
tively elusive [3,4,17,18]. Together with other influences, such as genetics, environment,
behavior and social influences, development of an overall treatment approach to combat
substance abuse is complicated [4,5,19–21]. Recently, the interaction(s) between the sub-
stance of abuse and the BBB has emerged as a potential therapeutic target for substance
abuse-related neuropathology [22,23]. BBB dysfunction arises from structural weakening,
neurotoxic molecule leakage, transporter dysfunction affecting nutrient supply, and neu-
ronal damage due to metabolite build-up and inflammation [22,24,25]. Understanding
these mechanisms is crucial for treating substance abuse.

The renin–angiotensin system (RAS) is a critical regulator of blood pressure by control-
ling blood volume, fluid and electrolyte balance and systemic vascular resistance through
coordinated crosstalk between the heart, vasculature, and kidneys [26–28]. The RAS pro-
motes hemodynamic and cardiovascular homeostasis through two opposing systems: the
traditional and counterregulatory axes [29]. Importantly, the discovery of an independent
RAS expressed locally in the cells of the nervous system (Figures 1 and 2) has been shown
to be involved in learning and memory consolidation, intellect and cognition, vasopressin
secretion, appetite, and thirst [30,31] and may have an unknown role in maintaining BBB
integrity [32,33]. Overactivation of the traditional axis (angiotensin-converting enzyme
(ACE), angiotensin II (AngII) and angiotensin II type 1 receptor (AT1R)), leads to RAS
dysfunction, triggering oxidative stress, neuroinflammation, deleterious remodeling and
apoptosis. This is associated with neurodegenerative diseases like Alzheimer’s, Hunt-
ington’s, multiple sclerosis [34], Parkinson’s [35], cerebrovascular disease [36], cognitive
impairment [37] and encephalopathy [38]. Correlations between brain RAS dysfunction,
substance abuse and addiction, and drug seeking behavior have recently been reported
in animals and humans [39]. Psychoactive substances disrupt brain RAS homeostasis by
altering the expression of components involved in the traditional and counterregulatory
axes. For example, nicotine upregulates AT1R and downregulates AT2R and ACE2 ex-
pression in neurons and glial cells [40,41], cocaine increases the expression and activity of
ACE [42], amphetamine augments AT1R and AngII expression [43] and excessive alcohol
consumption decreases mRNA levels of ACE2, angiotensin 1–7 (Ang(1–7)) and elevates
ACE1 activity, Ang II expression and AT1R mRNA [39]. Thus, restoring the underlying
brain RAS balance may be key to the treatment of substance abuse and addiction.
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lyzed into Ang(1–7) by neprilysin [31,45]. AngII can associate with either AT1R or AT2R, resulting 
in detrimental or homeostatic promoting effects, respectively [31,45]. Furthermore, AngII can then 
be converted to AngIII by aminopeptidase A (APA), AngA by aspartate decarboxylase (AD) or 
Ang(1–7) by ACE2 [31,45]. The resulting Ang III peptide is further acted upon by APA and alanyl 
aminopeptidase to become AngIV, which interacts with AT4R to promote neuroprotective effects 
[31,45]. Ang(1–9) can be catalyzed by ACE to either directly bind to the Mas-related G-coupled pro-
tein receptor (MrgDR) or can be acted upon by AD into alamandine, interacting with the Mas1 on-
cogene receptor (MasR) [31,45]. Finally, AngA can also be converted to alamandine by ACE2 [26]. 
Activation of prorenin receptor or AT1R by renin/prorenin and AngII, respectively, results in dele-
terious events, such as cell death, inflammation, oxidative stress, and vasoconstriction [44–46]. In 
contrast, activation of AT2R, AT4R, MasR and MrgDR induces opposing advantageous effects [44–

Figure 1. Schematic diagram of the brain RAS, depicting the various peptides, enzymes and receptors
involved and the subsequent effect on specific neurological functions when activated by their lig-
ands [44–46]. Angiotensinogen is first converted to AngI by renin and its precursor, prorenin. AngI
can be metabolized to AngII by ACE and chymase, converted to Ang(1–9) by ACE2 or catalyzed into
Ang(1–7) by neprilysin [31,45]. AngII can associate with either AT1R or AT2R, resulting in detrimental
or homeostatic promoting effects, respectively [31,45]. Furthermore, AngII can then be converted
to AngIII by aminopeptidase A (APA), AngA by aspartate decarboxylase (AD) or Ang(1–7) by
ACE2 [31,45]. The resulting Ang III peptide is further acted upon by APA and alanyl aminopeptidase
to become AngIV, which interacts with AT4R to promote neuroprotective effects [31,45]. Ang(1–9)
can be catalyzed by ACE to either directly bind to the Mas-related G-coupled protein receptor
(MrgDR) or can be acted upon by AD into alamandine, interacting with the Mas1 oncogene receptor
(MasR) [31,45]. Finally, AngA can also be converted to alamandine by ACE2 [26]. Activation of
prorenin receptor or AT1R by renin/prorenin and AngII, respectively, results in deleterious events,
such as cell death, inflammation, oxidative stress, and vasoconstriction [44–46]. In contrast, activation
of AT2R, AT4R, MasR and MrgDR induces opposing advantageous effects [44–46]. Abbreviations:
ACE, angiotensin-converting enzyme; AD, aspartate decarboxylase; Ala, alanine; AngI, angiotensin;
AngII, angiotensin II; AngIII, angiotensin III; AngIV, angiotensin IV; APA, aminopeptidase A; APN,
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alanyl aminopeptidase; Arg, arginine; Asp, aspartic acid; AT1R, angiotensin II type 1 receptor; AT2R,
angiotensin II type 2 receptor; AT4R, angiotensin II type 4 receptor; His, histidine; Ile, isoleucine;
Leu, leucine; MasR, Mas1 oncogene receptor; MrgDR, Mas-related G-coupled protein receptor;
NEP, neprilysin; Phe, phenylalanine; Pro, proline; Ser, serine; PRR, prorenin receptor; RAS, renin–
angiotensin system; Thr, threonine; Tyr, tyrosine; Val, valine. Figure made using Biorender.com
(access date: 10 March 2024).
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to the contrary. Firstly, in spontaneous hypertensive rats, breakdown of the BBB may increase
permeability, allowing for extravasate access of AngII into the hypothalamus [49]; however further
research is required to substantiate this claim in humans. Moreover, AT1R-mediated transcytosis of
AngII by brain endothelial cells (BECs) of the BBB may allow entry of AngII to regulate autonomic
function [50]. Abbreviations: ACE, angiotensin-converting enzyme; AGT, angiotensinogen; Ang,
angiotensin; APA, aminopeptidase A; AT1R, angiotensin II type 1 receptor; AT2R, angiotensin II
type 2 receptor; AT4R, angiotensin II type 4 receptor; α1AR, adrenergic receptors; BECs, brain
endothelial cells; MasR, Mas1 oncogene receptor; MrgDR, Mas-related G-coupled protein receptor;
PRR, prorenin receptor; RAS, renin–angiotensin system. Key: red dashed arrow = peptide binds
to and activates AT1R; green dashed line = peptide binds to and activates AT2R; orange dashed
arrow = peptide binds to MrgDR; purple dashed arrow = peptide binds to and activates MasR; brown
dashed arrows = peptide binds to and activates PRR. Figure made using Biorender.com (access date:
10 March 2024).

The octapeptide AngII (DRVYIHPF) plays a critical role in cardiovascular homeostasis
and blood pressure regulation [26]. To combat cardiovascular pathologies (e.g., atheroscle-
rosis, coronary artery disease and hypertension), important pharmaceuticals have been
developed which either inhibit its synthesis (i.e., angiotensin-converting enzyme inhibitors)
or block its receptor (i.e., AngII receptor blockers (ARBs)) [26]. Additionally, AngII acts
on T cell receptors [51], modulating the immune and inflammatory responses that result
in autoimmune diseases (e.g., rheumatoid arthritis, systemic lupus erythematosus and
multiple sclerosis) [52], diseases arising from chronic hyper-inflammation (e.g., atheroscle-
rosis, coronary artery disease and chronic kidney disease) [53,54] and neurodegenerative
disorders (e.g., Alzheimer’s disease, multiple sclerosis and motor neuron disease) [55,56].
More recently, sartans (non-peptide ARBs) have proven effective in combating COVID-19,
not only by inhibiting the infective process [57] but also by blocking AngII-mediated in-
flammatory responses (i.e., cytokine storm) [58]. Therefore, understanding the details of the
interaction of AngII with its primary receptor, AT1R forms the basis for the development of
the next generation of drugs.

The relationship between ARBs, addiction and the BBB has been reported in the
literature. The ARB candesartan has been shown to reduce morphine-induced inflamma-
tory response and cellular activation in murine-derived microglial cells [59], significantly
decrease methamphetamine self-administration and seeking behavior in male Sprague–
Dawley rats [60] and pretreatment with candesartan in Wistar rats has been shown to
attenuate the development of amphetamine-induced behavior sensitization [61,62]. More-
over, acute intracerebroventricular administration of telmisartan, but not losartan, reduces
alcohol consumption in Sardinian alcohol-preferring rats [63] and treatment with valsartan
has been observed to prevent morphine-tolerance in Wistar rats [64]. The discrepancies
observed between ARBs and their potential to be used in addiction may be due to their
ability (e.g., azilsartan, candesartan, telmisartan and valsartan) or inability (e.g., eprosartan,
irbesartan, losartan and olmesartan) to penetrate the BBB [37,65].

Additionally, the postsynaptic G-protein coupled receptor (GPCR) and alpha-1 (α1)
adrenergic receptor, have also gained interest as potential therapeutic targets for the treat-
ment of substance abuse [66–68]. α1 adrenergic receptors have an intimate relationship
with the RAS, as binding of the neurotransmitter, norepinephrine, and the neurohormone,
epinephrine, regulates sympathetic nervous system tone by mediating blood pressure
through vasoconstriction of vascular smooth muscle cells (Figure 2) [69–71]. The α1 adren-
ergic receptor has been shown to play a role during cocaine and morphine abuse and
addiction by modulating the release of neurotransmitters that are part of the reward system.
For example, during cocaine and morphine exposure α1 adrenergic receptors participate
in the enhancement of dopamine neuronal excitability while simultaneously modulating
glutamatergic neurotransmission and reducing gamma-aminobutyric acid inhibition of
dopamine neurons, resulting in drug seeking behaviors and sensitization [67,72]. Thus, a
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dual treatment, involving restoration of RAS and inhibition of the α1 adrenergic receptor,
may provide novel treatment to combat substance abuse and addiction.

2. Results and Discussion
2.1. Sarmesin and Sarilesin

Pharmacological studies on smooth muscle tissues have shown that methylation of ty-
rosine (Tyr) hydroxyl leads to the competitive antagonist [Sar1Tyr(Me)4]AngII or sarmesin.
Substituting the aromatic sidechain of phenylalanine (Phe)8 with an aliphatic residue, as
seen in [Sar1Ile8]AngII or sarilesin, results in an inverse agonist. This also desensitizes the
receptor to AngII, akin to tachyphylaxis [73]. Interestingly, methylation of the Tyr4 hydroxyl
of sarilesin converts this peptide from a desensitizing (slowly reversing) inverse agonist
into a reversible competitive antagonist, such as sarmesin, illustrating that the process of
receptor desensitization is also dependent on tyrosinated anion formation, as with agonist
activity. Sartans, like sarilesin, are long-acting inverse agonists with slowly reversing
(desensitizing) effects. Their tyrosinate anion promotes tachyphylaxis/desensitization by
AngII and sarilesin, mimicked by carboxylate or tetrazole in sartans.

2.2. The Role of Sar1 in AngII

All AngII analogues benefit from Sar1 presence, including AngII (enhanced to a su-
peragonist), competitive antagonist sarmesin, and long-acting inverse agonist sarilesin.
Replacement of Sar1 with natural Asp1 reduces sarmesin and sarilesin activities signifi-
cantly, suggesting stabilization of the tripartite conformation by the charge relay system
(CRS) interacting with the N-terminus; however, clearly in the case of sarmesin only a
partial network (His–carboxylate) can form; so that the correct placement of Tyr(Me) by
interaction with the N-terminal becomes even more essential. Indeed, nuclear magnetic
resonance studies have revealed no substantive conformational differences among AngII,
sarmesin and sarilesin, despite their diverse properties [74].

Previous studies have suggested that the positively charged guanidino cation of Arg
acts as a chaperone, potentially stabilizing the tyrosinate anion [75]. Interaction between
Arg guanidino cation and Asp carboxylate anion likely influences their positioning, with
Asp carboxylate also interacting with the positively charged N-terminal amino group.
This cluster of charged groups, held together by strong electrostatic interactions, likely
profoundly influences the molecule’s structure. Further, studies have implicated a tripartite
interaction in AngII, involving Tyr, histidine (His), and the C-terminal carboxylate [76,77].
This results in the transfer of charge from the C-terminus to form a tyrosinate anion,
stabilized by interaction with the N-terminal part of the peptide, primarily the arginine
guanidino group [76]. The significance of the N-terminal domain is demonstrated by
the loss of bioactivity (< 5%) for Acetyl-AngII (loss of positive charge at N-terminus),
for [Ala1]AngII or AngA (loss of negative charge on sidechain), and for [Ala2]AngII
(loss of positive charge on sidechain). Thus, the cluster of three charged groups in the
N-terminal region plays a significant role in maintaining the bioactive conformation of
AngII. However, when the aspartic acid residue is replaced by sarcosine (Sar), there is an
accompanying increase in bioactivity that can only be explained by a special realignment
of the conformation of the N-terminal portion of the peptide, induced by a bend caused
by the Sar residue. Bends/turns in the peptide backbone are induced by secondary amino
acids (e.g., proline and Sar) and sterically hindered branched sidechain amino acids (e.g.,
valine and isoleucine). The presence of isoleucine and proline in the C-terminal domain of
AngII creates a sharp gamma turn, facilitating tripartite interaction, while the presence of
valine in the N-terminal region enables the arginine guanidino group to interact with the
tyrosine sidechain.

2.3. Angiotensin A

The conformation of small peptides is largely driven by strong electrostatic interactions,
especially ion pairing (salt bridge formation), which greatly influence conformational
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outcomes. In AngII, Asp carboxylate and Arg guanidinium side chain groups, together
with the N- and C- terminals, are major energy determinants. Chemical reactivity studies
on AngII suggest activation of the Tyr hydroxyl group, indicating interaction with the
C-terminal carboxylate [77]. Additionally, His imidazole of AngII is activated, indicating
interaction with the C-terminal carboxylate and TyrOH, possibly forming a CRS that links
the TyrOH–His imidazole–carboxylate (of Phe). The CRS formation will be energetically
favored because of the increased charge delocalization available if there is no extra strain
produced in other parts of the molecule. Evidence from fluorescence lifetime spectroscopic
studies [78] supports this mechanism. As a corollary of this, it is likely that the Arg
guanidino cation would naturally move in to stabilize the Tyr anion formed by the CRS,
acting as a chaperone. The loss of bioactivity (> 90%) associated with the substitution
of Arg (e.g., with norleucine) supports the idea of an important role for the guanidino
group. Activity is also greatly depreciated when the N-terminal amino cation is neutralized
(e.g., by acetylation) or the Asp carboxylate anion is removed (e.g., by substitution with
alanine (Ala), as in AngA. This suggests a complex interactive role for all three charged
groups, possibly working in concert (Figure 3A–C). According to Figure 3A, in addition
to the tripartite interaction in the C-terminal half of the AngII molecule, there is also a
tripartite interaction in the N-terminal region invoking amino–carboxyl–guanidino, which
presumably helps to position the guanidino to interact with TyrO-. The Asp carboxylate
anion will naturally attempt to position itself to interact with both amino and guanidino
cations. In Figure 3B, the removal of the Asp carboxylate disrupts this tripartite interaction
such that the Arg guanidino is no longer close enough to stabilize TyrO- and there is a
consequent loss of bioactivity (< 5%). Substituting Sar1 restores activity, implying that
repulsion between amino and guanidino groups is compensated for by a turn in the
backbone induced by Sar. This repositions the Arg sidechain group to chaperone TyrO-
(Figure 3C) (considering the limitations imposed by this two-dimensional representation).
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Figure 3. Two- and three-dimensional models depict intramolecular interactions of angiotensins.
(A) The tyrosinate anion, formed by the charge relay system (CRS) (Tyr..His..CO2- of Phe) is stabilized
by interaction with the arginine (Arg) guanidino cation, which is maintained in position by the
aspartate (Asp) carboxylate anion, depicted bonded between two cations (resulting in bioactivity as
charge is transferred to TyrOH). (B) Angiotensin A (AngA) alters the conformation of the N-terminal
region, affecting the ability of the Arg cation to effectively chaperone the CRS (resulting in weak
activity as charge transfer is only partial). (C) [Sar1] AngII creates a bend at the N-terminus restoring
the position of the Arg guanidino cation, enabling it, together with the sarcosine (Sar) amino cation, to
chaperone the CRS (enhancing bioactivity and functioning as a superagonist). Abbreviations: AngII,
angiotensin II; C, carbon; H, hydrogen; His, histidine; Ile, isoleucine; N, nitrogen; O, oxygen; Phe,
phenylalanine; Pro, proline; Tyr, tyrosine; Val, valine. Key: blue = nitrogen atoms; red = oxygen atom;
grey= carbon atoms; white = hydrogen atoms.
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2.4. Receptor Interactions: Desensitization and Tachyphylaxis

AngII interacts with the AT1R, leading to receptor dimerization and G-protein binding,
leading to the contractile response [79]. The tyrosinate anion likely interacts with R167 or
K199 of the receptor, creating a transient bond, which results in receptor activation [57].
Desensitizing/inverse agonists form a more stable salt bridge with R167 [80], coupling the
receptor to different signaling pathways [81] and causing long-term blockade, particularly
for certain ARB sartans (e.g., candesartan, telmisartan) and the peptide analogue sarilesin.
This mechanism may also explain tachyphylaxis (Figure 4) where high agonist concentra-
tions desensitize the receptor by forming a stable salt bridge, slowing reversal. This could
serve as a cellular defense mechanism against overstimulation.
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tizing) effects at AT1R. The figure illustrates the dynamic interaction between AngII and AT1R under
different conditions [82–85]. At baseline, AngII binds to AT1R in its resting state. At submaximal
doses (nH > 1 < 2), AngII forms an activated state with the alpha, beta, and gamma G-protein subunits,
leading to endothelial dysfunction, the pathogenesis of cardiovascular diseases (CVD), vasocon-
striction, cardiac remodeling, pro-oxidative stress, and inflammation. Conversely, at supramaximal
doses (nH < 1), inverse agonists induce an inverted state of the receptor. This results in an increase in
nitric oxide (NO) and cardiac performance, decreased cellular stress, cardioprotection, vasodilation,
anti-fibrotic, anti-oxidative, and anti-inflammatory effects conditions [82–85]. Desensitizing or inverse
agonists form more stable salt bridges with residue R167 of AT1R, coupling the receptor to different
signaling pathways and inducing long-term blockade, as seen with certain ARBs, like candesartan,
telmisartan, and the peptide analogue sarilesin. Additionally, Figure 4 suggests a potential mech-
anism for tachyphylaxis, wherein high concentrations of agonists lead to receptor desensitization
by forming stable salt bridges, resulting in a slow reversal process. This mechanism likely serves
as a cellular defense mechanism against excessive cell stimulation, particularly in cardiovascular
tissues, thereby protecting against the noxious effects of AngII. Abbreviations: P, phosphorylation.
Key: ↑ = increases; ↓ = decreases. Figure created with Biorender.com (access date: 10 March 2024).
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Studies on muscarinic partial agonists, which cannot produce the maximum response
enabled by the natural agonist, are thought to have mixed agonist/inverse agonist proper-
ties, with inverse effects kicking in before the maximum response to the natural agonist
can be achieved. Accordingly, all ligands, including the natural ligand, can produce
concentration-dependent positive cooperativity (i.e., agonist activity) or negative coopera-
tivity (i.e., inverse agonist activity) at receptors (Figure 4). Inverse agonism is associated
with protracted desensitization effects, which may derive from the formation of more stable
bonding with the receptor and/or second messenger [86]. Thus, tachyphylaxis, desensi-
tization and inverse agonism represent interconnected facets of the same process. This
phenomenon is influenced by both dosage and time, with the between doses impacting the
cumulative degree of desensitization. Both factors also affect recovery time, or the time
needed to re-sensitize the receptor and restore normal function. It is also possible that
desensitization involves internalization of the receptors and that re-sensitization results
from a delay in the shuttling of new receptors to the cell membrane.

2.5. Desensitization and Addiction

When a receptor undergoes desensitization, it develops tolerance to the ligand, ne-
cessitating higher doses for the same effect. This process can lead to dependence and
withdrawal, hallmark symptoms of addiction. Consequently, receptor desensitization and
addiction are interconnected phenomena, which can be investigated for therapeutic inter-
vention. For example, in opiate addiction, methadone, a partial agonist methadone is used
to mitigate opiate withdrawal symptoms by dampening both agonists and desensitization
effects. Natural opiate agonists like endorphins/enkephalins are akin to fentanyl in potency,
suggesting that many synthetic opiates (e.g., morphine, heroin and oxycodone) may act as
partial agonists, with methadone being the weakest. Naloxone, a competitive antagonist,
reverses the agonist effects without affecting opiate desensitization. To address addiction,
we propose targeting the primary causal mechanism, receptor desensitization, potentially
by dissociating it from the receptor. Without desensitization, tolerance, dependence, and
withdrawal may be mitigated. However, this approach may limit the receptor’s responsive-
ness to pure agonists and competitive antagonists, potentially compromising its protective
tachyphylactic response.

2.6. Therapeutic Intervention

One crucial aspect of desensitization is the duration it takes for the receptor to regain
normal function (re-sensitization). Details of this time-dependence are poorly understood
but may involve not only a stable salt bridge between ligand and receptor, as proposed for
angiotensin, but also the dynamics of association/dissociation of the second messenger in
the signaling pathway which invokes the inverse response. In the case of angiotensin, the
inverse response is smooth muscle relaxation due to an unknown messenger, possibly a
different G protein (Figure 4). In the context of opiate receptors, this reverse response could
increase pain sensitivity, counteracting the analgesic effects of opiates. If the slow reacquisi-
tion of normal receptor function is the result of the slow dissociation of messenger(s) at or
downstream of the receptor itself, it may be possible to decouple the receptor from this and
inverting signaling pathway(s) without compromising the formation of the receptor dimer
coupled to the G protein, which provides for agonist activity (Figure 4). High through-
put screening for molecules selectively uncoupling the inverse agonist response could
identify potential candidates. Therapeutic administration of such a “decoupler” molecule
could simplify and predict withdrawal therapy titration, albeit with a heightened risk of
overdose. Without the desensitization process, withdrawal could involve meticulously
reducing agonist doses over time. This calibrated withdrawal approach may be applicable
to various addictive substances. Individuals who are “endogenously compromised,” such
as those with sub-physiological levels of agonist or compromised receptors (e.g., analogous
to insulin receptor insensitivity in type II diabetes), could potentially be maintained on a
prescribed dose of agonist plus decoupling agent. Removing the desensitization effects
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could reverse addiction while the addressing of any remaining psychological or “perceived
need” aspects may require cognitive therapy.

2.7. Receptor Crosstalk and Compensatory Interactions

The majority of receptors, including GPCRs, are subject to a desensitization/tachyphylaxis
mechanism, and have the potential to be decoupled from this desensitization pathway, pos-
sibly using a small molecular entity. For example, methamphetamine addiction, which is
characterized by desensitization of the GPCR α1 adrenergic receptor, could perhaps be treat-
able by decoupling the signaling pathway, which leads to tachyphylaxis/desensitization. If
there is crosstalk between receptors for different contractile ligands as a means of cardio-
vascular regulation, then the possibility exists that drugs like sartans, which principally
desensitize AT1R could have an influence on α1 receptors. Indeed, in isolated smooth mus-
cle assays, ARB sartans (e.g., candesartan, telmisartan) generally decrease the response of
the α1 adrenergic receptor to phenylephrine, although notably the monovalent ARB sartan
up-sensitizes the alpha receptor (implicating a subtle structure–activity relationship for this
effect). Thus, deactivation of one GPCR can lead to upregulation or downregulation of a
different GPCR. This compensatory mechanism could derive from allosteric effects between
receptors bumping up against each other in the cell membrane, or more likely through
interaction between their response transmission mechanisms. Apparently, receptors can be
complex gatekeepers, suggesting that there may be common signaling pathways among
different GPCR. We are in the process of examining the potential application of sartans for
preventing the development of tolerance, and thereby addiction, to methamphetamine. In
this context, there may possibly be a role for sartans in opiate addiction (also mediated by
a GPCR).

2.8. Sartans Acting on Alpha Adrenergic Receptors

Agonist action at GPCR is associated with homotropic cooperativity (receptor dimer-
ization) and heterotropic cooperativity (G-protein coupling), resulting in amplification of
agonist affinity and responsiveness (Hill coefficient between 1 and 2). Antagonists can
be either competitive antagonists (rightward shift of the response curve, Hill coefficient
unchanged), or noncompetitive antagonists/inverse agonists. These demonstrate nega-
tive cooperativity (Hill coefficient < 1), couple to a different second messenger (possibly
beta-arrestin) and desensitize the receptor for prolonged periods (possibly by invoking
receptor internalization) (Figure 4). Many agonist ligands acting at GPCR become inverse
agonists at higher concentration (tachyphylaxis). Agonist ligands for alpha adrenergic
GPCR include epinephrine, phenylephrine and methamphetamine, and alpha blockers like
prazosin are inverse agonists at alpha receptors.

Computer simulations of the binding of ligands (Figure 5) to the alpha receptor (X-ray
crystallographic structure) have been evaluated in terms of relative binding energies, as
shown in Figure 6. Surprisingly, sartans/bisartans demonstrate greater affinity for the
cell surface binding site than classical alpha blockers, and alpha agonists demonstrate
the lowest affinity, which may be attributed to the absence of the cooperative effects of
dimer and G protein to elevate affinity in these simulations. These findings explain the
pharmacological ability of bisartans to reduce contraction in response to phenylalanine,
an α1 adrenergic receptor agonist. We show that isolated iliac arteries from male New
Zealand white rabbits, preincubated with benzimidazole-N-biphenyl tetrazole (ACC519T),
had significantly augmented responses to a phenylephrine dose response, from 10−7 M
(p < 0.05) to 10−5 M (p < 0.0001), when compared with untreated control rings (Figure 7).
Moreover, rings pretreated with candesartan had no alteration in contraction responses
when compared with controls (Figure 7). This suggests an ability to up-sensitize/re-
sensitize the alpha receptor—as outlined above, this property has potential application
in the treatment of addiction [21]. Computer simulations were also carried out on the
alpha receptor dimer, as shown in Figure 8, and generally reflected the findings with the
monomer. Despite their charge differences, all of the ligands shown in Figures 6 and 8
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competed for the same binding site on the alpha receptor and showed little tendency to
bind elsewhere on the receptor molecule. Binding to alpha adrenergic receptors appears to
be much more permissive than the strict rules for binding to angiotensin receptors outlined
at the beginning of this treatise.
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ture of the alpha receptor are shown. Abbreviations: BisA, 4-Butyl-N,N0-bis([[20-(2H-tetrazol-5-
yl)]biphenyl-4-yl]) methylimidazolium bromide; BisB, 4-Butyl-2-hydroxymethyl-N,N0-bis([20-(2H-
tetrazol-5-yl)- biphenyl-4-yl])methyimidazolium bromide; BisC, 2-Butyl-4-chloro-5-hydroxymethyl-
N,N0-bis([20-(2H-tetrazol- 5-yl)biphenyl-4-yl]methyl)imidazolium bromide; BisD, 2-Butyl-N,N0-
bis([20-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl) imidazolium bromide; Cl, chlorine; DIZE, diminazene
aceturate; exp3174, losartan carboxylic acid; H, hydrogen; N, nitrogen; O, oxygen; S, sulfur. Key:
green = chlorine; grey = hydrogen; blue = nitrogen; red = oxygen; yellow = sulfur.
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Figure 6. (A) Docking results obtained for 29 selected ligands, including various sartans (blue bars)
and known inverse agonists to an alpha-2C-adrenergic receptor (green and orange bars), belonging
to the GPCR class. Ligand docking was performed against the energy-minimized (AMBER14) alpha-
2c-adrenergic receptor, PDB 6KUW, using AutoDock VINA with 900 runs per ligand with assigned
AMBER14 atomic point charges and dihedral barriers [28]. Of the 29 ligands evaluated, the anionic
bisartan ACC519TT exhibited the strongest docking energy (12.5 kcal/mol). ACC519TT outperformed
the opioid-like ligand “6kuwLig” (compound RS79948:(8~(a)~(R),12~(a)~(S),13~(a)~(R))-12-orange
bars) (accessed on 11 March, 2024) designed as a specific inhibitor of the 6KUW receptor. (B) Structure
of the 6KUW opioid receptor with docked bisartan ACC519TT (yellow carbon atoms) embedded in
the cell surface domain. The yellow shaded area approximates the docking region of interest. Residues
shown in ethylsulfonyl-3-methoxy-5,6,8,8~(a),9,10,11,12~(a),13,13~(a)-decahydroisoquinolino [2,1-
g][1,6]naphthyridine; https://www.rcsb.org/structure/6KUW; “stick” rendering indicate the loca-
tions of arginine residues for 6KUW. (C) Illustrates the 3D rendition of the docked ligand ACC519TT,
while (D) presents the 2D interaction diagram calculated using PoseView-2D, ZBH-Center for Bioin-
formatics: https://proteins.plus/) (accessed on 11 March 2024). Principle binding interactions
included non-covalent pi–pi resonances (red lines in (C) and cyan dashed lines in (D)) of both anionic
tetrazole groups with proximal tyrosine residues (Tyr402 and Tyr405) and phenylalanine (Phe398).
Hydrophobic interactions (green lines) were also heavily represented in ACC519TT binding. (E) Su-
perposition of the PDB 6KUW X-ray crystallographic structure of the co-crystallized “6kuwLig”
ligand (blue carbon atoms, as spheres) against docked ligand “6kuwLig” (maroon colored carbon
atoms, as spheres). The superimposed molecules exhibited an RMSD of 1.0339 Angstroms, indicating
that VINA algorithms were able to reproduce a high-quality experimental pose for this ligand.
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Abbreviations: ACC519TT, benzimidazole-N-biphenyl tetrazole; ACC519[1], benzimidazole-N-
biphenyl tetrazole; Asn, asparagine; Azil, azilsartan; BisA, 4-Butyl-N,N0-bis([[20-(2H-tetrazol-5-
yl)]biphenyl-4-yl]) methylimidazolium bromide; BisB, 4-Butyl-2-hydroxymethyl-N,N0-bis([20-(2H-
tetrazol-5-yl)- biphenyl-4-yl])methyimidazolium bromide; BisC, 2-Butyl-4-chloro-5-hydroxymethyl-
N,N0-bis([20-(2H-tetrazol- 5-yl)biphenyl-4-yl]methyl)imidazolium bromide; BisD, 2-Butyl-N,N0-
bis([20-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl) imidazolium bromide; Cande, candesartan; Dize,
diminazene aceturate; Epro, eprosartan; exp3174, losartan carboxylic acid; Glu, glutamic acid; Gly,
glycine; GPCRs, G-protein coupled receptors; Ireb, irbesartan; Kd, dissociation constants; Leu, leucine;
Lo, losartan; norepineph, norepinephrine; PDB, Protein Data Bank; Phe, phenylalanine; phenyleph,
phenylephrine; RMSD, root mean standard deviation; Ser, serine; Telmi, telmisartan; Tyr, tyrosine;
Val, valsartan (7A) or valine (7C); Å, angstrom.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 13 of 21 
 

 

hydroxymethyl-N,N0-bis([20-(2H-tetrazol-5-yl)- biphenyl-4-yl])methyimidazolium bromide; BisC, 
2-Butyl-4-chloro-5-hydroxymethyl-N,N0-bis([20-(2H-tetrazol- 5-yl)biphenyl-4-yl]methyl)imidazo-
lium bromide; BisD, 2-Butyl-N,N0-bis([20-(2H-tetrazol-5-yl)biphenyl-4-yl]methyl) imidazolium 
bromide; Cande, candesartan; Dize, diminazene aceturate; Epro, eprosartan; exp3174, losartan car-
boxylic acid; Glu, glutamic acid; Gly, glycine; GPCRs, G-protein coupled receptors; Ireb, irbesartan; 
Kd, dissociation constants; Leu, leucine; Lo, losartan; norepineph, norepinephrine; PDB, Protein 
Data Bank; Phe, phenylalanine; phenyleph, phenylephrine; RMSD, root mean standard deviation; 
Ser, serine; Telmi, telmisartan; Tyr, tyrosine; Val, valsartan (7A) or valine (7C); Å, angstrom. 

 
Figure 7. Effects of ACC519T and candesartan on phenylephrine-induced contraction of rabbit iliac 
arteries. Pretreatment with ACC519T significantly augmented contraction responses to phe-
nylephrine (mean ± standard error of the mean (SEM)) (* p < 0.05, **** p < 0.0001); however, no dif-
ferences in contraction abilities were observed in rings treated with candesartan (mean ± SEM). Ab-
breviations: ACC519, benzimidazole-N-biphenyl tetrazole; PE, phenylephrine. 

 

 

Figure 8. (A) 6KUW A chain showing predicted allosteric pockets (green shaded areas). Allosteric 
sites were calculated using Passer: Protein Allosteric Sites Server ( https://passer.smu.edu/; access 
date: 5 March 2024). Docking was performed against allosteric site 1 for both 6KUW and 7B6W. (B) 
Binding energies of different drugs competed for the same site on the alpha receptors. Abbrevia-
tions: Allo, allosteric; Cande, candesartan; H, hydrogen; Kd, dissociation constants; Metamphet, 
methamphetamine; N, nitrogen; Norepi, norepinephrine; O, oxygen; Phenyleph, phenylephrine. 

  

Figure 7. Effects of ACC519T and candesartan on phenylephrine-induced contraction of rabbit iliac
arteries. Pretreatment with ACC519T significantly augmented contraction responses to phenylephrine
(mean ± standard error of the mean (SEM)) (* p < 0.05, **** p < 0.0001); however, no differences in
contraction abilities were observed in rings treated with candesartan (mean ± SEM). Abbreviations:
ACC519, benzimidazole-N-biphenyl tetrazole; PE, phenylephrine.
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Figure 8. (A) 6KUW A chain showing predicted allosteric pockets (green shaded areas). Allosteric
sites were calculated using Passer: Protein Allosteric Sites Server (https://passer.smu.edu/; access
date: 5 March 2024). Docking was performed against allosteric site 1 for both 6KUW and 7B6W.
(B) Binding energies of different drugs competed for the same site on the alpha receptors. Abbrevi-
ations: Allo, allosteric; Cande, candesartan; H, hydrogen; Kd, dissociation constants; Metamphet,
methamphetamine; N, nitrogen; Norepi, norepinephrine; O, oxygen; Phenyleph, phenylephrine.

2.9. Perspectives of Sartans and Bisartans as Therapeutics by Blocking Arginine-Mediated Disease

Sartans, and in particular bisartans, discovered in our laboratories [87] have shown
to be effective blockers of arginine, the dominant residue in promoting the cleavage of
viral glycoproteins and activating severe acute respiratory syndrome coronavirus 2019
(SARS-CoV-2) viral infection [57,88]. The cleavage of SARS-CoV-2 spike protein by fu-
rin at the arginine rich multi basic sites, subunits (S)1/S2 (680-SPRRARS-686) and S2′

(810-SKPSKRS-816), occurs between the same R-S residues location in both sites, initiating
SARS-CoV-2 infection. Therefore, arginine blockers (e.g., ARBs, sartans and bisartans)
containing anionic tetrazole and/or carboxyl functional groups or dual tetrazoles with
increased acidity represent promising repurposed antiviral drugs [54]. Thus, drugs in the
sartan family can block furin activity and subsequent infection by obstructing basic amino
acids at cleavage sites [57,88,89]. Clinical studies have shown the beneficial effect of ARBs,
such as telmisartan and candesartan, in hypertensive patients infected with SARS-CoV-
2 compared with patients not taking ARBs [90–93]. The interaction of sartans with the
angiotensin-converting enzyme-2/receptor binding domain complex by computational
and enzyme studies and the role of tetrazole functionality has been recently reported [94].

Bisartans bearing two symmetric biphenyl tetrazole warhead groups attached to the
two nitrogens of the histidine ring, as in the BisA, BisB, BisC and BisD chemical structures,
are unique and bind stronger when compared with other sartans bearing only one biphenyl
tetrazole or carboxyl group [57]. Computational and enzymatic models demonstrate in-
creased binding if the biphenyl tetrazole or carboxyl group is attached to the Benzimidazole
ring and this is attributed to the extended pi electron resonance cloud inducing strong
pi–pi interactions between ligand and receptor [57,94]. Additionally, bisartans have shown
extraordinary properties in producing biological effects with AT1R, even at ultra-high dilu-
tions, a phenomenon interpreted by entangled quantum pharmacology mechanism [95].

In summary, arginine plays a crucial role in the ligand–protein interactions across
several biological systems, by stabilizing conformations and strongly binding to anionic
sites [96,97]. Anionic sartans, particularly bisartans, exhibit potent binding capabilities,
effectively neutralizing cationic arginines. This mechanism holds significance in protecting
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the biological systems from disease processes, such as those mediated by arginines, as in the
cleavage of the SARS-CoV-2 spike protein by furin [98–103]. Utilizing additional synthetic
and physicochemical methods could help resolve and confirm predicted computational
interactions involving arginine, especially in microwave solid phase peptide synthesis.
Tetrazole-containing compounds like sartans and bisartans, which block arginine have
been investigated [57,58,76,104,105].

2.10. Sartans and Bisartans and the Blood–Brain Barrier

Although sartans are anticipated to readily cross the BBB, the zwitterion nature of
bisartans makes it less likely that they will penetrate the BBB and thereby gain access to
brain angiotensin receptors. Accordingly, central effects of ARBs due to actions at brain
receptors should be more pronounced for sartans than bisartans. As it turns out, whereas
bisartans are often more potent than sartans in isolated smooth muscle assays, bisartans
tend to be less potent in pressor assays [21], where a component of blood pressure regulation
is likely to be centrally mediated. Thus, any differences in biological activity between
sartans and bisartans, when administered intravenously, can be anticipated to derive from
central brain effects. Therefore, when considering processes related to addiction, which are
brain-centric, sartans can be expected to be more useful therapeutic entities than bisartans.

3. Materials and Methods
3.1. In Silico Studies

Molecular simulation studies of our compounds into the protein targets were carried
out using the open-source program Autodock 4.0 included in Auto-Dock Tools 1.5.6. For
this study, the crystal structures of the proteins were extracted by the Protein Data Bank.
Docking was performed using non-periodic (walled) boundaries that effectively confined
ligands to an approximately 17 × 17 × 32 Å cuboid volume. The best hits and ligand
conformational poses are expressed as kcal/mol free energy of binding.

Virtual ligand screening (VLS) was performed using AutoDock VINA [106,107] with
default parameters. Receptor preparation, including designation of the docking region of
interest (i.e., docking cell boundaries), hydrogen bond optimization, rebuilding of residue
sidechains with missing atoms, addition of missing backbone atoms, deletion of water
molecules that overlap with other atoms, correction of bond orders, etc., was undertaken
with Yet Another Scientific Artificial Reality Application (YASARA) Dynamics molecular
modeling software (YASAR Biosciences GmbH, http://www.yasara.org/) (accessed on 10
March 2024) [108]. Three-dimensional ligand structures were prepared and optimized in
YASARA or Hyperchem (http://hypercubeusa.com/) (access on 10 March 2024) and saved
in SDF format. For each ligand, the best hit from 900 runs was recorded and expressed in
kcal/mol free energy of binding. Dissociation constants (Kd) expressed in pM units were
calculated from the binding energies. VINA uses a fast grid-based search method, and
grids are created inside the walled docking cell, so atoms outside the cell do not influence
the grid and thus the docking result. Note that in this report more positive docking scores
correspond with stronger ligand–receptor interactions.

3.2. Ex Vivo Studies
3.2.1. Animal Model, Ethics Approval and Humane Dispatchment

Male New Zealand White rabbits (n = 3) at 8–10 weeks of age were purchased from
Flinders City University (Adelaide, SA, Australia) and were housed at Victoria University,
Werribee Campus Animal Facilities, VIC Australia. Animals were kept on a 12 h day/night
cycle, maintained at a constant temperature of 21 ◦C and relative humidity level between
40 and 70% and were aged until 16 weeks. Rabbits were fed normal chow diet pellets
(Specialty Feeds, Glen Forrest, WA, Australia) and food and water were supplied ad
libitum. All experimental procedures were conducted in accordance with the National
Health and Medical Research Council ‘Australia Code of Practice for the Care and Use of
Animals for Scientific Purposes’ (8th edition), 2013; https://www.nhmrc.gov.au/about-
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us/publications/australian-code-care-and-use-animals-scientific-purposes (accessed on
22 February 2024) and was approved by the Victoria University Animal Ethics Committee
(VUAEC#17/013).

Rabbits were first sedated using a subcutaneous injection of medetomidine (0.25 mg/kg)
at the ‘scruff’ or base of the neck to reduce stress and anesthetized using the inhalant
isoflurane (4%). When loss of corneal and palpebral pain reflex was observed, an incision
was made at the lower abdomen and the subcutaneous tissue and muscles were dissected
to expose the inferior vena cava. Rabbits were humanely dispatched by inferior vena cava
exsanguination and death was signified by dissection of the diaphragm. A T-tube was
introduced distal to the aortic arch to allow adequate flushing of the aorta, aortic bifurcation,
and iliac arteries with cold (4 ◦C) oxygenated Krebs–Henseleit (Krebs) (118 mM, NaCl;
4.7 mM KCl; 1.2 mM MgSO4·7H2O; 1.2 mM KH2PO4; 25 mM NaHCO3; 11.7 mM glucose;
and 1.25 mM CaCl2) (pH: 7.4). The left and right iliac arteries were retrieved from each
animal and, under a light microscope, were cleaned of connective and adipose tissue and
cut into 2 mm rings for isometric tension myography studies.

3.2.2. Drug Incubations and Isometric Tension Myography Studies

Iliac artery rings were immediately and sequentially placed into adjacent organ baths
(OB16, Zultek Engineering, Melbourne, VIC, Australia) filled with 5 mL of Krebs and
were acclimatized for 30 min. To replicate a physiologically relevant environment, baths
were maintained at 37 ◦C and continuously bubbled with carbogen (95% O2/5% CO2).
After acclimation, rings were mounted between two metal organ hooks attached to force
displacement transducers, stretched to 0.5 g, and equilibrated for a further 30 min. Rings
were then refreshed, re-stretched, and again equilibrated for 30 min before drug incuba-
tions. To investigate the effects of candesartan (a commercially available and commonly
prescribed ARB) (Cat#9003239, Cayman Chemical, Ann Arbor, MI, USA) and ACC519 (an
ARB that has been newly synthesized by our laboratory), rings serving as part of control
groups were not incubated with any drug and were left to rest for 10 min, while the ARB
experimental group rings were incubated with ACC519T (10−6 M) or candesartan (10−6 M)
for 10 min. A phenylephrine (selective alpha-1 adrenergic receptor agonist) (Cat#P6126,
Sigma Aldrich, St. Louis, MO, USA) dose response (10−9 M–10−5 M; each dose added
at 2 min intervals) was then performed to determine the ability of drugs to alter contrac-
tion responses. Following the completion of dose–response studies, rings were refreshed,
allowed to return to baseline tension, and contracted with high potassium physiological so-
lution (125 mM) (125 mM/L KCl; 1.2 mM/L MgSO4·7H2O; 1.2 mM/L KH2PO4; 25 mM/L
NaHCO3; and 11.7 mM/L glucose; and 1.25 mM CaCl2) (pH: 7.4) to determine maximal
standard contraction responses.

3.2.3. Statistical Analysis

GraphPad prism (version 10.2.0) was used for the statistical analysis of isometric
tension studies using a two-way ANOVA, followed by Sidak’s post hoc test to determine
significance. The significant p-value was set at p < 0.05, and all data are represented as the
mean ± standard error of mean (SEM).

4. Conclusion and Future Prospects

Research on angiotensin has shed light on the intricate relationship between receptor
desensitization and peptide structure. It has been observed that, at elevated concentrations,
agonists shift their behavior, becoming inverse agonists due to altered binding modes
with the receptor. This phenomenon, alongside tachyphylaxis and desensitization, forms
a complex interplay that leads to the development of tolerance, physical dependence,
addiction, and eventual withdrawal symptoms. Understanding the structural determinants
underlying receptor desensitization and inverse agonism, especially in the context of
high agonist concentrations, is paramount. This knowledge can significantly contribute
to the development of effective strategies aimed at preventing addiction and managing
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withdrawal symptoms associated with physical dependence on agonists. Additionally,
exploring the intricate relationship between peptide structure, receptor desensitization,
tolerance, addiction, and withdrawal can unearth valuable insights. These insights may lead
to the identification of novel therapeutic targets for intervention and provide new avenues
for addiction treatment. Cross-tachyphylaxis observed between angiotensin receptors and
α1 adrenergic receptors highlights the interconnectedness of GPCRs. This phenomenon
suggests potential opportunities for pharmacological intervention in addiction treatment
by targeting shared pathways. Among the potential treatment options, drugs targeting
angiotensin receptors, particularly ARBs, like sartans, present a promising avenue for
addressing methamphetamine addiction. This is due to their ability to penetrate the
blood–brain barrier and their beneficial effects on diseases associated with dysregulation
of RAS.

Sartans, known for their superior BBB permeability compared with bisartans, emerge
as preferred candidates for treating amphetamine addiction. ACC519, a sartan exhibiting
potential for re-sensitizing α1 adrenergic receptors and possibly opioid receptors, holds
significant promise in this regard. Given these promising avenues, further research into the
pharmacological properties and therapeutic potential of sartans and related compounds in
addiction treatment is warranted. However, to bridge the gap between research findings
and real-world applications in addiction treatment, further steps could involve clinical trials
by which to assess the efficacy and safety of utilizing sartans or related compounds as po-
tential therapeutic interventions. These trials could compare the outcomes of sartan-based
treatments with existing addiction treatments, evaluating factors such as withdrawal symp-
toms, relapse rates, and overall patient wellbeing. Additionally, conducting in vivo studies
using animal models of addiction could provide valuable insights into the mechanisms
underlying sartan-mediated effects on addiction-related behaviors, helping to validate the
proposed therapeutic mechanisms observed herein. This comprehensive approach would
not only enhance our understanding of sartans’ potential in addiction treatment but also
provide essential evidence for their practical application in clinical settings. This research
could pave the way for the development of innovative and effective therapies to combat
addiction and its associated complications.
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