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Abstract: Through this study, the synergistic behavior of small-molecular-weight, amphiphilic surfac-
tant molecules and the triblock copolymer Pluronic 188 was extensively evaluated based on their
ability to formulate nanocarriers with novel properties for the delivery of class II and IV (biophar-
maceutical classification system) chemotherapeutic compounds. The combination of four different
surfactants at multiple weight ratios and twelve initially formulated nanosystems resulted in four
hybrid delivery platforms, which were further studied in terms of multiple physicochemical char-
acteristics, as well as their stability in protein-rich media (fetal bovine serum/phosphate-buffer
saline). Finally, we obtained a single final nanoformulation that exhibited a high loading capac-
ity (%EE ≥ 75%) and a sustained drug release profile under physiological conditions (model drug
methotrexate), without altering the original physicochemical characteristics of the carrier. With a
mean hydrodynamic radius (Rh) of less than 70 nm, a polydispersity index of 0.219, and no protein
complexation, the system is a suitable candidate for in vivo, intravenous, and/or intramuscular ad-
ministration. The cytotoxicity and genotoxicity of both loaded and unloaded carriers were evaluated
through the examination of the upregulation or downregulation of apoptosis-related pathways. Mul-
tiple conventional 2D and 3D spheroidal conformations were used for these assessments, including
HEK293, HCT-116, and MCF-7 cell lines, the results of which stressed the safety and biocompatibility
of the empty nanocarrier. Additionally, experiments on Caenorhabditis elegans were conducted to
evaluate the system’s in vivo toxicity, focusing on developmental stages, egg-laying behavior, and
locomotion. Nanosystems studied in terms of chemotherapeutic encapsulation have mostly focused
on the physiochemical aspect of the development of such novel delivery platforms, with only few
exceptions proceeding step-by-step from cellular 2D to 3D to in vivo experimentation. The present
study offers a holistic view of the behavior of such a novel system, advancing our understanding of
the capabilities of polymeric/surfactant-based nanodelivery platforms.

Keywords: Pluronic 188; MTS assay; thin-film hydration; 3D cell culture; real-time PCR; C. elegans

1. Introduction

The formulation of advanced, novel, and biocompatible nanosystems to be used
towards cancer treatment and/or diagnosis is a research field that holds great promise,
especially with regard to the development of therapeutic approaches against solid tumor
proliferation (≥90 percent of human adult cancers are solid tumors) that combine more
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conventional treatment plans with more advanced methods [1–3]. Block copolymers are
able to produce highly monodisperse nanostructures, along with the ability to encapsulate
both hydrophilic and lipophilic active pharmaceutical ingredients (APIs) with a relatively
high loading capacity. Often resulting in amphiphilic structures with biomimetic inter-
nal compartmentalization, a process initiated via the spontaneous self-assembly of such
advanced material when dispersed in aqueous media, they can create complex architec-
tures with multiple compartments [4–7]. Members of the Pluronics family (also called
poloxamers or superonics) consist of non-ionic amphiphilic triblock copolymers with dif-
ferent PEO/PPO chain ratios, affecting each copolymer’s ultimate behavior in terms of
microphase separation, aqueous solubility, bioavailability, and loading capacity.

Surfactants are molecules that hold great promise in the pharmaceutical industry due
to their ability to increase the solubility—and, as a result, the bioavailability—of poorly
dissolved drug components. At the same time, they effectively minimize the surface tension
between a delivery platform and the cellular membranes, enhancing cellular adhesion
and drug permeability [8,9]. The utilization of non-ionic monomeric counterparts in the
formulation of the hybrid nanosystem prolongs circulation time by minimizing the system’s
non-specific interactions with components of the innate circulation such as albumin. In
turn, this characteristic diminishes immune system recognition, which can result in rapid
renal excretion [10].

Methotrexate (MTX) is considered to be one of the first approved anti-metabolite, cyto-
static drugs and has been widely used in recent decades with measurable success towards
cancer treatment (breast cancer, leukemia, head and neck cancer, osteosarcoma, etc.). As a
compound, MTX has the ability to deactivate the metabolism of deceased tumorous cells
through the mechanism of apoptosis by ceasing intracellular folate metabolism. As a result,
MTX disrupts the synthesis of thymine and purines also leading to secondary genotoxic
effects by interrupting both DNA and RNA synthesis. Higher doses of MTX are considered
the only alternatives to a standard CHOP regiment (cyclophosphamide, doxorubicin, vin-
cristine and prednisone), especially for more aggressive cancerous subtypes that exhibit
poor clinical improvement, attributed partially to the compound’s short plasma half-life,
and the high antidrug resistance that such subtypes present [11]. Unfortunately, large
doses of MTX, distributed throughout an organism lacking tissue selectivity, exhibit a high
side-effect profile, including myelosuppression, hepatotoxicity, pneumonitis, emphysema,
leukopenia, and nephrotoxicity, while unwanted drug accumulation in excretory organs
is responsible for additional toxicity-related problems. Blood serum levels regarding free
methotrexate administration are generally not detectable after 18 h (with an approximately
6 h half-life), while for low-dose administration, the half-life ranges from 3 to 10 h. This
in turn affects the therapeutic protocol that a patient has to follow, shortening the interval
between two subsequent treatments. This can have a negative effect on patient compliance
and phycological well-being (more often hospitalizations). Delivery platforms that exhibit
high homogeneity and sizes in the nanometer range (i.e., ≤200 nm in terms of hydro-
dynamic diameter) are able to utilize the enhanced retain and permeability (EPR) effect,
taking advantage of the rapid cancer cellular proliferation that results in the formation of
bigger gaps between the endothelial cell membranes in comparison to healthy cells. This
phenomenon allows nanosystems, given enough circulation time, to reach the tissue of
interest, resulting in a type of selective permeation [12].

The overall aim of this study was the successful incorporation of MTX in novel, hybrid
and biocompatible polymeric nanosystems, with improved drug loading, distribution, and
drug release characteristics, along with a lower side-effect profile when compared with the
administration of the free drug.

With respect to intravenous administration, it is crucial for the selected nanosystem to
maintain its physicochemical characteristics, drug release profile, and immune response,
unaffected by protein corona formation (both the appearance of a soft and hard corona,
with the latter exhibiting stronger particle–protein interactions); therefore, its stability in
simulated physiological conditions needs to be determined. Measurements using dynamic
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light scattering (DLS) were utilized to determine the protein–nanosystem interactions of
the final formulation when dispersed in fetal bovine serum along with mixing the nanofor-
mulation with 10% FBS/PBS solution after prolonged exposure times [13–19]. Herein, we
report the final formulation of Pluronic 188–Tween 80–MTX (9:1:0.2), having been exten-
sively studied in terms of its physicochemical characteristics and stability, encapsulation
efficiency, and the release properties of the physically entrapped MTX in various conditions.
Several characterization methods were utilized, such as DLS and UV–Vis spectroscopy,
while in vitro cytotoxicity assays were performed in both monolayer cellular cultures
and 3D spheroidal conformations. Lastly, in vivo toxicity experiments were conducted
using wild-type Caenorhabditis elegans nematodes, effectively bridging the gap between
in vitro experiments and more complex in vivo models. C. elegans is a simple multicellular
animal model extensively used in chemical and genetic screens. This nematode offers
several culture-related advantages, including low cost, a short lifespan of approximately
2–3 weeks, and a brief reproduction cycle. Additionally, it exhibits many molecular-level
similarities with humans. Each nematode can produce up to 300 progenies through self-
fertilization, and this number can increase to up to 1000 new worms when fertilization
involves a male (XO). To the best of the authors’ knowledge, this is the first time that
methotrexate has been encapsulated in a block copolymer/surfactant nanosystem such
as this; thus far, most experimental protocols have focused on MTX encapsulation in the
hydrophobic core of mixed-block copolymer micellar nanosystems, without the use of
surfactants (mostly P127/PC, P127/P105 systems). Other studies examined nanoformula-
tions of various surfactant mixtures (Tween 80 and Span 80) but without the use of block
copolymers [11,17–23].

2. Results and Discussion
2.1. Physicochemical Characterization and Stability Assessment of the Formulated Nanosystems
After Filtration

The physicochemical investigation of the stability of the most promising nanosystems
in physiological conditions was evaluated based on the size, size distribution, polydis-
persity index, and scattered intensity, as well as the microfluidity and microviscosity
characteristics that were previously reported [16]. Through the self-assembly process that
such amphiphilic systems present when exposed to aqueous media (minimization of the
surface area of the hydrophobic parts of the polymeric chain “available” to interact with
water), conformations of complex internal structures can be generated, providing the sys-
tem with unique attributes (internal compartmentalization, loading capacity, increased
toxicity, etc.). DLS was used in order to evaluate the nanoparticulate colloidal dispersion’s
stability in FBS/PBS media after incubation for at least 1 h.

In Figure S1, the stability characteristics are presented for the following nanosystems:
Pluronic 188–Tween 80 (90:10); Pluronic 188-Span 40 (90:10); Pluronic 188-Span 40 (50:50);
and Pluronic 188-Span 60 (50:50). The existence of non-specific interactions between the
proteins of the media and the hybrid nanosystem results in the formation of a protein
corona that alters the original physicochemical characteristics of the system, such as the
size and PDI, resulting in the formation of a new peak in the resulting graph. Since the final
formulation needs to be inert in order to avoid immune system recognition and circulate
for a prolonged period of time to reach the target tissue, the nanosystems that indicate
the occurrence of non-specific interactions after FBS/PBS incubation are not optimum
for human applications. Such complexation results in a final nanosystem with different
architectural characteristics and three-dimensional conformation, raising a plethora of
concerns in terms of its safety profile and possible inactivation of successful ‘payload’
delivery, providing the same clinical effect. Larger particles, occurring from such protein
interactions, increase the potential for distal organ toxicity (changes in the excretory route)
and the possible blockage of smaller capillaries (resulting after repeated administration in
thrombosis via the organism’s potential inability to clear the carriers at the same rate as
administered).
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2.2. Encapsulation of MTX and Characterization of Final Formulated Nanosystems

Proceeding towards API encapsulation, the selected model drug, methotrexate (highly
lipophilic compound expected to be physically entrapped in the hydrophobic core of the
amphiphilic nanosystem), was entrapped in three distinct concentrations ranging from 0.1
to 0.3 mg per mL of aqueous nanoparticle dispersion. Thin-film hydration was used for the
development of the nanosystem (Figure 1). According to the hydrophilic-to-lipophilic balance
(HLB) of the triblock copolymer, Pluronic 188, and the small-molecular-weight surfactant
molecule, Tween 80, the amount of the lipophilic compounds that can be loaded is affected and
somewhat limited in comparison to using more lipophilic molecules [8,9]. The micellar stability
must be considered when choosing the final formulation in terms of drug/block copolymer
ratio, with an encapsulation ratio above 3:92 producing systems with higher precipitation
rates, lower stability over time and an overall higher hydrodynamic diameter [11,20]. This
phenomenon can be attributed to the increased hydrophobicity of the system’s core, which
can no longer be supported by the hydrophilic outer periphery of the micelle.
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Figure 1. Comparative size distribution graphs of Pluronic 188–Tween 80 (90:10) nanosystems with
MTX encapsulated from 0.1 mg/mL up to 0.3 mg/mL and the filtered unloaded system of Pluronic
188–Tween 80 (90:10).

As shown in Table 1, for up to 0.2 mg/mL of MTX incorporation in the final nanosystem,
the hydrodynamic radius and polydispersity of the formulation are decreased. Until that
point, drug accommodation in the core is taking place due to the large interactions of the
lipophilic chains, and as such, the system is prone to producing more homogenous systems,
suitable for intravenous and intramuscular administration. The formulated nanosystem is a
result of mixing at different weight ratios the triblock copolymers, Pluronic 188 and Tween
80, both amphiphilic molecules but with relatively high HLB (with a stronger hydrophilic
component). Up to a certain concentration of a hydrophobically encapsulated API, this favors
the formulation in terms of avoidance of agglomeration; at the same time, it prevents the
nanosystem from being able to encapsulate a higher amount of MTX. At a concentration
higher than 4:96 MTX in a block copolymer, the obtained nanosystems exhibited unfavorable
physical characteristics and reduced stability due to rapid precipitation [11]. Nanosystem
development concerning 0.2 mg/mL MTX encapsulation was replicated thrice, validating the
reproducibility of the results in terms of size, size distribution, and the polydispersity index
(PDI) of the obtained colloidal dispersion (Figure S2).
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Table 1. Physicochemical characteristics of the loaded Pluronic 188–Tween 80 hybrid nanosystems
(filtered).

System MTX
(mg/mL) Rh (nm) a I (KCps) b PDI c

Poloxamer 188–Tween 80 (90:10) - 65 101 0.323
Poloxamer 188–Tween 80 (90:10) 0.1 66 151 0.280
Poloxamer 188–Tween 80 (90:10) 0.2 64 151 0.219
Poloxamer 188–Tween 80 (90:10) 0.3 88 30 0.546

a Rh(nm): Hydrodynamic diameter; b I(KCps): Scattering intensity; c PDI: polydispersity index.

In terms of developing a final formulation intended for in vivo drug delivery appli-
cations, the system was extensively studied in physiological conditions. As exhibited in
Figure 2, the system retains its physicochemical properties after incubation for a prolonged
period (1 h at 4 ◦C, following an additional 1 h 10 min at a stable room temperature) in
media with a high concentration of BSA.

Int. J. Mol. Sci. 2024, 25, 11520 5 of 22 
 

 

size distribution, and the polydispersity index (PDI) of the obtained colloidal dispersion 
(Figure S2). 

Table 1. Physicochemical characteristics of the loaded Pluronic 188–Tween 80 hybrid nanosystems 
(filtered). 

System MTX (mg/mL) Rh (nm) a I (KCps) b PDI c 
Poloxamer 188–Tween 80 (90:10) -  65 101 0.323 
Poloxamer 188–Tween 80 (90:10) 0.1 66 151 0.280 
Poloxamer 188–Tween 80 (90:10) 0.2 64 151 0.219 
Poloxamer 188–Tween 80 (90:10) 0.3 88 30 0.546 

a Rh(nm): Hydrodynamic diameter; b I(KCps): Scattering intensity; c PDI: polydispersity index. 

In terms of developing a final formulation intended for in vivo drug delivery appli-
cations, the system was extensively studied in physiological conditions. As exhibited in 
Figure 2, the system retains its physicochemical properties after incubation for a pro-
longed period (1 h at 4 °C, following an additional 1 h 10 min at a stable room tempera-
ture) in media with a high concentration of BSA. 

(A) (B) 

Figure 2. Size distribution graphs after incubation in physiological conditions. (A) The system’s sta-
bility assessment after 1 h incubation. (B) Incubation in fetal bovine serum where after 1 h the system 
was continuously monitored. 

Lastly, the colloidal stability of the final formulation over time was assessed (4 °C), 
exhibiting a retention of its original physicochemical properties (size, size distribution, 
polydispersity index) for a period of at least 8 days post formulation (Figure S3). After the 
8th day, a slight increase in the Rh was observed, which might be attributed to an aggre-
gation of the hydrophobic cores of the nanosystems. After lyophilization, the formulation 
could most likely remain stable under good storage conditions and retain a significant 
amount of methotrexate for a period of 6 months [19]. The system’s ability to obtain its 
original architectural characteristics in terms of its size and size distribution, along with 
the ability to avoid complexation with proteins of the innate blood circulation, offers a 
unique double advantage that allows for the development of an intravenous therapeutic 
modality with great promise. 

2.3. Attenuated Total Reflectance–Fourier-Transform Infrared Spectroscopy (ATR-FTIR) 

Figure 2. Size distribution graphs after incubation in physiological conditions. (A) The system’s
stability assessment after 1 h incubation. (B) Incubation in fetal bovine serum where after 1 h the
system was continuously monitored.

Lastly, the colloidal stability of the final formulation over time was assessed (4 ◦C),
exhibiting a retention of its original physicochemical properties (size, size distribution,
polydispersity index) for a period of at least 8 days post formulation (Figure S3). After the
8th day, a slight increase in the Rh was observed, which might be attributed to an aggrega-
tion of the hydrophobic cores of the nanosystems. After lyophilization, the formulation
could most likely remain stable under good storage conditions and retain a significant
amount of methotrexate for a period of 6 months [19]. The system’s ability to obtain its
original architectural characteristics in terms of its size and size distribution, along with the
ability to avoid complexation with proteins of the innate blood circulation, offers a unique
double advantage that allows for the development of an intravenous therapeutic modality
with great promise.

2.3. Attenuated Total Reflectance–Fourier-Transform Infrared Spectroscopy (ATR-FTIR)

In order to successfully identify the presence of methotrexate encapsulated in the
hydrophobic core of the nanosystems, FTIR spectroscopy was utilized (Figure S4), through
which the characteristics of the chemical structure of MTX molecules were observed in
the utilized spectral range [21]. It is important to note that the original peaks of free-
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form methotrexate are expected to be slightly shifted due to the presence of the block
copolymer/surfactant molecules and the MTX being encapsulated inside the hydrophobic
core of the whole nanosystem [20].

2.4. Encapsulation Efficiency of Pluronic 188–Tween 80 Hybrid Nanosystems by UV–Vis Analysis
The content of the encapsulated API was quantified by using UV–Vis spectroscopy at

an absorbance of 303 nm [22]. Prior to detection, an appropriate dilution in acetonitrile was
performed, with the following equation describing the calculation process:

Encapsulation efficiency (%) = (amount of drug encapsulated in hybrid nanosystems/amount of drug initially used) × 100

For the calculation, the standard curve for MTX was established by measuring six
different concentrations diluted in acetonitrile, with each sample having twice the concen-
tration of the previous sample, ranging from 0.025 mg/mL up to 0.8 mg/mL. Table S1 sum-
marizes the results of those experiments, which are in accordance with the measurements
from DLS (Figure 1), indicating that a quantity above 0.2 mg/mL cannot be encapsulated
by the nanosystem, without critically compromising the original physicochemical proper-
ties of the unloaded Pluronic 188–Tween 80 (90:10) filtered nanoformulation. The results
were replicated thrice in order to further assess the reproducibility of the final formulation
(Figure S5) with %EE remaining above 75% in all instances.

2.5. Release Studies

The release profile of the encapsulated API inside the hydrophobic core of the hy-
brid Pluronic 188–Tween 80 nanosystems was evaluated in phosphate-buffer saline (PBS,
pH = 7.4) and in 1:9 FBS/PBS ratio (pH = 7.0). In this way, both normal physiological
conditions (37 ◦C), as well as the physiologically average conditions, which typically occur
in a cancerous microenvironment (40 ◦C), were simulated. At multiple time intervals
(including 0 min, 15 min, 30 min, 45 min, 1 h, 1 h 30 min, 2 h, 3 h, 4 h, 5 h, 6 h, and 6 h
15 min), 3 mL aliquots were withdrawn and re-introduced in the medium at the end of the
analysis in order to avoid affecting the overall concentration of the API each time.

The maximum concentration of MTX in the release medium was 2.0 µg/mL, while
the average solubility in PBS (pH = 7.4) was about 40 µg/mL, creating optimal sink
conditions [19]. About 0.015 mg/mL was estimated to have been released by 6 h (equal
to 9% of the total physically entrapped MTX inside the dialysis bag; Figures 3 and S6),
indicating a sustained release rate from the hybrid nanosystems. This might suggest that
the Pluronic 188–Tween 80–MTX nanosystem could be a chemotherapeutic nano-drug
delivery platform that enables the system to deliver most of the encapsulated API passively
in the tumor site, minimizing the exposure of healthy tissues to class II and IV highly toxic
drug compounds.

2.6. MTS Cytotoxicity Assay

With respect to the viability assessment conducted for the same unloaded nanosystems
(unfiltered) that were presented in our previous study [16], comparative plot diagrams were
formulated in order to assess the in vitro toxicity of the same nanosystem, both filtered
through a 0.22 µm hydrophilic filter membrane and loaded with 0.2 mg/mL MTX. In
Figure 4, the viability of the HEK293 adhesive cell line is shown (chosen as a normal human
tissue cell model), with respect to the equal concentration of free MTX that the cells were
exposed to. HEK293 cells represent a usual in vitro model in nanotoxicity evaluation, since
they tend to have a sensitive response to nanoparticle exposure, are easy to cultivate, and
have a widely validated experimental protocol accepted by the scientific community, partly
due to their ease of transfection.
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Figure 4. HEK293 adhesive cell line viability vs. different concentrations of the Pluronic 188–Tween
80 nanosystem, along with free methotrexate at equal concentrations as encapsulated in nano-
dispersions. Each graph accounts for the dispersion of the viability percentage via the standard
deviation. Results after a 24 h incubation.

In all experiments, the maximum amount of MTX present in each cell culture was
4 µg/mL, with a maximum concentration of Pluronic 188–Tween 80 of 200 µg/mL. As
exhibited in Figure 5, the unloaded nanosystem showed the least cytotoxicity (note that
both amphiphilic components are biocompatible), while a dose-dependent toxicity was
observed in all systems [23]. These values are expected to be lower than those from the
3D spheroidal cultures, since cells organized in monolayers (2D) are shown to be more
susceptible to most chemotherapeutics [24–27].
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It is worth paying attention to the results in Table 1, and specifically to the Rh (nm) val-
ues of the unloaded carriers, correlating this physical attribute with the ease of endocytosis
and how it can correlate with the slightly reduced viability values. It is well established that
nanoparticle cytotoxicity is inversely proportional to the size of the nanosystem. According
to the classification of all non-ionic surfactants, at a concentration of even 1.0 mg/L, some
reach their LC50 values (effectively killing 50 percent of a sample population). Translating
the above concentration to the lab-scale values that we applied (96-well plate with 3.2 mL
nominal volume in each well), and given the fact that each nanosystem is the result of more
than one component (with the possibility of a slight increase in each counterpart’s inherent
toxicity), we can conclude that even though they are biocompatible molecules, they are not
without toxicity effects.

The type of cellular death that is depicted from MTS cytotoxicity experiments (Figure 6)
cannot be determined without further experimentation since the assay detects mitochon-
drial metabolic activity and not signs of necrosis [11,21]. Figure 7 serves as an immediate
representation of how the same systems, either loaded or unloaded, affect multiple different
cell types (all arranged as 2D conformations—monolayers) in a different manner, in terms
of concentration-dependent cytotoxicity.
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posed, was in direct correlation with the dosages administered in today’s clinical practice 
(often ranging from 8 to 170 mg/m2 weekly, with more acute cases such as non-Hodgkin’s 
lymphoma reaching doses up to 8 g/m2). Since the surface area of a single well in a typical 
96-well plate is 0.32 cm2, the equivalent in vivo doses were calculated based on the follow-
ing equation and are presented in Table 2. 

MTX concentration per well (mg) = 3.2–5 xequivalent clinical dose (mg/m2),  

Given that the concentration of MTX successfully encapsulated in each nanosystem 
is roughly 1.7–1.8 mg per 10 mg of Pluronic 188 (based on the %EE as previously discussed 
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0.2 mg/mL MTX; and (C) incubation with free MTX.
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Multicellular tumor spheroids (mimicking the chaotic proliferation pattern of cell
clusters) or three-dimensional cell culture systems are employed, amongst others, in order to
obtain more accurate information on preclinical drug cytotoxicity. Additionally, 3D cultures
are often used to study targeted therapies, interactions between specific cell populations,
and for modeling various cellular mechanisms that are not yet fully understood. As such,
spheroids have been shown to mimic to a greater extent the behavior of an in vivo solid
tumor microenvironment when compared to 2D monolayer conformations (Figure 8).
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Figure 8. Cell culture viability vs. different concentrations of Pluronic 188–Tween 80 filtered nanosys-
tems, loaded with the antitumor compound, methotrexate, and unloaded. The results shown are for
HCT-116 3D spheroidal culture.

As can be seen in Figure 7, the unloaded nano-carrier exhibits little to no cytotox-
icity in concentrations below 100 µg/mL, while exhibiting the smallest slope in terms
of viability/concentration dependence. Even at the lowest concentration, the unloaded
carriers exhibit viability values below 95%, which might exhibit the cytostatic activity that
often occurs after incubation with Poloxamer block copolymers, which are more easily
internalized when filtered [28,29]. In the lowest concentration of nanosystem incubation
(25 µg/mL), in all instances, the cellular viability after exposure to the loaded systems is
lower than that of free MTX, indicating that perhaps at these quantities the nanosystem
can act as a potential chemosensitizer for HCT-116 and SK-BR3 and HEK-293 cell lines,
even though the latter is of a non-cancerous nature. This may be attributed to the poor
bioavailability of MTX molecules, which, at low concentrations, the nanosystem enables
to enter the cells more easily, rapidly causing the occurrence of a more toxic effect. In
higher concentrations during incubation in such small-fixed volumes, it is possible that
this effect is partially masked by the large MTX concentrations, which, even when partially
internalized, can result in a highly toxic microenvironment [30].

While testing the nanosystem in multiple cellular models (both cancerous and normal),
the presence of a circulatory system at the whole-organism level is vital in order to assess
the nanoformulation’s indirect targeting capabilities through the EPR effect. Thus, the pre-
sented results between different cell lines cannot be correlated or indicative of the system’s
effect in vivo. Through the statistical analysis of the experimental data (ANOVA comparing
cellular type, nanosystem concentration, and nanosystem type), it is evident that while
the concentration/viability correlation is of high statistical significance (p value < 0.0079 in
all cases), the cellular type or viability/nanosystem type is of no significant consequence
(p values = 0.4), thus providing further evidence that without the use of a living organism,
the cellular selectivity of the nanosystem cannot be assessed.

It is important to stress that the concentration of MTX to which the cells were exposed,
was in direct correlation with the dosages administered in today’s clinical practice (often
ranging from 8 to 170 mg/m2 weekly, with more acute cases such as non-Hodgkin’s
lymphoma reaching doses up to 8 g/m2). Since the surface area of a single well in a
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typical 96-well plate is 0.32 cm2, the equivalent in vivo doses were calculated based on the
following equation and are presented in Table 2.

MTX concentration per well (mg) = 3.2–5 xequivalent clinical dose (mg/m2),

Table 2. In vitro concentration calculation.

In Vitro MTX Concentration (µg/mL) In Vivo Equivalent Dose (mg/m2)

0.5 16
1 32
2 64
4 128

Given that the concentration of MTX successfully encapsulated in each nanosystem is
roughly 1.7–1.8 mg per 10 mg of Pluronic 188 (based on the %EE as previously discussed §3.4).

While this approach acts as a crude estimation of dosage conversion between in vitro
and in vivo experiment, it is important to note that there are multiple other parameters such
as drug/organ interactions, API properties, ADME profile, etc., that need to be accounted
for when proceeding with the further testing of novel pharmaceutical compounds [31].

2.7. Cellular Death Mechanism Assessment

In order to examine the mechanism by which the nano-carriers achieve cellular death,
several apoptosis-related genes were assessed in terms of their activity (possible upregu-
lation or downregulation), after incubation with the nanocarriers for a period of 24 h at a
fixed concentration of 200 µg/mL (represents the last point of the concentration/viability
interval, equal roughly to a 100–120 mg/m2 encapsulated in vivo bioequivalent dose of
MTX, assuming that all the nanosystems administered were internalized via endocytosis).
Real-time quantitative PCR was performed in order to evaluate the mRNA levels of the
expression of apoptosis-related genes, casp-3 and IL-6, in the MCF-7 breast cancer adherent
cell line. Interestingly, an upregulation of IL-6 was achieved for both loaded and unloaded
nanosystems, with the maximum change appearing in the loaded carriers, while Casp3
levels were slightly downregulated when cells were exposed to the unloaded carriers and
upregulated when MTX was introduced to the system. p53 expression was not calculated
since, as already mentioned, 4T1 cells are p53 null (Figure 9). While exhibiting a statistically
significant effect on the regulation of either cancer-promoting or -inhibiting molecular
pathways through proliferation or apoptotic gene regulation, it is important to note that, in
most cases, the expression of such genes is only a part of a theoretical therapeutic approach,
since enzymes that were originally thought to have a purely inhibitory response have now
been linked to a lower tumor–drug sensitivity [25].
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2.8. Monitoring Developmental Stages, Egg Laying, and Locomotion in Wild-Type C. elegans to
Assess Toxicity

Wild-type N2 strains were used in order to examine the nanotoxicity effect of Pluronic
188–Tween 80 nanosystems, both loaded and unloaded, constituting an ideal animal model
as an indicator of the adverse effects of multiple chemicals in mammalian species [32–34].
Two different controls were included in each assay—with the first (1) being nematodes
with OP50 only and the second (2) being nematodes with Pluronic 188–Tween 80 unloaded
nanosystems—since the empty nanocarrier comprises bioavailable, low-toxicity polymeric
components, which showed low toxicity in the MTS assays. Control (1) was utilized as a
baseline for all assays that followed.

In these results, we accounted for the fact that a quantity of the colloidal nanoparticle
suspension would diffuse through the agar and, as such, the concentrations tested were
5 µg/mL, 50 µg/mL (indicating no statistically significant change between the control
groups and the groups exposed to the nanosystem in terms of nematode growth and
development), and 150 µg/mL (Figure 10).
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Figure 10. Representative plate images of (A) control (1) plate and (B) egg laying when nematodes
where exposed to Pluronic 188–Tween 80–MTX nanosystems at a concentration of 150 µg/mL.

When exposed to the final concentration of 150 µg/mL, the results in terms of proge-
nies were the following: control sample (1)—56 eggs, Pluronic 188–Tween 80; (2)—59 eggs,
Pluronic 188–Tween 80–MTX; (3)—40 eggs, free MTX; and (4)—52 eggs. After roughly a
24 h period, L1 larvae or embryonic lethality, as well as the development of the above-
mentioned eggs (48 h mark), were examined, and the following results were obtained:
control sample (1)—32 larvae, Pluronic 188–Tween 80; (2)—28 larvae, Pluronic 188–Tween
80–MTX; (3)—21 larvae, free MTX sample; and (4) with 24 larvae (Table 3). These nema-
todes were evaluated in terms of possible growth delay, exhibiting abnormalities from the
normal developmental cycle that C. elegans typically exhibits, indicating the toxicity effect
of test groups (3) and (4).

Table 3. Embryonic lethality assessment after exposure to various nanoformulations and free MTX.

Control (1) Pluronic 188–Tween
80 (2)

Pluronic 188–Tween
80-MTC (3) Free MTX

Eggs 56 59 40 52
Larvae 32 28 21 24

Embryonic
viability (%) 57.2 47.5 52.5 46.2

Lastly, we assessed the thrashing movement of both day 1 and day 5 adult worms
(Figure 11), with the control (1) group exhibiting the least amount of diversity. These results
indicate that the nematodes exposed to the methotrexate-loaded nanosystems exhibit statisti-
cally non-significant differences from the group exposed to free MTX. While nano-assemblies
of block copolymers of the poloxamer family are able to act as chemosensitizers for multiple
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therapeutic compounds, including MTX, the release rate of the physically encapsulated active
molecule is delayed and can be detected after the initial 4–5 h (Figure S6). These results
are in accordance with the previous statement, since the experimental protocol in various
instances indicated exposure times lower than 5 h. In addition, our experiments evaluated the
release rate of the chemotherapeutic compound at an elevated temperature simulating human
physiological conditions (37 ◦C), with indications that when the temperature drops below the
lower critical solution temperature (LCST) of poloxamer block copolymers (20 ◦C-C. elegans
culture), the release is further halted (the system’s metastable phase of Pluronic 188–Tween 80
(9:1) hybrid nanosystems, approximately between 30 and 35 ◦C, was previously determined
through mDSC measurements) [16,35,36].
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3. Materials and Methods
3.1. Materials

Poloxamer 188 (PLX 188, in the form of white microbeads), Tween 80® (Polysorbate 80),
Span 60® (Sorbitan stearate), Span 40® (Sorbitan Monopalmitate), and Methotrexate (in the
form of yellow powder) were purchased from Sigma-Aldrich (Merck Group). Analytical-
grade chloroform (CHCl3) as the organic solvent was purchased from Fisher Chemical
TM. Bottled water (used for the injection) was purchased from DEMO ABEE, Athens.
Phosphate-buffered saline tablets (PBS, 98%) and fetal bovine serum (FBS) were received
from Sigma-Alrdrich, Athens, Greece. HEK293 non-cancerous cell line ATCC 293 CRL-
1573™, SK-BR3 invasive epithelial cancer cell line, MCF-7 human breast cancer cell line,
and HCT116 human colon cancer cell line were provided by ATCC (American Type Culture
Collection) 10801 University Blvd, Manassas, USA [15].

3.2. Methods
3.2.1. Preparation of Poloxamer 188/Surfactant and Poloxamer 188/Surfactant/MTX
Colloidal Dispersions

Four distinct hybrid nanosystems—Pluronic 188–Tween 80 (90:10); Pluronic 188-Span
40 (90:10); and Pluronic 188-Span 60 (50:50)—were formulated using the thin-film hydration
technique as described previously [16]. The final nanosystem Pluronic 188–Tween 80–
MTX (9:1:0.2) was produced using the same technique. Appropriate volumes of the stock
solutions in organic solvent (CHCl3) were mixed and placed in spherical flasks, which
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were inserted in the rotary evaporator (Hei-VAP series CORE-heidolph®) for a period of
4 h at a higher temperature between 50 ◦ and 60 ◦C and at reduced pressure until the the
dehydrated thin film matrix formed on the walls of the flask after the evaporation of the
organic solvent. The film was left to rest for 24 h at a fixed temperature in order to dry the
remaining traces of the organic solvent. Afterwards, the hydration of the film took place
using water for injection (DEMO®) at a final Pluronic 188 concentration of 10 mg/mL. Each
sample was placed inside a sonication bath, following a specific protocol (3 min sonication,
2 min rest period, 2 min additional sonication), with the temperature not exceeding 40 ◦C.
Hydrophilic Millipore® syringe filters were used for filtering water before hydration. The
final solution was transferred in sterilized glass vials and stirred at 500–600 rpm for a
period of 45 min in order to achieve a final micellar dispersion (transparent yellow color).
Finally, the obtained solution was filtered using a 0.22 µm hydrophilic filter membrane, thus
removing the unincorporated MTX aggregates, with the remaining MTX being physically
entrapped in the hydrophobic core of the amphiphilic nanosystem [17,36].

3.2.2. FBS and FBS/PBS Interactions with Poloxamer 188/Surfactant Nanosystems

The colloidal dispersions of Pluronic 188/Surfactant were prepared using filtered
PBS–nanoparticulate mixtures stored at a constant temperature (4 ◦C). Then, 50 µL of
each nanoparticulate sample was diluted in 1.95 mL of FBS/PBS solution (1/9 v/v ratio)
reaching a final volume of 2 mL. The mixed solutions were left for 1 h in stable conditions
before measurements were conducted through light scattering techniques. Afterwards, the
nanosystem exhibiting the most promise was evaluated in terms of physiological stability
in plasma conditions by taking measurements at multiple time intervals (every 10 min) after
FBS dilution [37]. Fetal bovine serum was chosen as biological media due to the presence
of fetal bovine albumin (BSA), which is highly comparable with human serum albumin
(HSA), a protein that is abundant in the blood compartment under normal conditions.

3.2.3. Light Scattering Methods

The physicochemical characteristics of the formulated nanosystems (colloidal dis-
persion in aqueous media), such as size, size distribution, and scattered intensity, were
evaluated using dynamic light scattering (DLS). The dilution protocol followed for the
insertion of each colloidal dispersion in the sample cell was 50 µL of sample in 2 mL of
filtered water for injection (0.45 µm hydrophilic pores). The hydrodynamic radius (Rh),
size distribution (polydispersity index, PDI), and scattered intensity (I) were evaluated at a
fixed temperature of 25 ◦C and at a scattering angle of 90◦ degrees. All experiments were
replicated thrice. All measurements were performed with a wide-angle light scattering pho-
tometer by ALV GmbH, CGS-3, which is able to perform dynamic and static light scattering
experiments simultaneously (National Hellenic Research foundation of Athens, Institute
of theoretical and physical chemistry, Athens, Greece). This setup comprised a He-Ne
22 mW laser source, a compact goniometer system, an Avalanche photodiode detector
interfaced with an ALV/LSE-5003 electronics unit, and an ALV-5000/EPP multi-tau digital
photon correlator.

3.2.4. Attenuated Total Reflectance—Fourier-Transform Infrared Spectroscopy (ATR-FTIR)

FTIR spectra of dry solid MTX sample, along with Pluronic 188–Tween 80–MTX sam-
ples, were attained as an average of 64 scans per spectrum in the range from 5000 to 500 cm−1

at a working resolution of 4 cm−1, in order to chemically verify the structure and MTX
encapsulation of each sample. A Bruker (Billerica, MA, USA) Equinox 55 Fourier-transform
spectrometer was used for the analysis (National Hellenic Research foundation of Athens,
Institute of theoretical and physical chemistry, Athens, Greece), along with a single-bounce
ATR diamond accessory (Dura-Samp1IR II, SensIR Technologies, Danbury, CT, USA). All
measurements were conducted at a fixed temperature of 25 ◦C. The resulting ATR-FTIR
spectra of the formulated nanosystems exhibited new peaks specific to methotrexate.
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3.2.5. Ultraviolet–Visible (UV–Vis) Spectroscopy

The determination of drug encapsulation efficiency (%EE) and drug loading (%DL)
was evaluated via UV–Vis spectroscopy(National Hellenic Research foundation of Athens,
Institute of theoretical and physical chemistry, Athens, Greece). After dilution of each
sample in acetonitrile, the absorbance was recorded at 303 nm, with the EE and DL being
calculated for the range from 0.025 mg/mL to 0.8 mg/mL after the formation of the
standard curve for MTX, diluted using the same media.

3.2.6. Dialysis Bag—Drug Release Studies

The amount of the encapsulated MTX released from the nanosystem was evaluated
in different time intervals, under different temperature and pH conditions, with distinct
release mediums (PBS and 1/9 FBS/PBS). A total of 1 mL of Pluronic 188–Tween 80 col-
loidal dispersion (containing 0.2 mg/mL MTX) was introduced in a sealed dialysis bag
(MWCO = 3500 Da), immersed in 9 mL of release medium. The incubation media were
all withdrawn and replaced with a pre-warmed fresh medium at multiple time points,
thus being able to maintain optimal sink conditions [38]. The medium was subjected to
mechanical steering via a Teflon-coated magnet (100 ± 10 rpm), from 0 min until the end of
the experiment.

3.2.7. MTS Cytotoxicity Assay
2D Monolayer In Vitro Nanotoxicity

HEK293, SK-BR3, MCF-7, and HCT116 cells—ATCC (American Type Culture Collec-
tion) 10801 University Blvd, Manassas, USA—were cultured in suitable media comprising
DMEM High Glucose (BioSera, Shanghai, China) mixed with 10% FBS (PAN Biotech,
Aidenback, Germany), along with 100 U/mL penicillin and 100 g/mL streptomycin. Cells
were incubated at a fixed temperature of 37 ◦C and a 5% containing CO2 atmosphere,
using a steri-cycle CO2 incubator (HEPA Class 100, Thermo Electron Corporation®). Every
48 h, the medium was replaced, and the cells were passaged on a weekly basis using the
trypsin/EDTA method (≤30 number of passages). At ≥85% confluency, cells were trans-
ferred to a 96-well plate, and 5000 cells/well were seeded. All procedures took place in a
sterile environment. Cultures were exposed to multiple nanoformulation concentrations for
a period of 24 h under the same conditions. Incubation took place using sterile microplates
under a sterile hood. All experiments were duplicated (n = 2), while each analysis took
place less than a week from nanocarrier synthesis [39].

In Vitro Nanotoxicity Using 3D Spheroid Culture (Multicellular Tumor Spheroids)

HCT116 human colon cancer cells were cultivated using a polymeric agarose scaffold
into a final 3D structure. Next, 1% (w/v) agarose (Low-gelling-temperature Agarose,
Nippon Genetics Europe GmbH, Düren, Germany) gel was formulated using 1 X TAE as a
buffer, with a final density of 104 cells/well immobilized. A 1.5 mL aliquot of the mixture
was loaded into a 96-well plate and kept at room temperature for 30 min to allow the gel to
solidify. Afterwards the cells were cultured using DMEM High Glucose medium containing
10% FBS and 1% penicillin and streptomycin. Following, the 6-well plates were centrifuged
for a period of 1 min at 10.000 rpm. Fluorescence was measured after a 24 h incubation
period of the nanosystems, using a multi-detection reader (BioTek 800 TS Elx800), provided
by the laboratory of biology, Department of medicine, Athens, Greece.

3.2.8. Real-Time PCR Assay for Caspase 3 (Casp3) and Interleukin 6 (IL6) Expression
Assessment

RNA extraction (for Pluronic 188–Tween 80–MTX concentration of 200 µg/mL) was
executed using TRIzol reagent (Thermo Fisher Scientific, Chalandri, Greece), with respect
to the manufacturer’s instructions. PrimeScript First Strand cDNA Synthesis Kit (TAKARA)
was used for reverse transcription with the reaction’s conditions being 37 ◦C for 30 min
followed by 85 ◦C for 5 s. Thermal Cycler (Kyratec Super Cycler, laboratory of biology,
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Department of medicine, Athens, Greece) was used for the performance of the reaction.
MCF-7 human breast cancer cell line was cultivated and exposed for 24 h to Pluronic
188–Tween 80–MTX and to empty Pluronic 188–Tween 80 filtered carriers, after which the
cells were lysed and the RNA was extracted. The expressions of IL6 and Casp3 apoptotic
genes were evaluated and compared with those of the untreated cells. The expression of
p53 was not evaluated.

Quantitative real-time RT-PCR was conducted on an ABI Prism 7000 apparatus (Ap-
plied Biosystems, Foster City, CA, USA). All extracted samples were mixed with appropriate
primer sets along with PCR master mix (KAPA SYBR FAST qPCR Kit). Gene expression
was normalized by subtracting the Ct value of the GAPDH RNA internal control from
that of the GOI (gene of interest) (∆Ct = −|CtGOI-CtGAPDH|). The relative expres-
sion of GOI in cancer cells compared to non-cancer cells was the 2∆∆Ct model, where
∆∆Ct = ∆CtGOI-∆CtGAPDH [40].

3.2.9. In Vivo Toxicity Studies—Caenorhabditis elegans Culture

The N2 strain of C. elegans wild-type Bristol isolate was utilized in order to evaluate the
comparative nanotoxicity of the formulated nanosystems (Pluronic 188–Tween 80 unloaded
and loaded carriers at a concentration of 150 mg/L), along with free MTX. Nematodes were
maintained at 20 ◦C (AQUA® LYTIC incubator) on 6 cm Petri plates containing Nematode
Growth Medium (NGM), spotted with Escherichia coli OP50 bacteria as a food source
(stored at a fixed temperature of 4 ◦C). Prior to supplementing with nanosystems, the
bacterial lawn was UV-irradiated for 15 min to prevent the potential metabolism of the
nanoparticles by the bacteria. Nematode assessment and handling was completed with the
use of a dissecting stereomicroscope (Nikon, model: SMZ645).

Assessment of Egg Laying, Embryonic Lethality and Developmental Stages

Synchronized young adult nematodes (synchronized by picking L4 larvae from the
N2 strain) were exposed to the nanoformulations for 3 h, after which all nematodes were
transferred to different plates containing equal concentrations of the nanoformulations.
In each plate, previously containing 10 N2 early-adult worms, the number of eggs were
counted, and the respective results were expressed as a mean number of eggs laid per
animal. The number of hatched nematodes were counted again 24 h after the initial
incubation in order to assess the number of eggs that did not produce any viable nematodes.

Locomotion Assay

Head thrashing in Caenorhabditis elegans is defined as the bending of the animal’s head
until it reaches at least a quarter of its body length. For observation, each nematode was
placed in a 10 µL drop of M9 solution on a siliconized microscope slide and observed
through a dissecting stereomicroscope. A 30 s acclimation period was provided for each
animal before locomotion recording began. The following 30 s of movement was manually
recorded using a cell counter [41–44].

3.2.10. Future Steps and Promises for Clinical Practice

In today’s clinical practice, the primary tools of almost every treatment plan and
therapeutic option against solid tumor proliferation are chemotherapy, radiotherapy, and
medical surgery, approaches that in many cases and cancer phenotypes yield mostly unsatis-
factory results, while some have the disadvantage of being more invasive than what would
optimally be preferable. The successful implementation of a novel nanoparticulate system,
such as the one described in this manuscript (complementary with already existing thera-
peutic protocols), can offer significant benefits for the clinical outcomes of many cases if it
yields satisfactory clinical results (a positive yield of therapeutic effect vs. side effects). The
developed hybrid nanosystem would have the ability to deliver a chemotherapeutic drastic
substance directly to the target-cells via the enhanced retain and permeability effect (EPR),
sparing the rest of the organism and healthy cells from the cytotoxic and genotoxic activity
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of the chemotherapeutic substance. At the same time, since a higher relative concentration
of the API will be delivered to the cancerous cells, a lower overall concentration will need
to be administered, further minimizing the side-effect profile. In addition, the prolonged
release of the encapsulated drug helps to avoid drastic changes in drug blood plasma
concentration (peaks and valleys), thus prolonging the re-administration time between two
therapy cycles. Lastly, the developed nanosystem may be further functionalized in order to
incorporate hydrophilic compounds in its outer periphery (targeting moieties, monoclonal
antibodies, PEG molecules, and additional therapeutic–antioxidant compounds), since it is
a multi-compartmentalized system.

Lastly, it is important to note that the current study is not without certain limitations,
including a more in-depth analysis of the possible gene regulation of apoptotic-related
pathways, the expression of which may be affected by the final loaded nanoformulation.
Also, while C. elegans represents a perfectly suitable model to assess the nanotoxicity
characteristics of the current hybrid system, it does not offer the possibility to draw further
in-depth data that studies in higher-order animals would provide (ADME profile, tumor
suppression, immune system activation, blood plasma half-life, etc.).

4. Conclusions

A novel hybrid nanodelivery system was successfully designed and developed that
was able to encapsulate the model drug, methotrexate, with a high loading capacity. Stable,
prolonged release was observed, exhibiting the system’s ability to deliver BCS class II
and IV molecules to multiple human cell lines. The nanosystem, comprising the triblock
copolymer Pluronic 188 and the surfactant polysorbate 20 (Tween 20) at a w/w ratio of
9:1, showed physicochemical characteristics (size, PDI, HLB characteristics, micropolarity,
microviscosity, etc.) that remained stable after prolonged incubation times with FBS/PBS
media, an important trait for any system with the ability to avoid immune system recog-
nition and circulate for prolonged periods of time inside the human body (i.e., absence
of non-specific protein/nanoparticle interactions). Multiple light scattering techniques
validated the high stability and loading capacity of the final formulation, as well as the
advantage of a mean hydrodynamic particle diameter less than 200 nm with a low polydis-
persity index. The development of an amphiphilic system with a relatively high HLB ratio
and sufficiently small size, while at the same time maintaining such high encapsulation
efficiency, is an important feat, since it lowers the possibility of agglomeration and thus
provides a system with a better risk profile. The release of the encapsulated MTX followed
a controlled/delayed pattern, an attribute that can allow for a more stable blood plasma
level maintenance, avoiding high peaks followed rapidly by low valleys (thus avoiding the
occurrence of dose-related side effects). In vitro experimentation in multiple cell types and
culture conformations (2D and 3D spheroid cultures) indicated a dose-dependent toxicity,
while the empty nanocarriers resulted in the greatest viability values, as was anticipated.
In vivo experiments on the model organism C. elegans N2 wild-type strain stressed the toxic
effects of free methotrexate exposure at higher concentrations, which are exhibited by the
loaded carrier after the 5 h window at physiological conditions (37 ◦C), when drug release
starts to occur. This is the first time that such a system has been holistically examined, from
the earliest formulation stages (physicochemical characterization) up to in vivo experimen-
tation, and presented in one complete manuscript, exhibiting how multiple parameters
may affect the final nano-drug product. The final novel nanosystem might act as a possible
chemosensitizer, while obtaining physicochemical characteristics that enable its possible
use for the encapsulation of multiple chemotherapeutic APIs that belong to the class II
and BCS IV BCS. Characteristics such as a prolonged release rate, can result in a preferable
clinical effect, augmenting the time intervals between two consequent administrations,
ameliorating the phycological well-being of the patient through the minimization of the
hospitalization period. Lastly, the current investigation can be utilized as a tool to further
study poloxamer/surfactant interactions for the formulation of nano-drug carriers of a
similar nature through the thin-film hydration technique, exhibiting spatial compartmen-
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talization and the ability to encapsulate high doses of both hydrophilic and lipophilic APIs.
The hybrid nanosystem at hand can be further evaluated pre-clinically, in order to assess its
possible incorporation into today’s therapeutic protocols, ameliorating the effects of more
conventional treatments.
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