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Abstract: Background: The interaction network between the human host proteins and
the proteins of the gut bacteria is essential for the establishment of human health, and its
dysregulation directly contributes to disease development. Despite its great importance,
experimental data on protein–protein interactions (PPIs) between these species are sparse
due to experimental limitations. Methods: This study presents a deep learning-based
framework for predicting PPIs between human and gut bacterial proteins using structural
data. The framework leverages graph-based protein representations and variational au-
toencoders (VAEs) to extract structural embeddings from protein graphs, which are then
fused through a Bi-directional Cross-Attention module to predict interactions. The model
addresses common challenges in PPI datasets, such as class imbalance, using focal loss to
emphasize harder-to-classify samples. Results: The results demonstrated that this frame-
work exhibits robust performance, with high precision and recall across validation and test
datasets, underscoring its generalizability. By incorporating proteoforms in the analysis,
the model accounts for the structural complexity within proteomes, making predictions
biologically relevant. Conclusions: These findings offer a scalable tool for investigating the
interactions between the host and the gut microbiota, potentially yielding new treatment
targets and diagnostics for disorders linked to the microbiome.

Keywords: gut microbiome; host–bacteria interactions; deep learning; neural networks

1. Introduction
Currently, the entire gut microbiome (GM) is being considered as an essential organ

and major regulator of the human body, estimated to comprise more than 1014 microorgan-
isms, according to the publicly available genomic and proteomic microbiome databases [1].
These bacteria, viruses, fungi, archaea, and protists coexist and interact in a complex sys-
tem [1]. The roughly 3 million genes in the GM encode enzymes that produce thousands of
metabolites, while the human genome only contains about 23,000 genes [2]. The majority
of the bacterial species of the GM form symbiotic relationships with the host and are thus
are crucial for the maintenance of host homeostasis, since they play an integral part in
the establishment and regulation of intestinal innate and adaptive immunity [3]. Besides
their effect on the digestive system, these bacteria additionally influence lateral organs
such as the liver, brain, and pancreas. Therefore, it is no surprise that gut dysbiosis has
been linked to a variety of illnesses, including neurodevelopmental [4], inflammatory [5],
metabolic [6], cardiovascular [7], autoimmune [8], and psychiatric diseases [9], as well
as cancer [10]. Consequently, any alterations of this complicated symbiotic relationship
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between the intestinal flora and the host can promote the development and progression of
gut-related pathological conditions.

Recent studies have focused on the identification of protein interactions between
human and bacterial species. High-throughput yeast two-hybrid assays have been used to
pinpoint interactions between the proteins of various bacterial species, including Bacillus
anthracis, Francisella tularensis, Yersinia pestis, Mycobacterium tuberculosis, and human host
proteins [11–13]. Additionally, mass spectrometry (MS) and cross-linking assays have
been developed to study host–bacteria interactions in a more native environment between
human and Salmonella enterica, Acinetobacter baumanii, and Lactobacillus acidophilus pro-
teins [14–16]. More recently, Li et al. employed a specialized bifunctional amino acid (i.e.,
photo-ANA) to study protein interactions between Salmonella enterica serovar Typhimurium
and human proteins [17]. Considering the plethora of challenges linked to experimental
approaches for unlocking the mysteries of the human gut microbiota, computational strate-
gies have emerged as a first step towards addressing the complexity of this inter-species
dynamic system.

In the early days, protein interaction prediction was performed through inferring
domain–domain interactions (DDIs) from known protein–protein interactions (PPIs), as-
suming that if two proteins contain two interacting domains, they themselves are interacting
too. At first, the DDI prediction was based on statistical approaches, such as Association
Method and Maximum Likelihood Estimation [18]. Afterwards, optimization algorithms
that pinpoint the minimum number of DDIs that satisfy a given PPI network (PPIN) like
Linear Programming [19] and Genetic Algorithm [20] were developed. Later on, Machine
Learning (ML)-based methods, such as Random Forest (RF) [21], were also used to predict
PPIs based on domain information. The most recent approach of this type is based on
Graph Theory [22].

Additionally, docking algorithms, such as HADDOCK [23], ClusPro [24], ZDOCK [25],
LightDock [26], and InterEvDock [27], were used to predict PPIs by spatially orienting
two proteins to find a potential binding site. Accumulated sequence and structure in-
formation of known PPIs is used in template-based computational techniques for PPI
prediction and structural model construction [28,29]. Nowadays, the rapid evolution of
artificial intelligence (AI) algorithms has led to significant advancements in computational
techniques for PPI prediction. These AI methods are divided into two major categories,
sequence-based [30–32] and structure-based [33–35].

Given the current state of knowledge, there is a scarcity of experimental studies that
have successfully identified interactions between proteins from the bacteria of the GM and
the human host, despite the presence of public databases containing experimental data
on interactions between bacterial species and humans. This research gap may impede our
understanding of how imbalances in the relationship between GM bacteria and humans
contribute to the development of diseases. To obtain a better idea of the experimental data
availability, an experimentally validated pan-human–bacterial protein interaction network
was calculated from data that were retrieved from public databases (i.e., HPIDB [36,37],
IntAct [38], PHISTO [39] and MorCVD [40]). To this day, this network contains less than
20 thousand interactions. Nevertheless, the entire gut microbiome is thought to comprise
300 to 500 different bacterial species, so it is safe to say that the interactions between them
and the host proteins are really understudied due to a lack of data. Furthermore, each pro-
teome of each organism (either bacteria or human) is not just a sum of the proteins encoded
by its genetic code, but a rather complex collection of proteoforms. More specifically, every
protein can be modified at any given time either before or after it is translated, resulting in
a multitude of protein types where, even though, in some cases, they can share the same
amino acid sequence, their function is not identical [41]. This study addresses these gaps by
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predicting a PPIN between gut bacterial and human proteins, using a novel structure-based
deep neural network.

2. Materials and Methods
2.1. Deep Learning Architecture

The deep learning (DL)-based framework that was utilized for PPI prediction consists
of three basic modules: (1) a graph-based structural protein embedding calculator; (2) a
bi-directional attention-based embedding fusion layer; and (3) a PPI classifier. This DL
architecture uses as input a pair of protein structures that is encoded in a pair of numerical
representations through the graph-based embedding calculator. Next, the representation
pair is aggregated via the attention-based fusion embedding layer, and a single protein
pair embedding is generated. Finally, the last module of the framework performs the
classification of each protein pair as either interacting or non-interacting through a series of
fully connected layers. The overall model architecture is presented in Figure 1.
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2.1.1. Protein Embedding Calculator

The preprocessing stage of the embedding calculation involves the representation
of each protein as a heterogeneous graph with nodes corresponding to individual amino
acids. It should be noted that as the graph representation converts the protein structure
into a graph to be processed, it can only account for the proteoforms that adopt different
conformations due to changes in the amino acid sequence. Three distinct edge types are
included in each protein graph: (1) sequence-based edges that connect consecutive amino
acids in the primary sequence; (2) radial distance-based edges, which connect amino acids
within a predefined spatial threshold of less than 10 Å in the 3D structure (Cα-Cα distance);
and (3) k-nearest neighbor (k-NN) edges, connecting each amino acid to its k-nearest
neighbors based on spatial proximity in the protein structure. Protein embeddings were
then calculated using a pre-trained variational autoencoder (VAE) model, encapsulated
in the Masked Autoencoder for Protein Embeddings (MAPE) framework [42]. The VAE
architecture consists of an encoder, which maps each protein graph to a latent vector
using a vector quantization (VQ) layer, and a decoder that reconstructs the encoder input.
In this study, the decoder was not used because only the latent representation (i.e., the
protein embedding) was needed. Since the encoder module of VAE was pre-trained on
14,952 proteins from the STRING database [43], it was frozen during the model’s training
process to further enhance the model’s focus on the layers downstream of the encoder.
Furthermore, according to Wu et al., VAE has an outstanding generalization capacity and
thus it can perform accurate embedding calculations even if it has not been trained to the
structures of the input proteins [42]. After its calculation, the latent representation is then
fed through the VQ layer which transforms the continuous latent vector into a limited
set of discrete prototypes, known as the microenvironment codebook. This codebook
consists of a fixed number of embedding vectors, each corresponding to a unique structural
microenvironment frequently encountered across various proteins.

2.1.2. Bi-Directional Cross-Attention Module

The Bi-directional Cross-Attention module combines the embeddings of the two input
proteins (P1, P2) into a unified pair representation. First, the two vectors are projected to two
parallel trainable projection layers of dimensionality of 256 (P′

1 and P′
2) for computational

efficiency and alignment with the attention mechanism, and these two vectors are passed
through the Bi-directional Cross-Attention module. The core mechanism of this process is
the attention mechanism described in the following equation (Equation (1)) [44]:

ATN(q, k, v) = so f tmax
(

qkT
√

dh

)
v (1)

Equation (1) is the of the attention matrix, where q, k, v are the query, key, and value
matrices, respectively, dh is the dimensionality of each attention head, and softmax is the
activation function that ensures that the attention weights sum to 1.

Multi-head attention is applied, and the input is split into h heads (Equation (2)):

MH(q, k, v) = Concat(head1, . . . , headh)Wo

where headi = ATN(qi, ki, vi)
(2)

Equation (2) shows the calculation of multi-head attention.
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In this work, this mechanism is applied in both directions: P′
1 attends to P′

2 and
P′

2 attends to P′
1. Additionally, the attended sequence for each protein embedding is

combined with the initial input (Equation (3)):

F1 = P′
1 + MH

(
P′

1, P′
2, P′

2
)

and F2 = P′
2 + MH

(
P′

2, P′
1, P′

1
)

(3)

Equation (3) shows the bi-directional implementation of multi-head attention.
Finally, F1 and F2 are concatenated and protected to a linear layer of dimensionality of

256 to obtain the representation of the protein pair.

2.1.3. Fully Connected Layers—Classification Process

The fused embedding was then passed through a series of fully connected layers to
predict the likelihood of interaction of each protein pair. The intermediate layer dimensions
were 256 and 128, respectively, with ReLU activation functions applied after each layer.
Dropout regularization was applied with rates of 0.5 and 0.3 in the first and second fully
connected layers, respectively. The final layer produced a scalar output, representing the
interaction score between P1 and P2. Given the imbalance between interacting and non-
interacting protein pairs in the dataset, the focal loss function was employed to mitigate
class imbalance. The focal loss function modifies the standard binary cross-entropy loss
by introducing a modulating factor (1 − pt)γ, which emphasizes hard-to-classify samples.
The focal loss (Equation (4)) is defined below:

LFL(pt) = at (1 − pt)
γlog(pt), (4)

Equation (4) shows the focal loss function, where pt is the predicted probability for the
true class, at is the weighting factor for class imbalance, and γ is the focusing parameter (γ = 2).

This function allows the model to focus on misclassified or difficult samples (i.e.,
the interacting pairs that are far fewer than the non-interacting pairs), thereby improving
overall performance in imbalanced datasets.

2.1.4. Training Process

The model parameters were optimized using the Adam optimizer with an initial
learning rate of 0.001. To further refine the learning process, a learning rate scheduler
was employed, which reduced the learning rate when no improvement in validation loss
was observed. Early stopping was incorporated with a patience of five epochs to prevent
overfitting, and the maximum epoch number was set to 500. During training, the interaction
prediction model utilized mini-batches of size 256.

2.2. Evaluation Metrics

For the classification assessment of protein interactions within the dataset, a robust
evaluation framework encompassing basic error metrics and composite metrics was estab-
lished. The essential components of the performance evaluation are the number of correctly
classified samples and Type I and Type II errors [45], i.e., true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs). These metrics were derived from
the comparison of the model’s predictions against the labels that corresponded to reality.
Macro-averaged precision, recall, and F1-score were calculated to provide an overall picture
of the classifier’s performance across all classes. These metrics treat all classes equally,
effectively averaging the class-wise metrics. Macro-averaging is particularly useful in
imbalanced classification scenarios as it mitigates the effect of a model being heavily biased
towards the majority class. The specific calculation involves obtaining precision (PREC),
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recall (REC), and F1-score (F1) for each class, as indicated in Equations (5)–(7), and then
averaging those scores, giving an equal weight to each class in the calculation.

PREC =
TP

TP + FP
(5)

Equation (5) shows the precision: the ratio of correctly predicted positive observations
to the total predicted positives.

REC =
TP

TP + FN
(6)

Equation (6) shows the recall: the ratio of correctly predicted positive observations to
all observations in actual class.

F1 = 2
Precision ∗ Recall
Precision + Recall

(7)

Equation (7) shows the F1-score: the harmonic mean of PREC and REC.
Focusing on the classification of the interacting class (the minority class of interest),

precision, recall, and F1-score were calculated. These metrics provide a detailed view of the
model’s performance on this particular class, as an accurate performance for the interacting
class is paramount. The Matthews Correlation Coefficient (MCC) (Equation (8)) was
calculated as a measure of the correlation between the actual and predicted classifications,
taking into account true positives, true negatives, false positives, and false negatives.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
(8)

Equation (8) shows the Matthews Correlation Coefficient (values ranging between −1
and 1), where 1 represents a perfect prediction, 0 is not better than random prediction, and
−1 is a complete disagreement between true and predicted classes.

Balanced ACC (ACCB) was calculated as the average of recall across all classes, which
is equivalent to the arithmetic mean of the sensitivity and specificity. This measure mitigates
the impact of class imbalance by accounting for performance on both the majority and
minority classes. The average PREC (AP) score was calculated as the average precision
across all thresholds in the precision–recall curve, effectively summarizing the model’s
performance across various operating points. AP values range between 0 and 1, with a
higher value indicating better performance.

The Receiver Operating Characteristic (ROC) curve, a graphical representation of a
model’s prediction capability by plotting the true positive rate (TPR) (Equation (9)) versus
the false positive rate (FPR) (Equation (10)) at various threshold values, was also calculated.
Finally, the Area Under the Curve (AUC) score that quantifies the model’s overall ability
to distinguish between positive and negative classes was computed. A higher AUC score
suggests superior model performance and generalization capabilities. Finally, the REC
value obtained at an operating point where the precision is at least 0.5 was measured as
REC@PREC = 0.5.

TPR =
TP

TP + FN
(9)

Equation (9) shows the true positive rate.

FPR =
FP

FP + TF
(10)

Equation (10) shows the false positive rate.
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3. Results
3.1. Dataset Construction—Model Training

First, all publicly available experimental pan-human–bacterial PPI data, which con-
tained 19,686 interactions between 5714 bacterial and 4287 human proteins, were retrieved
from four public databases, HPIDB [36,37], IntAct [38], PHISTO [39], and MorCVD [40]
(original dataset). Another more inclusive PPI dataset that contained interactions from
six widely used interaction databases (i.e., IntAct [38], MINT [46], DIP [47], HPRD [48],
BioGRID [49], and SIFTS [50,51]) was also obtained. This inclusive extended PPI dataset
contains 1,081,401 PPIs, out of which 330,530 are human inter-species PPIs and 750,871
are inter- and intra-species interactions of different organisms, including bacteria, viruses,
plants, and animals. In this extensive dataset, 13 pairs of PPIs between the host and gut
bacterial proteins were identified, but none of them consisted of proteoforms of the same
gene. All the proteins of the original and larger dataset were also mapped to their protein
structures using the AlphaFold database API [52,53] in order to eliminate the factor of
differences in structural quality between different proteins. For the construction of the
positive dataset, both the original and the larger PPI datasets were then filtered, and only
the interactions where both participating proteins were matched to available protein struc-
tures were kept. Next, a negative dataset that contained proteins that do not interact was
constructed using only human proteins that are solely present in different organs of the
human body, and at the same time, their domains (i.e., Pfam domains [54]) do not interact.
The complete human proteome was retrieved from UniProt Proteomes, and the tissue
topology of every individual protein was then obtained from the Human Protein Atlas [14].
Finally, a dataset (gold-standard dataset) containing 17,278 experimentally supported DDIs
from PDB complexes was retrieved from the 3did database [22,55]. Additionally, these PPIs
were filtered and only those that did not exist in the positive dataset or the available human
interactome were kept.

The positive and negative datasets were combined into one large-scale PPI and non-
PPI dataset that was then divided into three datasets: the training dataset (60%), the
validation dataset (20%), and the test dataset (20%). The division was performed in such a
way that all three subsets had same class distribution (Table 1). From the training dataset, it
is evident that there is an imbalance between interacting and non-interacting protein pairs.

Table 1. Number of samples per dataset subset and category (i.e., positive, negative).

Datasets PPIs Positive Negative

Train 10,681,662 654,604 10,027,058

Validation 2,670,416 163,651 2,506,765

Test 3,338,020 204,564 3,133,456

Total Number of Samples: 16,690,098

For overfitting prevention, the model training ended at 13 epochs because validation
loss was not reduced.

3.2. Model Evaluation Based on Validation Dataset—Decision Threshold Calculation

Next, the validation dataset was used for the selection of the optimal decision threshold
(DT). In this case, the best DT was chosen so that the binary F1-score was maximized
(Table 2). The optimal decision threshold is visualized on the PREC-REC curve of the
validation dataset in Figure 2.
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Table 2. Performance metrics on validation dataset.

Performance Metrics Values

Threshold 0.40

PREC (Macro) 0.97

REC (Macro) 0.94

F1 (Macro) 0.95

PREC (Interaction) 0.95

REC (Interaction) 0.89

F1 (Interaction) 0.92

MCC 0.91

ACCB 0.94

AP 0.96

AU-ROC 0.98

REC@PREC = 0.5 0.96
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3.3. Model Testing

Using the chosen DT, the test dataset was used for the final evaluation. To evaluate
the prediction, the confusion matrix that demonstrates the proportion of accurate and
inaccurate predictions per class was calculated (Table 3). The model was also evaluated
using ACC, F1, PREC, and REC (Table 4) as well as the PREC/REC (Figure 3) and ROC
curve, whose Area Under Curve (AUC) is 96 (Figure 4). When applied to the test set,
the model exhibited evaluation metrics equivalent to the validation set, demonstrating
its generalization capability. This similarity between the test and the validation outcomes
suggests that the model effectively captures the underlying patterns within the data,
minimizing overfitting and validating its robustness in unseen scenarios.
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Table 3. Confusion matrix for test dataset.

Predicted Negative Predicted Positive

Actually Negative 3,124,742 8714

Actually Positive 22,647 181,917

Table 4. Performance metrics on test dataset.

Performance Metrics Values

PREC (Macro) 0.97

REC (Macro) 0.94

F1 (Macro) 0.95

PREC (Interaction) 0.95

REC (Interaction) 0.88

F1 (Interaction) 0.92

MCC 0.91

ACCB 0.94

AP 0.95

AU-ROC 0.98

REC@PREC = 0.5 0.96
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3.4. Model Deployment

Since, in this case, the model deployment of choice is the prediction of the protein
interaction network between human gut proteins and bacterial proteins, these proteins
were also retrieved. The human proteome was filtered using only the labels for gut
(i.e., ‘oral mucosa’, ‘salivary gland’, ‘esophagus’, ‘stomach 1’, ‘stomach 2’, ‘duodenum’,
‘small intestine’, ‘colon’, ‘rectum’, ‘liver’, ‘gallbladder’, ‘pancreas’, ‘appendix’, ‘smooth
muscle’, ‘adipose tissue’, ‘soft tissue 1’, ‘soft tissue 2’) and brain topologies (i.e., ‘caudate’,
‘cerebellum’, ‘cerebral cortex’, ‘hippocampus’, ‘hypothalamus’, ‘pituitary gland’, ‘choroid
plexus’, ‘dorsal raphe’, ‘substantia nigra’) from the Human Protein Atlas [56], and then
only the entries with available structures were kept. The inclusion of brain-related data in
the model’s application was driven by the growing recognition of the gut–brain axis as a
critical area of research [57]. This bidirectional communication network between the gut
microbiota and the central nervous system plays a significant role in regulating neurological
and psychological health [58,59].

From the Human Gut Microbiome Atlas [56,60], bacterial strains that are labeled as
‘Healthy’ were chosen and were then mapped to their respected proteins. Subsequently,
all the proteins that were included in each Proteome ID were retrieved using the Proteins
API of the European Bioinformatics Institute (EBI) [61], and only the entries with available
protein structures were kept. Additionally, to properly address proteome complexity, the
proteoforms for both human and bacterial proteins were included in this study. The term
‘proteoform’, established by Smith et al. [41], is used to describe ‘all of the different molecu-
lar forms in which the protein product of a single gene can be found, including changes
due to genetic variations, alternatively spliced RNA transcripts and post-translational
modifications’. In this study, all the proteoforms that are documented as separate UniProt
entries sharing a gene name are included.
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The total numbers of human and gut bacterial proteins used in the prediction task
were 24,345 and 100,945, respectively, resulting in a total of 2,457,506,025 protein pairs.
The graph representations of the proteins were used as model input. Such graphs en-
code the structural relationships between amino acids that were represented as nodes, as
mentioned in the preprocessing steps above. Batch processing was utilized to improve
computational efficiency and enable large-scale predictions. During inference, the trained
model was loaded, and predictions were generated using a sigmoid activation function,
which extracts probabilities from the model’s output. These probabilities represent the
confidence of interaction between protein pairs. During model development, a threshold
of 0.4 was employed based on balanced predictive performance metrics derived from the
unseeded test subset. This threshold was selected to capture a wide range of potential PPIs
while maintaining an equilibrium between sensitivity and specificity, thereby ensuring
the model’s generalizability across diverse scenarios. In contrast, a higher threshold of
0.99 was applied specifically for gut microbiome predictions. This choice was driven by two
primary considerations: first, to prioritize high-confidence, high-probability interactions
and enhance the reliability of predictions, and second, to address the practical constraint
of space limitations associated with reporting large-scale PPI datasets. As a result, only
those pairs whose predicted probabilities exceeded the threshold are assigned as interact-
ing (i.e., only the protein pairs with a prediction probability of equal to or greater than
0.99 are considered to interact). This assumption led to a total of 16,106,277 predicted PPIs
between 19,054 human and 1886 bacterial proteins, representing approximately 0.6% of
the total protein pairs processed. The predicted interactions were used to construct a PPI
network, as illustrated in Figure 5. Due to computational limitations, only a part of this
network was illustrated. More information about the predicted interactions is presented
in Supplementary Materials S1. Finally, an analysis to identify if the proteoforms of the
same protein interact with the same proteins was performed. In Table 5, results that are
indicative of the analysis mentioned above are represented. From this analysis, it is evident
that there are different interacting partners between proteoforms of the same protein.
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Table 5. The predicted protein interactions of 5 human and 5 bacterial proteoform families.

Human Proteins

Gene Protein Name Number of Proteoforms Number of Common Interactions

FOXP4 Forkhead box protein P4 2 1/2 (50%)

TNPO2 Transportin-2 4 53/106 (50%)

ME2 NAD-dependent malic enzyme,
mitochondrial 9 259/2040 (12.7%)

HARS1 Histidine--tRNA ligase 11 268/35,590 (0.7%)

Bacterial Proteins

Gene Protein Name Number of Proteoforms Number of Common Interactions

rpsM Small ribosomal subunit protein uS13 19 13/40 (32.5%)

xseB Exodeoxyribonuclease 7 small subunit 2 32/32 (100%)

aroK Shikimate kinase 1 3 1/3 (33.3%)

thiD Hydroxymethylpyrimidine/
phosphomethylpyrimidine kinase 2 2400/67,832 (3.5%)

4. Discussion
The results of this study demonstrate the efficacy of a novel DL-based framework

in predicting PPIs between human and gut bacterial proteins using structural data. The
significance of this research lies in the successful application of advanced computational
techniques to a complex biological system, where traditional experimental methods have
faced limitations. This work addresses the existing gap in deciphering the unknowns of
the gut microbiome–host interaction network, which is necessary for understanding the
role of the microbiome in health and disease.

The implementation of a graph-based protein representation was a key factor in
the model’s success, as it allowed for the accurate capture of the structural relationships
between amino acids. By leveraging the VAE for protein embedding calculation, the model
could efficiently process structural data, enabling the detection of interaction patterns
that would otherwise remain obscured by conventional sequence-based approaches. This
method demonstrates superior performance, particularly in identifying interactions in
large-scale datasets with significant class imbalance, a common issue in PPI prediction
tasks. The use of focal loss for handling the class imbalance further enhanced the model’s
robustness, allowing it to prioritize harder-to-classify interacting pairs, which are often
underrepresented in existing datasets. Unlike other methods that generate random pairs for
non-interactions without biological filtering, this model incorporates biological knowledge
to refine the negative dataset, further enhancing its accuracy.

One of the notable strengths of the model lies in its Bi-directional Cross-Attention
fusion layer, which incorporates an attention mechanism that aggregates the embeddings of
protein pairs. This method offers a more nuanced fusion of features compared to traditional
concatenation techniques, by dynamically recognizing the importance of different features
and portraying how one protein attends to the other. The model’s generalization ability,
as evidenced by the high AUC score and consistent performance across both validation
and test datasets, suggests that the model does not overfit and can effectively be applied
to unseen data. Therefore, this framework can be applied to other biological contexts,
including other distinct host microbiomes, such as the oral, nasal, and skin microbiomes
that have all emerged as crucial regulators of the host’s health [63–65].

From a biological perspective, another important asset of this model is its ability
for proteoform inclusion in the predicted networks. As mentioned above, proteoforms
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are the source of variance in proteomes that make them far more complex than genomes
and transcriptomes [41]. Since the contribution of proteoforms in proteome complexity is
shown in the form of different proteins for a single gene, this model’s prediction outcome
is very close to reality as it uses all the available protein structures that are included in each
proteome, and not just the reference protein for each gene. The percentage of proteoforms
in humans is higher than the corresponding percentage of gut bacteria. This outcome is
expected since proteome complexity is higher, and events of post-translational modification
are more common in eucaryotes than procaryotes [60]. The proteoform analysis revealed
that although proteoforms of the same protein share some protein interactors, each proteo-
form has some additional unique interactors. This finding is very important as it shows
that members of the same proteoform not only have differences in terms of sequence and
even structure, but they also interact with different proteins. That being the case, it is
pivotal that they are incorporated in proteome studies because they directly contribute to
proteome complexity.

The scarcity of experimentally validated human–gut bacterial PPIs has been a signif-
icant setback in understanding the contributions of this interplay in gut-related disease
emergence. Therefore, this study opens new avenues for the discovery of previously un-
known protein interactions, that could serve as novel therapeutic targets and biomarkers.

The predictive PPI network generated by this study represents a valuable resource
for further experimental validation. The next steps for experimental validation of the
key interactions identified, particularly those involving proteoforms with limited char-
acterization, will focus on integrating advanced proteomics techniques with functional
assays. High-resolution MS-based approaches [66], such as cross-linking MS [67] or co-
immunoprecipitation coupled with MS [68], can be employed to validate interactions in
biologically relevant contexts and provide structural insights into proteoform-specific in-
teractions. Additionally, cellular localization studies using fluorescent tagging [69] and
live-cell imaging [70] can confirm the physical proximity of interacting proteins under
physiological conditions.

Despite the significant strengths of this model, there are certain limitations that should
be acknowledged. The model’s reliance on structural data restricts its applicability to
proteins with known or predicted structures, excluding a portion of the proteome from
analysis, including proteins with intrinsic disorder. In contrast, sequence-based meth-
ods can be applied to any protein for which sequence data are available, irrespective of
structural information. Additionally, the DL architecture used in this framework is compu-
tationally demanding. The graph-based embeddings and the attention mechanism require
computational resources, which may limit the usage of the model in real-time applications
or in environments with limited resources. Simpler methods, such as Random Forest or
lighter DL architectures, may offer advantages in scenarios where computational efficiency
is prioritized. Although the model excels at handling class imbalance through the focal
loss function, it may still encounter challenges in extreme cases where positive samples
(i.e., protein interactions) are exceedingly scarce. Finally, the performance of the model is
closely tied to the quality of the input data, particularly the structural data provided by the
AlphaFold database and the embeddings from the VAE. Any errors or inaccuracies in these
data sources may propagate through the model, potentially affecting its predictions.

5. Conclusions
This study presents a novel DL framework designed to predict PPIs between human

and gut bacterial proteins based on structural information. By leveraging graph repre-
sentations of protein structures and integrating them through attention-based fusion and
VAE-generated embeddings, the model achieves a high level of prediction accuracy. The
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proposed method successfully addresses the challenges posed by data imbalance in PPI
datasets and demonstrates robustness across diverse protein pairs.

Given the scarcity of experimental data concerning interactions between human and
gut bacterial proteins, this framework not only fills a critical gap in existing knowledge
but also establishes a scalable method for identifying novel interactions. The predictive
network derived from this study presents a valuable resource for further biological in-
vestigations and experimental validation, potentially contributing to the understanding
of gut microbiome–host interactions and their implications in human health and disease.
Additionally, since this prediction method includes proteoforms, it can be utilized as a tool
for identification of protein indicators of disease, remission, response to therapy, and drug
target, in cases where the protein of interest is a proteoform of a common protein. Overall,
this study showcases the potential of DL in advancing computational biology and bridging
the gap between theoretical prediction and experimental validation in PPI studies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/proteomes13010010/s1: Supplementary Materials S1: The binary
file containing protein interactions between human and gut bacterial proteins in UniProt IDs, with a
prediction probability threshold of 0.99. The following supporting information can be downloaded at
https://doi.org/10.5281/zenodo.14780446: Supplementary materials S2: Healty_Bac_predictions.zip:
A .json file for every human protein with its bacterial interactors and interaction probability scores, as
well as a binary file with all the PPIs in tab-separated format.
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