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Abstract: Protein–Protein Interaction (PPI) prediction plays a pivotal role in understanding
cellular processes and uncovering molecular mechanisms underlying health and disease.
Structure-based PPI prediction has emerged as a robust alternative to sequence-based
methods, offering greater biological accuracy by integrating three-dimensional spatial
and biochemical features. This work summarizes the recent advances in computational
approaches leveraging protein structure information for PPI prediction, focusing on ma-
chine learning (ML) and deep learning (DL) techniques. These methods not only improve
predictive accuracy but also provide insights into functional sites, such as binding and
catalytic residues. However, challenges such as limited high-resolution structural data and
the need for effective negative sampling persist. Through the integration of experimental
and computational tools, structure-based prediction paves the way for comprehensive pro-
teomic network analysis, holding promise for advancements in drug discovery, biomarker
identification, and personalized medicine. Future directions include enhancing scalability
and dataset reliability to expand these approaches across diverse proteomes.

Keywords: Protein–Protein Interactions; machine learning; deep learning; proteomics;
structure representations

1. Introduction
Proteins are biopolymers of amino acids arranged in polypeptide chains that, along

with nucleic acids, lipids and glycans, make up the four fundamental macromolecular
components of cells [1]. These versatile macromolecules essentially participate in all cellu-
lar processes, such as replication and transcription of DNA, translation, modification and
secretion of all proteins as well as the circulation of information and materials in and out of
cells [2]. Apart from serving as building blocks and providing structural integrity to the
cell, they also participate in biochemical reactions as enzymes, regulate growth, repair and
reproduction as hormones, and initiate cell death [3]. Nevertheless, macromolecules are
not functional as separate units in the cells, but rather they form complicated interaction
networks with one another as well as different macromolecule types. In the case of proteins,
the term ‘protein interaction’ entails both physical and functional interactions as well as
protein complex formation (transient and stable) [4]. Since proteins play a key role in a
multitude of biological processes, their interactions are critical in regulating molecular
and cellular mechanisms, influencing both health and disease [4]. To holistically study
protein interactions and their synergistic effect, protein–protein interaction (PPI) data can
be utilized on a broader scale, and thus they are mapped to interaction networks that are
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either based on physical or functional associations. Despite being incomplete, the system-
atic study of protein interaction networks has proven essential for understanding the link
between network structure and function, discovering new protein functions, identifying
coherent functional modules, and recognizing conserved molecular interaction patterns [4].
To further enrich these networks, a variety of experimental methods have been developed
to determine the interactions between proteins. The most important biophysical methods
that are used in protein interaction determination tasks are Fluorescence polarization (FP),
Surface plasmon resonance (SPR), Nuclear magnetic resonance (NMR), Circular dichroism
(CD), Static and dynamic light scattering (SLS/DLS), Analytical ultra-centrifugation and
Isothermal titration calorimetry (ITC), that have shown improved performance in studying
the hydrodynamic and thermodynamic aspects of PPIs due to advancements in instrumen-
tation [5]. As far as biochemical methods are concerned, Fluorescence and bioluminescence
resonance energy transfer (FRET and BRET), bead-based proximity assays (amplified lumi-
nescent proximity homogeneous assay (Alpha) Screen and AlphaLISA), Protein-fragment
complementation assay (PCA), Affinity chromatography and Cross-linking, that are often
combined with mass spectrometry (MS) techniques have been widely applied in the identi-
fication of protein binding partners. Furthermore, high-throughput genetic methods like
Phage display, Yeast two-hybrid (Y2H) system and other two-hybrid systems as well as
protein microarrays have resulted from the genomics revolution, enabling large-scale PPI
identification and mapping.

Despite the plethora of methods for PPI identification that have been developed, the
experimental verification of all the possible protein interactions is not possible due to the
innate limitations of the methods (such as cost and time) and the specific microenvironment
of some proteins that make their experimental detection almost impossible (i.e., pH, tem-
perature, etc.) [6]. Nevertheless, the most important factor is the fact that the experimental
verification of every possible protein interaction of the proteome of an organism is virtually
impossible [7]. To address this issue, in the last few years, many in silico methods for PPI
identification have been developed.

In the early days, protein interaction prediction was based on the interaction of
the protein’s domains, the parts of a protein that have the ability to fold, function, and
evolve independently [8]. The interaction between the domains were inferred from known
PPIs, using the assumption that two proteins are interacting if they had two interacting
domains. The domain–domain interaction (DDI) prediction was initially based on statistical
techniques like the Association Method, and Maximum Likelihood Estimation [9]. Later,
optimization algorithms such as Linear Programming [10] and Genetic Algorithm [11] were
used to determine the smallest number of DDIs that satisfy a given PPI network (PPIN).
Afterward, PPI prediction was performed with Machine Learning (ML)-based techniques
using domain knowledge like Random Forest (RF) [12], and recently Graph Theory has
been developed as a modern alternative for PPI predictions of this type [13].

Furthermore, docking methods including HADDOCK [14], ClusPro [15], ZDOCK [16],
LightDock [17], and InterEvDock [18], were utilized to predict PPIs by physically aligning
two proteins to identify a possible binding site. Template-based computational approaches
for PPI prediction and structural model construction take advantage of the accumulated
sequence and structure knowledge of known PPIs [19,20]. Computational methods for PPI
prediction have advanced significantly in recent years due to the quick development of
artificial intelligence (AI) algorithms. Sequence-based [21–23] and structure-based [24–26]
are the two main groups into which these AI techniques fall.
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At first, PPI prediction was based on the primary protein sequence as well as some
physicochemical properties, including hydrophilicity, charge, surface tension, using ML
algorithms, such as Support Vector Machine (SVM) [27]. Other methods were oriented
towards sequence-signatures (e.g., domains, motifs, etc.) instead of entire sequences in
order to identify over-represented sequence–signature pairs in PPIs and perform predic-
tions using statistically-based ML algorithms [28]. Later on, some methodologies that only
take advantage of the primary protein sequence and the distribution of amino acids in
the sequence were developed, such as the method of You et al. [29] that utilized a novel
Multi-scale local descriptor (MLD) feature representation scheme for different lengths of
amino acid sequences and an RF Classifier. Some recent methodologies deploy numerous
physicochemical characteristics along with the protein sequence with more advanced and
fast ML methods, such as Gradient Boosting Decision Tree (GBDT) [30]. Finally, more
intricate ML algorithms such as Ensemble Extreme Learning Machine (E-ELM) combined
with Principal Component Analysis (PCA) for feature reduction have also been employed
in order to utilize more complex sequence-based features, like local sequence patterns,
compositional and physicochemical properties as well as global sequence correlations [31].
Deep Learning (DL) methods have also emerged as potent and versatile tools for PPI predic-
tion based on sequence. Sun et al. developed a methodology that uses both Autocovariance
(AC) and Conjoint Triad (CT) for differential feature extraction from protein sequences
and performs the PPI prediction task via a Stacked Autoencoder (SAE) with a softmax
classifier [21]. Currently, Convolutional Neural Networks (CNNs) are widely used for both
the extraction of sequence-derived features and the prediction task itself [32].

Even though sequence-based methods have been widely used for PPI prediction tasks
since they require far fewer computational resources and can be applied to a greater subset
of proteins (i.e., many proteins have available sequence but not structural information)
compared with structure-based methods, they cannot compete with the accuracy that
structural methods provide [33]. In this work, we discuss the recent advances in protein
interaction prediction based on structure, that provide greater biological accuracy, as well
as some innovative protein-interaction type and protein-binding site prediction methods.

2. PPI and Protein Data
2.1. Protein Interaction Information

Over the past years, the number of PPIs has increased substantially, and thus databases
that host information about PPIs in a multitude of organisms have emerged. Currently,
there are various recognized databases that provide PPIs to design networks, such as
DIP, MINT, Biogrid, IntAct and STRING. These databases’ PPIs can be utilized both to
train the prediction algorithms used in PPI prediction and to assess the accuracy of the
prediction findings, as the available protein interactions have been experimentally verified.
Nevertheless, some of those databases also contain predicted protein interactions and thus
to perform accurate predictions the predicted interactions should probably not be included.
For the correct training of prediction algorithms, “negative” PPI datasets, i.e., datasets
that contain proteins that do not interact are needed. The Negatome database contains
about 2000 negative interactions both from manual literature curation and 3D protein
complexes [34]. However, the number of interactions in Negatome is limited and it is also
evident that there are far more negative interactions that have been observed than those
that have been published. Negative PPI datasets are often generated using subcellular
localization or random sampling, but these methods can introduce biases, overestimate
prediction accuracy, or result in unbalanced datasets, especially when studying specific
biological contexts [35].
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2.2. Biological Features of Proteins for PPI Prediction

To perform PPI prediction, biological information in the form of “features”, i.e., indi-
vidual measurable properties, also needs to be integrated into computational models. In
structure-based modeling, the key feature used in PPI predictions is protein structure and
thus it is either retrieved from the Protein Data Bank (PDB) [36,37], that contains experi-
mentally supported 3D structures of proteins, or from the AlphaFold Database (last update:
September 2024), that contains highly accurate predictions of protein structures [38,39].
From the UniProt database Release%202024_06, a number of supplementary features can
be extracted ranging from the protein sequence, post translational modifications events,
expression, subcellular location, variants and implication in disease, family and domain
information, as well as Gene Ontology (GO) annotations [40]. The PPI interaction databases
and meta-databases as well as protein feature databases that are mostly used are presented
in Table 1.

Table 1. Most-used protein interaction and protein feature databases.

Databases Description URL Last Update References

Primary
PPI

Databases

DIP

Experimentally curated
PPI database that also

includes biological
information of proteins.

https://dip.doe-mbi.
ucla.edu/dip/Main.cgi

(accessed on
01/12/2024)

2020 [41]

MINT

Experimentally curated
PPI database that

contains about
235,635 non-redundant
interaction pairs from
4786 manually curated

publications.

https://mint.bio.
uniroma2.it/ (accessed

on 01/12/2024)
2012 [42]

Biogrid

Manually curated PPI data
from 85,855 publications,
i.e., 2,818,695 protein and

genetic interactions,
31,144 chemical
interactions and

1,128,339 post translational
modifications.

http:
//www.thebiogrid.org

(accessed on
01/12/2024)

2024 [43]

IntAct

Curated resource of
molecular interactions,
both from the scientific

literature and direct data
depositions containing

1,624,377 binary
interactions.

http://www.ebi.ac.uk/
intact (accessed on

01/12/2024)
2024 [44]

PPI
Meta-databases

STRING

Functional associations
between protein pairs that
covers 12,535 organisms,
59,309,604 proteins and a

total of 27,541,372,832 PPIs
of various

confidence levels.

https://string-db.org/
(accessed on
01/12/2024)

2023 [45]

Release%202024_06
https://dip.doe-mbi.ucla.edu/dip/Main.cgi
https://dip.doe-mbi.ucla.edu/dip/Main.cgi
https://mint.bio.uniroma2.it/
https://mint.bio.uniroma2.it/
http://www.thebiogrid.org
http://www.thebiogrid.org
http://www.ebi.ac.uk/intact
http://www.ebi.ac.uk/intact
https://string-db.org/
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Table 1. Cont.

PPI
Meta-databases

Databases Description URL Last Update References

Mentha

A comprehensive resource
that integrates 741,337 PPIs

from several primary
databases such as IntAct,

BioGRID, and others.

http:
//mentha.uniroma2.it

(accessed on 01/12/2024)
2024 [46]

IMEx
Consortium

(Interna-
tional

Molecular
Exchange

Consortium)

Aggregation of more than
1.5 million data from

databases like IntAct, MINT,
and DIP to provide
standardized and

non-redundant PPI data.

https://www.
imexconsortium.org

(accessed on 01/12/2024)
2024 [47]

iRefIndex
(Integrated
Reference

Interactome)

Meta resource based on
matching protein sequence
data, providing access to a

large collection of
protein–protein
interaction data.

https://irefindex.vib.be
(accessed on 01/12/2024) 2023 [48]

HINT

Curated collection of
high-quality protein–protein

interactions from
8 interactome resources.

https://hint.yulab.org/
(accessed on 01/12/2024) 2024 [49]

OmniPath

Meta-database that combines
data from more than

100 resources and besides
PPIs, it also contains gene

regulatory interactions,
enzyme-post-translational

modifications relationships,
protein complexes, protein

annotations and intercellular
communication information.

https://omnipathdb.org/
(accessed on 01/12/2024) 2020 [50]

PICKLE

Meta-database for the direct
protein–protein interactome

of the human and the
mouse proteomes.

http://www.pickle.gr/
(accessed on 01/12/2024) 2021 [51]

Protein
Non-Interaction

Databases

Negatome
Database 2.0

Database of proteins and
protein domains that are

unlikely to engage in physical
interactions based on manual

curation of the
scientific literature.

https://mips.helmholtz-
muenchen.de/proj/ppi/
negatome/ (accessed on

01/12/2024)

2014 [34]

Protein Features

UniProt

A collection of
248,838,887 protein sequences

annotated with
functional information.

http://www.uniprot.org
(accessed on 01/12/2024) 2024 [40]

PDB Experimentally determined
3D structures of proteins

http://www.rcsb.org/
(accessed on 01/12/2024) 2024 [36,37]

AlphaFold
Database

Extensive database of
200 million high-accuracy

protein-structure predictions.

https:
//alphafold.ebi.ac.uk/

(accessed on 01/12/2024)
2024 [38,39]

http://mentha.uniroma2.it
http://mentha.uniroma2.it
https://www.imexconsortium.org
https://www.imexconsortium.org
https://irefindex.vib.be
https://hint.yulab.org/
https://omnipathdb.org/
http://www.pickle.gr/
https://mips.helmholtz-muenchen.de/proj/ppi/negatome/
https://mips.helmholtz-muenchen.de/proj/ppi/negatome/
https://mips.helmholtz-muenchen.de/proj/ppi/negatome/
http://www.uniprot.org
http://www.rcsb.org/
https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
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3. PPI Prediction Methods
The prediction of PPIs through structure-based computational methods has witnessed

significant advancements due to the integration of ML and DL techniques. Figure 1 presents
an overview of the key methodologies employed in this domain, ranging from classical
ML approaches to advanced DL architectures, each tailored to address specific challenges
in PPI prediction. SVMs (Figure 1a), one of the earliest ML methods utilized, operates
by defining a hyperplane that separates interacting from non-interacting protein pairs
based on input features such as surface properties or physicochemical characteristics. RF
classifiers (Figure 1b), which construct ensembles of decision trees, improve prediction
accuracy by aggregating outputs through majority voting, making them robust to feature
variability. These classical methods rely on hand-crafted features extracted from protein
structures and are computationally efficient for medium-scale datasets. The advent of DL
methods has revolutionized PPI prediction, enabling the automatic extraction of complex
patterns from protein structures. Artificial Neural Networks (ANNs) (Figure 1c) employ
multilayer perceptrons to capture non-linear relationships in protein interaction data. CNNs
(Figure 1d) extend this capability by processing 3D structural representations of proteins,
enabling the identification of spatially relevant features through convolutional operations
and pooling. Graph Neural Networks (GNNs) (Figure 1e) model proteins as graphs, where
amino acids are represented as nodes and their spatial proximities as edges, thus providing
a framework for capturing the topological and geometric intricacies of protein structures.
Finally, Clustering algorithms are ML techniques used to group similar data points into
clusters based on some measure of similarity or distance (Figure 1f). All the structure-based
PPI algorithms that will be analyzed in this review are presented in Table 2.

Table 2. Structure-based PPI prediction algorithms.

Computational
Methodology Title Doi Authors Year Citation

SVM with radial
basis function
(RBF) kernel

Improved prediction of
protein–protein binding sites

using a support vector
machines approach

https://doi.org/
10.1093/

bioinformatics/
bti242

Bradford and
Westhead 2005 [52]

NOXclass: prediction of
protein–protein interaction types

https://doi.org/
10.1186/1471-2

105-7-27
Zhu et al. 2006 [53]

Random Forest
(RF)

Across-proteome modeling of
dimer structures for the
bottom-up assembly of

protein–protein
interaction networks

https://doi.org/
10.1186/s12859

-017-1675-z

Maheshwari and
Brylinski 2017 [54]

Prediction of Protein–Protein
Interaction Sites by Random

Forest Algorithm with mRMR
and IFS

https://doi.org/
10.1371/journal.

pone.0043927
Li et al. 2012 [55]

Bayesian
Networks

Structure-based prediction of
protein–protein interactions on a

genome-wide scale

https:
//doi.org/10.1

038/nature11503
Zhang et al. 2013 [56]

https://doi.org/10.1093/bioinformatics/bti242
https://doi.org/10.1093/bioinformatics/bti242
https://doi.org/10.1093/bioinformatics/bti242
https://doi.org/10.1093/bioinformatics/bti242
https://doi.org/10.1186/1471-2105-7-27
https://doi.org/10.1186/1471-2105-7-27
https://doi.org/10.1186/1471-2105-7-27
https://doi.org/10.1186/s12859-017-1675-z
https://doi.org/10.1186/s12859-017-1675-z
https://doi.org/10.1186/s12859-017-1675-z
https://doi.org/10.1371/journal.pone.0043927
https://doi.org/10.1371/journal.pone.0043927
https://doi.org/10.1371/journal.pone.0043927
https://doi.org/10.1038/nature11503
https://doi.org/10.1038/nature11503
https://doi.org/10.1038/nature11503
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Table 2. Cont.

Computational
Methodology Title Doi Authors Year Citation

Artificial Neural
Networks
(ANNs)

Prediction of protein–protein
interaction sites in

heterocomplexes with
neural networks

https://doi.org/
10.1046/j.1432-1
033.2002.02767.x

Fariselli et al. 2002 [57]

Convolutional
Neural Network

(CNNs)

SpatialPPI: Three-dimensional
space protein–protein interaction

prediction with
AlphaFold Multimer

https://doi.org/
10.1016/j.csbj.20

24.03.009
Hu and Ohue 2024 [58]

Graph Neural
Networks
(GNNs)

Struct2Graph: a graph attention
network for structure-based

predictions of
protein–protein interactions

https://doi.org/
10.1186/s12859

-022-04910-9
Baranwal et al. 2022 [26]

Prediction of protein–protein
interaction using graph

neural networks

https://doi.org/
10.1038/s41598

-022-12201-9
Jha et al. 2022 [59]

MAPE-PPI: Towards Effective
and Efficient Protein–Protein

Interaction Prediction via
Microenvironment-Aware

Protein Embedding

https://doi.org/
10.48550/arXiv.

2402.14391
Wu et al. 2024 [60]

Hierarchical graph learning for
protein–protein interaction

https://doi.org/
10.1038/s41467

-023-36736-1
Gao et al. 2023 [61]

Clustering
AlphaBridge: tools for the

analysis of predicted
macromolecular complexes

https://doi.org/
10.1101/2024.10.

23.619601

Álvarez-
Salmoral et al.

2024 [62]

3.1. SVM with Radial Basis Function (RBF) Kernel

Bradford et al. developed an SVM method for prediction of protein binding sites
using SVMs [52]. The SVM was trained to tell apart interacting and non-interacting
surface patches using six surface properties (i.e., surface shape, conservation, electrostatic
potential, hydrophobicity, residue interface propensity, solvent accessible surface area
(SASA)) as features [52]. The surface shape is defined by two metrics, the shape index
(that describes the shape of the local surface) and curvedness, while the conservation
score, that was calculated with Scorecons program, was based on sequence homology
(BLAST algorithm [63]) and CLUSTALW [52,64]. Next, the electrostatic potential was
computed using Delphi software [65,66], incorporating Amber atomic charges [67] and grid-
based extrapolation for the protein surface [52]. The Hydrophobicity was calculated using
Fauchère and Pliska’s hydrophobicity scale [68]. Finally, the Residue Interface Propensity
was calculated from the dataset to indicate whether residues occur more frequently at the
interface [52] and SASA was computed using MSMS program [69]. The training dataset
was made up of 180 manually curated proteins, representing transient and obligate protein
interactions, filtered for natural and stable dimers. To choose the surface patches of the
protein, each protein surface was generated using solvent-excluded surfaces (SES) by
MSMS. Essentially, an atom is considered part of the interface if >99% of its SASA is
eradicated when the protein complex is assembled [52]. Negative samples of equal size
as the training dataset and random patches of non-interacting surface regions were also
chosen. They also conducted Leave-one-out Cross-Validation (LOOCV) to better evaluate

https://doi.org/10.1046/j.1432-1033.2002.02767.x
https://doi.org/10.1046/j.1432-1033.2002.02767.x
https://doi.org/10.1046/j.1432-1033.2002.02767.x
https://doi.org/10.1016/j.csbj.2024.03.009
https://doi.org/10.1016/j.csbj.2024.03.009
https://doi.org/10.1016/j.csbj.2024.03.009
https://doi.org/10.1186/s12859-022-04910-9
https://doi.org/10.1186/s12859-022-04910-9
https://doi.org/10.1186/s12859-022-04910-9
https://doi.org/10.1038/s41598-022-12201-9
https://doi.org/10.1038/s41598-022-12201-9
https://doi.org/10.1038/s41598-022-12201-9
https://doi.org/10.48550/arXiv.2402.14391
https://doi.org/10.48550/arXiv.2402.14391
https://doi.org/10.48550/arXiv.2402.14391
https://doi.org/10.1038/s41467-023-36736-1
https://doi.org/10.1038/s41467-023-36736-1
https://doi.org/10.1038/s41467-023-36736-1
https://doi.org/10.1101/2024.10.23.619601
https://doi.org/10.1101/2024.10.23.619601
https://doi.org/10.1101/2024.10.23.619601
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model stability and they thus managed to successfully predict the location of the binding
site on 76% of the proteins of the training dataset [52]. Furthermore, it also shows great
generalizability across binding types (i.e., obligate and transient binding sites) and potential
for functional site discovery, since it can identify functional sites on protein surfaces even
when the predicted binding interface does not align with the PDB-specified interface [52].
However, although their patch selection method provides a balanced approach between
specificity and sensitivity, there is still room for improvement.

 

Figure 1. Overview of computational methodologies for structure-based Protein–Protein Interaction
prediction: (a). Support Vector Machine (SVM): a supervised learning algorithm that classifies inter-
acting and non-interacting protein pairs by constructing an optimal hyperplane, (b). Random Forest
(RF): an ensemble method employing decision trees to predict PPIs through majority voting mecha-
nisms, (c). Artificial Neural Network (ANN): a multilayer perceptron architecture that learns patterns
in PPI features, (d). Convolutional Neural Network (CNN): a DL model utilizing 3D convolutional
layers to process spatial protein features and extract hierarchical representations and (e). Graph
Neural Network (GNN): a graph-based DL framework that models protein structure as nodes and
edges, enabling PPI prediction through graph embeddings, (f). Clustering Algorithm: ML techniques
used to organize similar data points into clusters according to a distance or similarity metric.
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Zhu et al. implemented a two-stage SVM approach (namely, NOXclass) that dis-
tinguishes between obligate interactions, non-obligate interactions and crystal packing
contacts [53]. The biological difference between the first two interaction types is that pro-
tomers of non-obligatory complexes may separate from one another and remain stable
and functional components, but protomers of obligate complexes do not exist as stable
structures in vivo [53]. Conversely, crystal packing contacts are essentially artifacts of the
crystallization process that would not be present in solution or in the physiological state [70].
The developed two-stage SVM first classifies the interaction as biologically relevant or
not (i.e., crystal packing interaction), and if and only if the interaction is classified by the
SVM1 binary classifier as biologically relevant it is then considered by SVM2 as either an
obligate or a non-obligate interaction [53]. NOXclass encompasses a multitude of features
that have been used in the literature to differentiate between different protein interaction
types (i.e., interface area (IA), ratio of interface area to protein surface area (IAR), amino
acid composition of the interface (AAC), correlation between AAC of interface and protein
surface (COR), gap volume index (GVI), and conservation score of the interface (CS)) [53].
IA, which represents half the reduction in SASA upon complex formation and IAR, which
normalized the interface area by the smaller protomer’s SASA, account for variations in
interaction surface sizes and effectively distinguish biological interactions from crystal
packing [53]. The AAC evaluated the contribution of different amino acid types at the
interface, mainly highlighting differences in hydrophobic and charged residues [53]. To
further differentiate biological interfaces, the COR measured how closely the interface
AAC matched the overall surface composition of each protein [53]. The GVI quantified
shape complementarity by normalizing the gap volume between interacting surfaces of
protomers against their interface area [53] (i.e., as the GVI increases, the complementarity
of the interacting surfaces is smaller and thus the biological significance of the interaction
is likely smaller [71]). Finally, the CS was computed using ConSurf [72] and identified
conserved residues, while serving as an indicator of biologically relevant interfaces [53].
The feature selection was conducted using cross-validation accuracy. The best accuracy
of 91.8% was achieved when IA, IAR, and AAC were selected, but the accuracy achieved
when all features were included was comparable and equal to 89.7% [53]. The addition
of the other three features seems to add some noise to the classifier. The training set of
the SVM consisted of 243 protein–protein interactions, and more specifically, 75 obligate
interactions, 62 non-obligate interactions and 106 crystal packing contacts [53].

The best-performing two-stage SVM was applied to a dataset by Bahadur et al., that
included 188 crystal packing contacts, 122 homodimers, and 70 other protein–protein
complexes [71]. It achieved 80.0% accuracy in the first stage, lower than its nested cross-
validation performance [53], probably due to class imbalance of Bahadur’s dataset [71].
The second stage SVM predicts 84.4% of the homodimers to be obligate, and 78.6% of the
remaining complexes to be non-obligate [53], but an accuracy score cannot be calculated
since the true labels of the Bahadur dataset are not available. In other words, we do not
know what percentage of homodimers or other protein–protein complexes are obligate
and what are non-obligate, and thus Zhu et al. assume that the majority of the homod-
imers are obligate interactions while the majority of other complexes are non-obligate
interactions [53].

3.2. Random Forest (RF)

The method developed by Maheshwari and Brylinski combines a variety of compu-
tational techniques, including molecular modeling, structural bioinformatics, ML, and
functional annotation filters [54]. With the use of molecular modeling, docking and docking
refinement algorithms, the structures of the proteins in every protein pair are predicted,
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followed by the identification of their binding site and finally the dimer prediction and
its refinement [54]. The ML algorithm of choice is an RF Classifier that is used to predict
through assignment of a probability score whether a given dimer represents a true PPI [54].
The features included in the RF classifier of this study are retrieved from the results of
FiberDock, a backbone refinement algorithm that calculates attractive and repulsive van de
Waals forces, atomic contact energy, partial electrostatics, hydrogen and disulfide bonds,
π-stacking, and aliphatic interactions [73]. After the prediction, the protein pairs that were
classified as interacting were passed via a GO term filter to ensure they shared cellular
locations ([CC]) and participated in the same biological process ([BP]) but had different
molecular functions ([MF]) [74]. This unified pipeline utilized the BM1905 dataset pre-
viously compilated by the research group, from which two subsets were extracted after
processing: 14,944 homodimers (HOM14944) and 3519 heterodimers (HET3519) [54]. The
RF model was trained and evaluated using 10-fold cross-validation, employing HET3519 as
the positive dataset and RND14944 as the negative dataset [54]. The latter was generated by
randomly shuffling the HOM14944 dataset to generate pairs that are not included [54]. Ini-
tially, the algorithm was tested on non-interacting protein pairs derived from the Negatome
2.0 database [34]. Subsequently, the model was validated on 6341 known PPIs of E. coli, and
on 112 interactions of the human immune pathway [54]. The model achieved a Receiver
operating characteristic (ROC)-Area Under the Curve (AUC) score of 0.72 for the BM1905
dataset, a false positive rate (FPR) of 0.23 on Negatome 2.0, and 62% accuracy on E. coli
PPIs [54]. Notably, the model’s discrimination capacity for E. coli was significantly improved
by applying protein localization filters, resulting in an increase in the F-measure from
0.52 to 0.69 [54]. Additionally, the model achieved a predictive accuracy of 62% for the
human PPIs in the human immune pathway [54].

Another application of the RF classifier in protein interaction site prediction is the work
of Li et al. who combined this ML method that incorporates a variety of single amino acid
features ranging from properties of the entire protein, features of the primary and secondary
structures of the protein as well as 3D structural features with an intricate feature selection
module [55]. The Evolutionary conservation feature was quantified using Position Specific
Scoring Matrices (PSSMs) generated by Position-Specific Iterated BLAST (PSI-BLAST) [75],
representing the likelihood of each residue to be conserved instead of mutating to each
of the 20 amino acids [55]. Amino acid properties were represented using five numerical
patterns derived from AAIndex database [76], reflecting polarity, secondary structure,
molecular volume, codon diversity, and electrostatic charge [55]. Protein-disordered re-
gions, crucial for biological functions and interaction versatility, were analyzed in this study
using VSL2 [77] to calculate disorder scores for each amino acid [55]. Secondary structural
features, including secondary structure (labels: ‘helix’, ‘strand’, or ‘other’) and solvent
accessibility (labels: ‘buried’ (excluded from the study) or ‘exposed’) were predicted by
SSpro4 [78]. Finally, the 3D structural features extracted from PDB database that were used
in this study were Protrusion Index (CX) and Depth Index (DPX) predicted by PSAIA [79],
as well as SASA, molecular surface area (MS) and surface curvature (SC) computed from
SurfRace [80]. The Minimum Redundancy Maximal Relevance (mRMR) method was em-
ployed to rank features by evaluating their relevance to the target and their redundancy
with other features [81]. The resulting ranked list was then used in the Incremental Fea-
ture Selection (IFS) [82,83] process to determine the optimal feature set. The PPI training
dataset was constructed from the 3did database [84], focusing on interactions with known
structures. After filtering out short sequences and homologs [85], 6488 protein chains
from 3353 PDB structures were retained [55]. From these, 21-residue segments centered
on interaction residues were extracted and thus positive samples (interaction residues)
and negative samples (non-interaction residues) were identified, resulting in 104,802 pos-
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itive and 180,698 negative samples [55]. After excluding peptides centered on buried
residues and further reducing homology [85], the dataset was refined to 13,427 positive
and 12,429 negative samples [55]. Interestingly, the study demonstrated that 3D structural
features significantly improve PPI site prediction, resulting in a prediction accuracy of
67.3% and a Matthews correlation coefficient (MCC) of 0.348 compared to 59.7% accuracy
and an MCC of 0.190 without these features [55]. A comparison with the method proposed
by Šikić et al. [86] on their same dataset further validated the approach [55]. Using the
RF and 10-fold cross-validation for all experiments, the proposed method achieved better
performance (accuracy: 67.3%, MCC: 0.348) than the method Šikić et al. [86] (accuracy:
65.3%, MCC: 0.308) [55].

3.3. Bayesian Network

PrePPI method leverages structural and non-structural features to model PPIs across
yeast and human proteomes [56]. At first, 6521 yeast proteins were matched to 7792 do-
mains, while 20,318 human proteins were matched to 49,851 domains using SMART [87].
Structures were sourced directly from PDB for high-sequence-identity matches or derived
from ModBase [88] and SkyBase [89] homology models in cases where proteins did not
have experimentally verified structures [56]. The selection process resulted in a total of
1361 PDB structures and 7222 homology models for yeast proteins, and 8582 PDB structures
and 30,912 models for human proteins [56]. Structural neighbors (both close and remote)
were identified using the Ska alignment tool that performs structural alignment depending
only on the geometric shape of the two proteins [56]. If two of the neighbors of the two
proteins in every protein pair are found in a complex formation in PDB and PQS [56]
(28,408 yeast and 29,012 human protein complexes), their complex serves as a potential tem-
plate to create models of the interaction between the proteins in question [56]. The “models”
of the complex come from superimposing the structures of the proteins in question to
their neighbors that create the template [56]. This strategy generated over 550 million
“models” (2.4 million PPIs) for 3900 yeast proteins, and 12 billion models (36 million PPIs)
for 3000 human proteins [56]. Afterward, five structural modeling features were calculated
to evaluate the created “models”. Structural Similarity (SIM), Size of Conserved Interacting
Pairs (SIZ) and Coverage of Interacting Pairs (COV) show whether the interface of a tem-
plate is present in the “model”, and finally Overlap Score (OS) and Overlap of Predicted
Interfacial Residues (OL) evaluate if the residues in the “model” interface have compatible
characteristics with residues that mediate recognized PPIs [56]. All the features mentioned
above were combined into a Likelihood score using a Bayesian Network [56]. This score
was then incorporated with different types of non-structural information, such as gene
co-expression, protein essentiality, GO term similarity, and phylogenetic profiles—using
a Bayesian classifier to assign interaction likelihood ratios [56]. A naive Bayes classifier
was trained on high-confidence and non-interaction reference sets using tenfold cross-
validation to evaluate prediction performance through Overlap of Predicted Interfacial
Residue curves [56]. This integrative pipeline highlights the power of combining structural
modeling with diverse biological data to predict PPIs at scale. Recently, they have updated
their PrePPI database (available at: https://honiglab.c2b2.columbia.edu/PrePPI/(accessed
on 1/12/2024)), a webserver that predicts PPIs on a proteome-wide scale [90].

3.4. Artificial Neural Networks (ANNs)

Fariselli et al. applied a neural network-based technique to predict protein interaction
sites of heterodimers from 3D structural features [57]. More specifically, it predicts whether
each surface residue is in contact with the other protein using an 11-residue window that
includes the residue of interest and its spatial neighbors [57]. Features extracted for this

https://honiglab.c2b2.columbia.edu/PrePPI/
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prediction include evolutionary conservation profiles derived from sequence alignments
in the HSSP database [91] and solvent accessibility that is calculated by DSSP program,
with residues coded into 20-dimensional vectors representing their sequence conservation
frequencies [57]. The training dataset includes heterodimers, while excluding homodimers
and protease–inhibitor complexes, that have specific motifs in their interaction sites, as
well as small fragments, resulting in 226 interacting protein chains [57]. A three-fold cross-
validation process was employed for validation, achieving a 73% per-residue accuracy
and subsequently, the model was also tested on the DnaK molecular chaperone system,
showing strong agreement with known experimental interaction regions [57].

3.5. Convolutional Neural Networks (CNNs)

A recent structure-based method for PPI prediction is SpatialPPI, which integrates
protein complexes predicted using AlphaFold Multimer and classifies their interactions
through 3D CNNs [58]. Rigorous curation processes were implemented to address class
imbalance and eliminate redundancy, as a considerable overlap exists between protein
pairs in both data sources (i.e., BioGRID and Negatome 2.0) [58]. The model was thus
trained on a dataset comprising of 600 positive PPI pairs from the BioGRID database [43]
and 600 non-interactive pairs curated from Negatome 2.0 [43]. For each protein pair, amino
acid sequences were input into AlphaFold Multimer [92], which predicted individual
protein structures and optimized the resulting complex. Subsequent steps involved feature
extraction from the predicted protein complex, converting the structure into a 3D tensor
to represent spatial atomic arrangements [58]. Three encoding strategies were employed
for this purpose: one-hot, volume, and distance encoding [58]. These encoded features
were then processed by the 3D CNN, followed by fully connected layers, which ultimately
classified the protein complex as either interacting (PPI) or non-interacting (non-PPI) [58].
Two distinct CNN architectures were explored: one utilizing Residual blocks and the other
employing Dense blocks, which are 3D adaptations of the ResNet [93] and DenseNet [94]
frameworks, respectively. Both architectures incorporated convolutional layers augmented
by dropout, batch normalization to enhance generalization and stability, as well as average
3D pooling to calculate 1D feature vector [58]. Validation of the SpatialPPI model was
performed using five-fold cross-validation, coupled with a clustering-based subset selection
strategy to ensure that similar proteins were assigned to the same subset [58]. Multiple
combinations of the CNN architectures and tensorization methods were initially evaluated,
with the DenseNet-based 3D CNN utilizing distance tensorization emerging as the most
accurate. This optimal configuration achieved a mean accuracy of 0.81, an AUC score of
0.89, a precision of 0.83, and a recall of 0.79, while maintaining low average and standard
deviation of accuracy across folds, highlighting its stability [58]. Furthermore, SpatialPPI
demonstrated superior performance compared to other state-of-the-art methods, including
sequence-based approaches, as evidenced by its results on the test subset employed in
DeepTrio [22]. SpatialPPI model achieved 0.83 accuracy, 0.92 AUC score, 0.84 precision
and 0.82 recall. Finally, evaluation on the CASP14 dataset [95] showed that SpatialPPI
produced fewer false predictions when compared to docking-based methods, reinforcing
its robustness and reliability.

3.6. Graph Neural Networks (GNNs)

The Struct2Graph model employs a graph attention network (GAT) for PPI predic-
tion, using only a graph representation of 3D structural data of proteins, and not specific
structural features, such as SASA and hydrophobicity, that have been employed by other
researchers [26]. The training dataset includes 117,933 protein pairs (4698 positive and
5036 negative pairs) with available structures from PBD database [37]. On one hand, the
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positive pairs are derived from concordant matches between physical PPIs of STRING [45]
and IntAct [44], after excluding co-localized proteins [26]. On the other hand, negative
samples are considered to be any protein pairs that show no interaction evidence in large-
scale two-hybrid studies and are also not part of any interaction in either STRING or
IntAct [26]. The model framework converts protein structures into graphs where amino
acids are represented as nodes, connected by edges if their spatial proximity is within
9.5 Å [26]. Local structural information is captured via 1-neighborhood subgraphs [96],
which are then processed by graph convolutional networks (GCNs) [26]. The resulting
protein embeddings are aggregated using a mutual attention mechanism, and the final
classification is performed with a feedforward neural network [26]. Model evaluation
was conducted using five-fold cross-validation on both balanced datasets and unbalanced
scenarios with varying positive-to-negative ratios [26]. On the balanced dataset, the model
achieved outstanding performance with an average accuracy of 98.96%, precision of 99.4%,
recall of 98.57%, and F1-score of 98.98% [26]. Even under class-imbalance conditions, the
model maintained robust metrics, demonstrating its generalization capability [26]. For
instance, in the most challenging scenario with a 1:10 positive-to-negative ratio, the model
achieved 99.26% accuracy, 97.04% precision, 95.59% recall, and 96.31% F1-score [26]. These
results highlight the exceptional generalization ability of the Struct2Graph model, making
it suitable not only for supervised learning tasks but also for unsupervised applications [26].
Lastly, the attention maps generated by the model provide valuable insights for identifying
potential interaction-critical residues [26].

The study by Jha et al. introduces a method for predicting PPIs by combining GNNs
with language models to create enhanced structural protein representations [59]. The train-
ing dataset includes 16,220 positive human PPIs and 2847 positive PPIs from Saccharomyces
cerevisiae (S. cerevisiae) from Human Protein Reference Database (HPRD) [97] and DIP [98],
correspondingly. Negative samples were constructed by randomly pairing proteins from
the positive dataset that are localized in different subcellular locations (as annotated in
Swiss-Prot [99]) and supplementing these with non-PPIs from the Negatome database [34],
resulting in 5997 negative human and 4427 negative S. cerevisiae interactions. Further
filtering steps were applied to the dataset, which involved excluding short protein chains,
removing protein pairs with ≥40% sequence identity (using CD-HIT [85]), and discarding
proteins lacking 3D structures in the PDB database [26]. The features were extracted using
two methods derived from language models, i.e., SeqVec that employs Long Short-Term
Memory (LSTM) layers [100], and ProtBert that extends the Bidirectional Encoder Rep-
resentations from Transformers (BERT) framework [101]. These language models were
adapted to extract residue-level features, which were subsequently used as node features
in the protein structure-based graphs [59]. After the extraction, both GATs and GCNs
were evaluated for generation of protein embeddings [59]. These embeddings were then
concatenated, and the final fully connected network layer performed the prediction [59].
The framework was comprehensively evaluated to determine the optimal combination of
GNN architecture, language model, and other node features (e.g., one-hot encoding and
physicochemical properties) [59]. The evaluation also included assessing the impact of
varying GNN layers, dataset sample sizes, and comparisons with language model-based
baselines and previous methodologies [59]. The selected model was further validated using
five-fold cross-validation for stability and tested on human and S. cerevisiae datasets [59].
The optimal model—a GAT architecture combined with the LSTM-based SeqVec for node
features—achieved exceptional results, with an accuracy of 98.13% on the human dataset
and 92.15% on the S. cerevisiae dataset [59].

Microenvironment-Aware Protein Embedding for PPI prediction (MAPE-PPI) [60], a
computational technique utilizing microenvironment-aware protein embeddings to predict
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large-scale PPI types using Graph Isomorphism Networks (GINs) [102]. MAPE-PPI extracts
microenvironment-aware embeddings based on the protein’s structure, captured in a
fine-grained “codebook” through a variant of vector-quantized variational autoencoders
(VQ-VAE) [103]. Essentially, this microenvironment codebook encodes each residue into
chemically meaningful discrete codes, that contain information relevant to each residue’s
surrounding chemistry and geometry [60]. The final calculated protein embedding serves
as node features in a PPI graph that is made up of all the proteins whose interactions are
to be predicted (i.e., hidden edge types) and the PPIs of the training dataset [60]. Next,
the GIN architecture serves as an encoder and the final classification is implemented by
a fully connected layer that categorizes the interaction to at least one of the following
seven interaction types, i.e., Activation, Binding, Catalysis, Expression, Inhibition, Post-
translational modification, and Reaction [60]. There are three training datasets, one for
each of the conducted computational experiments [60]. The first one includes PPIs from
STRING (1,150,830 PPIs, 14,952 proteins) and the other two are two subsets of STRING,
namely SHS27k (16,912 PPIs), and SHS148k (99,782 PPIs) [45], that contain human PPIs.
All the protein structures were derived from AlphaFold2 database [39]. For each training
dataset, three splitting techniques were evaluated: Random Split, Breath-First Search (BFS),
and Depth-First Search (DFS) [60]. The computational experiment that uses STRING as the
training dataset achieved 96.12 micro-F1-score when the model was trained from scratch
and 96.9 micro-F1-score when using pre-training data [60].

The Hierarchical Graph Neural Network for Protein–Protein Interactions (HIGH-
PPI) [61] is an advanced framework designed for multi-type PPI prediction, integrating a
hierarchical graph structure and an explainer module to identify key residues involved in
protein interactions. This hierarchical representation encapsulates both residue-level and
protein-level interactions, enabling the model to learn fine-grained and global features si-
multaneously [61]. In this architecture, individual proteins are represented as residue-level
subgraphs, where nodes correspond to residues and edges represent spatial or sequen-
tial proximity, while PPIs are modeled as higher-level nodes in a global graph [61]. This
dual-layer structure facilitates the simultaneous capture of intra-protein and inter-protein
interactions. The dataset utilized for developing HIGH-PPI is derived from SHS27k, a
curated subset of human PPIs extracted from the STRING database [45]. To ensure struc-
tural consistency, PPIs involving proteins without resolved structures in the PDB were
excluded [37], resulting in a final dataset comprising approximately 1600 proteins and
6600 PPIs [61]. The model employs a dual-view approach: a bottom view representing pro-
teins as residue-level graphs and a top view modeling the protein interaction network [61].
The bottom view utilizes GCNs to extract residue-level features, such as isoelectric point,
polarity, acidity/alkalinity, hydrogen bond properties, octanol-water partition coefficient,
and topological polar surface area [61]. Protein graphs are constructed using a distance
cutoff of 10 Å for adjacency [61]. The top view employs GINs to capture network-level
PPI properties [61]. The embeddings from the bottom view are used as inputs for the
PPI graph processed by the top view, and the resulting protein embeddings are subse-
quently classified using a Multi-Layer Perceptron (MLP) [61]. In addition to classification,
HIGH-PPI incorporates an Explainable Artificial Intelligence (XAI) component, specifically
GNNExplainer [104], to identify functionally critical residues such as binding or catalytic
sites [61]. Evaluation of HIGH-PPI demonstrates its superior performance, robustness, and
generalization capabilities compared to state-of-the-art methods [61]. The model was tested
using a random data split, with 20% of PPIs reserved for evaluation. HIGH-PPI achieved
the highest micro-F1-score, surpassing the second-best model by approximately 4% and
attaining a micro-F1-score of ~90% [61]. Robustness testing under random perturbations
revealed a performance improvement of up to 19% compared to the next-best baseline,
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highlighting the model’s resilience to noisy data [61]. Generalization assessments in out-of-
distribution (OOD) scenarios further confirmed HIGH-PPI’s consistent superiority over
alternative methods [61]. Moreover, HIGH-PPI demonstrated significant improvements
in area under the precision–recall curve (AUPR) across five PPI types, with particularly
strong performance in binding-type predictions [61]. The robustness and generalizabil-
ity of HIGH-PPI were further validated on additional datasets, including proteins with
computationally predicted structures, such as those generated by AlphaFold [39], and real
catalytic site annotations [61]. Across these datasets, HIGH-PPI exhibited consistent and
robust performance, reinforcing its applicability and effectiveness in diverse PPI prediction
tasks [61].

3.7. Clustering

The AlphaBridge framework, a recent advancement in the computational analysis of
protein complexes, leverages cutting-edge metrics from AlphaFold3 [105], including the pre-
dicted local-distance difference test (pLDDT), pairwise aligned error (PAE), and predicted
distance error (PDE) [62]. Integrating these metrics into a graph-based clustering approach,
enables the precise identification and analysis of interaction interfaces in macromolecular
complexes, including protein–protein and protein–nucleic acid interactions [62]. Interaction
data are visualized through sophisticated chord diagrams, incorporating prediction confi-
dence and sequence conservation scores to enhance interpretability. The framework utilizes
structural metrics derived from AlphaFold3 outputs, with preprocessing centered on con-
structing the Predicted Merged Confidence (PMC) matrix—a fusion of PAE and pLDDT
data—further refined through community clustering algorithms and multidimensional
image processing techniques [62]. Empirical evaluation involved AlphaFold3-predicted
models, including cases such as human mismatch repair proteins interacting with nucleic
acids [62]. Validation focused on the robustness of predictions, employing interactive visu-
alizations to assess confidence levels and identify physiologically relevant interactions [62].

4. Conclusions
Structure-based PPI prediction represents a far more accurate framework than

sequence-based methods due to its capacity of capturing the spatial and biochemical
complexities of protein interactions. Protein structures provide invaluable insights into the
three-dimensional arrangements of residues, information that is critical for understanding
binding sites, catalytic mechanisms, and overall interaction dynamics. They contain fea-
tures such as atomic coordinates, solvent accessibility, and interaction geometry, that allow
for a deeper exploration of the molecular mechanisms underpinning PPIs, often missed by
sequence-centric methods. For instance, sequence-based models may fail to differentiate
conformations of the same protein that bind different partners, as structural variability
cannot be inferred directly from sequences alone. However, challenges such as the reliance
on high-resolution structural data and the computational expense of three-dimensional
modeling underline the need for further innovation to make these methods more scalable
and applicable across diverse proteomes.

Another crucial aspect of structure-based methods is the integration of reliable negative
samples, which remains a critical challenge in PPI prediction. Experimental identification
of non-interacting protein pairs is practically infeasible, since biological experiments are
designed to determine protein interactions and not the opposite. The main approaches
for this issue are the random generation of “negative” interactions from experimentally
verified positive interactions, or the use of databases containing “negative” interactions,
like Negatome 2.0. However, in some cases, “negative” interactions from these databases
were spotted in protein interaction databases, indicating that they probably should not be
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trusted blindly. In some other cases, randomly generated negative interactions are also
filtered so that the proteins that make the pair belong in different subcellular locations
or organs. Recent studies have proposed the use of “negative” interactions of proteins
from high-throughput experiments, which are essentially interactions between proteins
that although tested experimentally, were not observed [35]. However, these strategies
can introduce biases, overestimate prediction accuracy, or create imbalances in datasets,
particularly in highly specific biological contexts. The selection of meaningful negative
samples, while complex, will play a decisive role in improving the robustness and reliability
of predictive models. Another issue concerning the training process of the ML algorithms is
the analogy between the positive and negative datasets. In most cases, the chosen training
dataset is balanced, but this approach is rather simplistic because two proteins most likely
do not interact. Consequently, this problem should be addressed by using imbalanced
training datasets with the majority class being the “negative” interactions accompanied
with the use of functions that help mitigate the imbalance, like the Focal Loss function.
Additionally, this problem could also be solved as a weakly supervised learning problem,
since the “negative” interaction data are often ambiguous.

The comparison of PPI prediction methods reveals diverse approaches with varying
strengths and limitations. On one hand, SVMs excel in handling small, high-dimensional
datasets and feature-rich inputs, such as those derived from chemical descriptions. How-
ever, they often struggle with scalability and require careful feature selection to avoid
overfitting. RFs, on the other hand, are robust to noisy data and capable of handling large
feature sets, yet not only can their interpretability be challenging but they also require
significant computational resources for large-scale datasets. Deep models, such as ANNs
and CNNs, offer superior capabilities in learning intricate patterns, especially when applied
to spatial and structural features. However, these models demand extensive computational
resources, large and annotated datasets, as well as careful tuning of hyperparameters to
achieve optimal performance. Furthermore, while CNNs have shown great promise for
spatial pattern recognition, their capacity to capture the full 3D protein structure remains
limited compared to more specialized models. Graph-based approaches like GNNs have
emerged as state-of-the-art methods due to their ability to directly model protein struc-
tures as graphs, capturing complex topologies inherent in biological interactions. GNNs
effectively handle relational data and can model PPIs with remarkable precision. However,
these models can be sensitive to graph construction parameters and are computationally
expensive when dealing with large protein interaction networks. Moreover, graph trans-
formers, an advanced variant, have begun to exploit the potential of 3D protein structures,
providing a promising avenue for more accurate PPI predictions by leveraging the spatial
properties of proteins. These models are better equipped to handle the complexities of
protein folding and spatial interactions, but they still require significant resources to process
large-scale, high-dimensional datasets. While each method has demonstrated utility in spe-
cific applications, no single approach universally excels across all scenarios, emphasizing
the need for tailored strategies based on the data and prediction goals. This highlights the
growing importance of hybrid models that combine strengths from different approaches to
achieve superior performance, particularly in complex biological systems where data can
be both sparse and highly dimensional.

To overcome the limitations of the existing PPI prediction methods, targeted advance-
ments are necessary. For SVMs, incorporating automated feature engineering, such as
DL-based feature extraction, could enhance their ability to handle large-scale datasets
without manual preprocessing. In the case of RFs, improving their interpretability through
feature importance visualization or integrating explainable AI techniques can make them
more accessible for biological insights. For ANNs and CNNs, transfer learning using pre-
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trained models on large PPI datasets could mitigate the challenge of limited annotated data,
especially in non-interaction scenarios. These models could also benefit from incorporating
domain-specific constraints to reduce overfitting and integrating knowledge of protein
structures to enhance their performance in structural-based prediction tasks. Graph-based
approaches would benefit from adaptive graph construction techniques that dynamically
adjust graph topology based on biological context, along with hybrid models that combine
graph-based insights with other structural and sequence-based features. Additionally,
leveraging the full potential of 3D protein structures through graph transformers and
other DL architectures designed to exploit the spatial properties of proteins could lead
to more precise and scalable PPI predictions. Furthermore, integrating multi-omics data
and functional annotations into these frameworks could enrich predictions and expand
their utility for uncovering novel interactions in complex biological systems, making them
more versatile and accurate for a wide range of applications in drug discovery and disease
understanding.

The integration of XAI can provide a path for non-expert users to trust computational
tools in PPI prediction [106]. XAI models, which enhance transparency by elucidating
the reasoning behind predictions, can be incorporated into structure-based prediction
methods to identify the specific features or data driving model outputs [107]. For example,
visualization tools can highlight crucial structural motifs or residues contributing to a
predicted interaction, enabling users to assess the reliability of results. Additionally, tools
like SHapley Additive exPlanations (SHAP) [108] or Local Interpretable Model-Agnostic
Explanations (LIME) [109] can help quantify the confidence of predictions by showing the
importance of individual input features. These insights empower users to contextualize
results within biological frameworks, promoting informed decision-making. By making
these tools intuitive and embedding user-friendly confidence metrics, researchers can
bridge the knowledge gap, enabling broader adoption of these computational methods
while maintaining reliability and reproducibility in experimental applications.

The trajectory of computational PPI tools suggests a future where their predictions
achieve near-experimental reliability, fundamentally transforming biological research. Neu-
ral network-based methods are rapidly improving in accuracy due to advancements in
data availability, structure prediction models (e.g., AlphaFold), and algorithmic efficiency.
These tools are particularly impactful in drug discovery and testing, where they offer a
viable alternative to animal models. By accurately predicting PPIs, computational methods
can simulate the effects of potential drug candidates on molecular pathways, enabling
the identification of therapeutic targets and adverse interactions in silico. For instance,
in silico studies of protein–ligand docking combined with PPI predictions were used to
identify inhibitors for diseases such as cancer, bypassing early-stage animal testing [107].
This reduces the ethical concerns associated with animal models and ensures a faster, cost-
effective path to drug validation. Moreover, PPI predictions are integral to advancements
in personalized medicine. By understanding the precise interactions within an individual’s
proteome, researchers can tailor treatments to target specific pathways affected by disease,
exemplified by cancer therapies that inhibit specific protein interactions unique to tumor
biology. The ethical exploration of biology also benefits from such computational tools, as
they minimize experimental redundancies, promote data sharing, and align research with
frameworks advocating humane and efficient methodologies [110].

In conclusion, structure-based PPI prediction stands as a pivotal tool in modern com-
putational biology. It offers profound insights into the molecular mechanisms governing
protein interactions while overcoming critical limitations of traditional methodologies.
Future research should focus on improving the scalability of these approaches, optimizing
the generation of negative datasets, and expanding their application to proteomes with
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limited structural data. By addressing these challenges, structure-based methods have
the potential to redefine our understanding of protein networks and their implications in
health and disease.
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