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ABSTRACT 
 

Insect olfactory receptors are heteromeric ligand-gated cation channels composed of an 
obligatory receptor subunit, ORco, and one of many variable subunits, ORx, in as yet 
undefined molar ratios. When expressed alone ex vivo, ORco forms homotetrameric channels 
gated by ORco-specific ligands acting as channel agonists. Using an insect cell-based system 
as a functional platform for expressing mosquito odorant receptors ex vivo, we identified 
small molecules of natural origin acting as specific ORco channel antagonists, orthosteric or 
allosteric relative to a postulated ORco agonist binding site, which cause severe inhibition of 
olfactory function in mosquitoes. In the present communication, we have compiled common 
structural features of such orthosteric antagonists and developed a ligand-based 
pharmacophore whose properties are deemed necessary for binding to the agonist binding 
site and causing inhibition of ORco's biological function. In silico screening of an available 
collection of natural volatile compounds with the pharmacophore resulted in identification 
of several ORco antagonist hits. Cell-based functional screening of the same compound 
collection resulted in the identification of several compounds acting as orthosteric and 
allosteric antagonists of ORco channel function ex vivo and inducing anosmic behaviors to 
Aedes albopictus mosquitoes in vivo. Comparison of the in silico screening results with those 
of the functional assays revealed that the pharmacophore predicted correctly 7 out of the 8 
confirmed orthosteric antagonists and none of the allosteric ones. Because the 
pharmacophore screen produced additional hits that did not cause inhibition of the ORco 
channel function, we also generated a Support Vector Machine (SVM) model based on two 
descriptors of all pharmacophore hits. Training of the SVM on the ex vivo validated compound 
collection resulted in the selection of the confirmed orthosteric antagonists with a very low 
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cross-validation out-of-sample misclassification rate. Employment of the combined 
pharmacophore-SVM platform for in silico screening of a larger collection of olfaction-
relevant volatiles produced several new hits. Functional validation of randomly selected hits 
and rejected compounds from this screen confirmed the power of this virtual screening 
platform as a convenient tool for accelerating the pace of discovery of novel vector control 
agents. To the best of our knowledge, this study is the first one that combines a 
pharmacophore with a SVM model for identification of AgamORco antagonists and 
specifically orthosteric ones.  
 

INTRODUCTION 
 

Many insect species have the potential to transmit a wide range of pathogens to humans and 

animals, causing a variety of vector-borne diseases (VBDs). According to the World Health 

Organization (WHO), VBDs account for more than 17% of all infectious diseases, causing more 

than 700,000 deaths annually (1). Therefore, they pose a significant threat to global public 

and animal health and have substantial socioeconomic impacts. Although effective control of 

insect disease vectors (IDVs) is crucial, it is also quite challenging. One powerful, effective and 

safe control method involves the use of long lasting and environmentally friendly repellents 

and anosmia-inducing agents. These agents interfere with the olfactory capacity of blood-

feeding insects and reduce the frequency of their biting host organisms and transmitting 

pathogens to them. 

 

Insects rely on their olfactory system to sense volatile chemicals that regulate various 

behaviors, including social interactions, mate and oviposition site selection, food source 

location and enemy recognition (2,3). Insect odor receptors, expressed in olfactory sensory 

neurons, are heteromeric ligand-gated cation channels. They are composed of one of many 

variable subunits, ORx, which confer specificity in the recognition of the odor molecules, and 

an obligatory receptor subunit, ORco, which is necessary for channel formation and signal 

transduction (4,5), in as yet undetermined molar ratios. In contrast to the variable ORx 

subunits, ORco is highly conserved amongst different insect orders, spanning many hundreds 

of millions of years of evolution (2,6,7). Moreover, we and others have shown that in the 

absence of a co-expressed ORx subunit, ORco can form in vitro homotetrameric cation 

channels (8,9) whose function may be activated or suppressed by synthetic ORco agonists and 

antagonists (10-15). Additionally, ORco antagonists have broad inhibitory activities on the 

majority of ORs of a variety of insects. Consequently, their binding site(s) on ORco may serve 

as "universal" modulatory site(s) for volatile compounds. Given such considerations, we set 

out to identify new ORco antagonists interrupting insect–host recognition and thus reducing 

and preventing the spread of VBDs. 

 

Discovery of bioactive molecules through in vivo screening of large compound collections is 

an expensive and time-consuming process. The complexity of this process may be greatly 

reduced by the availability of appropriate in vitro or ex vivo functional assays and, even more 

so, by the undertaking of initial virtual screening (VS) steps that use the physico-chemical and 
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structural properties of compounds and/or target proteins to generate predictive models for 

identification of candidate bioactive molecules. Hence, VS methods narrow the search space 

and upon combination with experimentally verified bio-interaction information reduce the 

time and cost required for a screening project. 

 

Several techniques are currently used for VS. Among them, the pharmacophore method and 

machine learning (ML) hold prominent roles. The pharmacophore is an ensemble of steric and 

electronic features that ensure optimal supramolecular interactions with a specific biological 

target structure that may lead to activation or blocking of its biological response (16). The 

simplicity and abstract nature of the pharmacophore concept enables the complexity of 

interactions between ligands and receptors to be reduced to a small set of features (17). Thus, 

pharmacophore-based techniques have become an integral part of computer-aided drug 

design and have been successfully applied for virtual screening, de novo design, and lead 

optimization (18). Pharmacophore models can be derived from experimentally determined 

protein-ligand complexes (receptor-based pharmacophores) or known active compounds 

(ligand-based pharmacophores). On the other hand, ML has established itself as a VS 

methodology in its own right and is constantly growing in popularity. Both conventional 

machine learning methods, such as Support Vector Machines (SVMs) and deep learning 

methods are used (19-21). A support vector machine (SVM) is a supervised learning algorithm 

with a growing number of applications in precision medicine and drug discovery (22,23). In a 

SVM binary classification problem, a high dimension decision surface is constructed (24,25). 

Several different kernels are introduced to map the data to the featured space, making SVMs 

able to handle various nonlinear problems with improved generalization characteristics. 

 

In the present study, we are reporting on the development of a two-step VS protocol that 

achieves the goal of accelerating the discovery of new bioactive molecules that prevent 

mosquitoes from obtaining blood meals from their hosts by virtue of acting as antagonists of 

the ORco channel. In the first step, a pharmacophore model was constructed based on a set 

of small ligands that we have previously determined to function as specific ORco channel 

antagonists, orthosteric or allosteric relative to the ORcoRAM2 agonist binding site (14,26) 

and cause severe inhibition of olfactory function in mosquitoes (26,27). Sequentially, a SVM 

model was applied to refine the results and to better prioritize the compounds for 

experimental validation. The usefulness of the specific VS protocol is assessed by ex vivo 

assays using a previously developed cell-based functional platform (10-15).  

 
 

RESULTS 
 
Development of a ligand-based pharmacophore for accelerated discovery of ORco 
orthosteric antagonists  
Our previous studies on a limited collection of 54 volatile organic compounds (VOCs) of 
natural origin have led to the identification of several ORco ligands, which acted as 
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antagonists of the homomerized ORco subunit (14,26,27). Some of the identified antagonists 
were also shown to possess powerful repellent activities for different mosquito species 
(26,27). Moreover, based on competition assays against a previously characterized ORco 
agonist, OrcoRAM2, which was predicted to bind to each ORco subunit of a homotetrameric 
ORco channel at a hypothesized site (8,9,28,29), the identified antagonists, shown in in Table 
1, were classified as orthosteric or allosteric relative to the OrcoRAM2 binding site.  
 
In order to identify compounds with putative ORco orthosteric antagonist activities in 
available VOC collections of natural or synthetic origin, we sought to develop a ligand-based 
pharmacophore that could describe orthosteric antagonist features necessary for blocking 
ORco's biological response. If successful, the specific pharmacophore could be employed as 
probe for an initial virtual screening of available compound collections prior to carrying out 
relevant functional screens. 
 
i. Development of the pharmacophore model 
Using as a training set the previously characterized collection of 54 VOCs, which included 4 
positive examples (the orthosteric antagonists, shown in Table 1) and 50 negative ones (the 
3 allosteric antagonists shown in Table 1 and 47 inactive compounds shown in Table S1), a 
ligand-based pharmacophore has been developed that described the 3D arrangement of 
orthosteric antagonist features necessary for blocking ORco's biological response. The specific 
pharmacophore model has been required to match all orthosteric input molecules, while 
keeping the number of false positives (allosteric antagonists and inactive compounds) at a 
minimum. Four features (Figure 1) were found to meet these requirements best. These 
included one atom-centered hydrophobic feature “HydA”, two centroid hydrophobic features 
“Hyd” and one projected location of potential H-bond donors “Acc2”. Hydrogen bond Acc2 
projected annotations are added to those heavy atoms that qualify as H-bond acceptors and 
are given Acc annotations (MOE 2016, Pharmacophore Annotation Schemes; see 
Experimental Procedures). The statistical significance of our model was estimated at -4.4626 
(MOE 2016, The Pharmacophore Elucidator; see Experimental Procedures). 
 
ii. Initial testing of the pharmacophore model - hit validation 
The results of the training process of the specific pharmacophore model on the collection of 
54 VOCs of Table S1, are shown in Table 2. For validation purposes, the previously reported 
ex vivo functional activities of all obtained hit compounds of Table 2 were considered [26].  
 
As may be seen in Table 2, screening of the training set with the selected pharmacophore 
resulted in the expected recognition of the four previously identified ORco orthosteric 
antagonists, compounds II, IV, 4 and 39 (ORco ex vivo inhibition of >40%; (26). In addition, 
however, the screening identified four more hits (compounds 33, 40, 42, 43), which either did 
not display any antagonist activities in our ex vivo activity screens (compound 42) or caused 
only minor inhibition of ORco activity, in the order of 15-20% (compounds 33, 40 and 43) (26). 
The remaining 46 compounds, including the three previously identified ORco allosteric 
antagonists shown in Table 1, were not selected by the pharmacophore.  
 
iii. Virtual and functional screening of a new VOC collection  
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The specific pharmacophore model was also employed for an in silico screen of a new, 
previously “unseen” collection of 49 natural VOCs (Table S2). In this collection, the 
pharmacophore model uncovered the presence of the 24 hits shown in Table 3.  
 
To evaluate the performance of the pharmacophore model in the in silico screen, the same 
VOC collection was functionally screened in parallel using the previously described cell-based 
platform for determining the % inhibition in ORco agonist activity ex vivo. The functional 
screen uncovered the presence of 12 active compounds in this collection of natural VOCs, 
which caused a substantial, equal or greater than 40%, degree of inhibition in the activity of 
the homomeric ORco channels. The results of the cell-based activity screen are shown in 
Figure 2. The structure of the 7 ex vivo active pharmacophore hits is shown superimposed 
onto the pharmacophre model in Supplementary Figure S1. 
 
Finally, the bioactive VOCs were also subjected to competition tests against the ORco agonist 
OrcoRAM2 to deduce IC50 values and distinguish orthosteric from allosteric antagonists. The 
competition assays were carried out using as competitors three different concentrations the 
ORco agonist OrcoRAM2 (50, 100 and 150 μM). These assays, representatives of which are 
shown in Figure 3, provided the measure of inhibitory activities, in terms of IC50 values, for 
the confirmed antagonists, vis-à-vis the ex vivo ORco activity normally induced by the 
presence of 100 μM of OA. Secondly, they allowed the distinction between ORco allosteric 
and orthosteric antagonists relative to the ORco agonist binding site.  
  
All ex vivo validated orthosteric and allosteric antagonists, 8 and 4, respectively, present in 
the new, virtually screened VOC collection, 8 and 4, respectively, together with their IC50 
values, are listed in Tables 3 (compounds in bold) and 4, respectively. 
 
Overall performance of the pharmacophore model  
The 24 pharmacophore hits shown in Table 3 included all but one (#74) of the eight 
orthosteric antagonists identified through the cell-based activity screening and competition 
assays presented in Figures 2 and 3 (compounds #54, 60, 77, 83, 88, 98 and 99). None of the 
allosteric antagonists shown in Table 4 were identified as antagonist hits by the 
pharmacophore. Thus, the sensitivity of the pharmacophore model for in silico prediction of 
actual orthosteric antagonists present in the specific collection of natural VOCs (Table S3) has 
been an impressive 0.88. However, the remaining 17 hits shown in Table 3 were found to be 
either not active against ORco in the ex vivo assays or to inhibit Orco activity by substantially 
less than the previously defined useful inhibition cutoff point of 40% (Figure 2). Accordingly, 
the specificity of the pharmacophore screen has been 0.59 (see Experimental Procedures), a 
value that may be unsustainable in terms of experimental effort, especially for virtual 
screening of large libraries. Overall, the performance of the pharmacophore model described 
above was evaluated using the Power metric (PM) value (30), since this value might estimate 
better the performance of a virtual screening when few experiments can be carried out. The 
PM value for the pharmacophore VS was equal to 0.68, leaving room for improvement. For 
this reason, a second filtering step was added to the in silico screening pipeline. 
 
Generation of a SVM model based on 2D descriptors for pharmacophore prediction filtering  
To improve on the reliability of predictions for the identification of orthosteric antagonist hits, 
we trained several SVM models using the 32 pharmacophore hits shown in Tables 2 (8 hits) 
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and 3 (24 hits). The set of 2D descriptors has been calculated in MOE (see Experimental 
Procedures). The descriptor pairs that resulted in the best SVM model included the KierA2 
and SlogP_VSA1 structural features. KierA2 or second alpha modified shape index is a 
topological descriptor that encodes the branching of a molecule. In general, for straight chain 
molecules, KierA2=A-1 (where A is the atom count). SlogP_VSA1, on the other hand, describes 
the sum of the accessible van der Waals surface area for each atom whose logarithm of the 
octanol/water partition coefficient is in the range (-0.4 to -0.2] or, in other words, the extent 
of hydrophobic or hydrophilic effects on the surface area of the molecule. The SVM model 
with the lowest out-of-sample misclassification rate was selected and optimized, yielding a 
cross-validation loss equal to 0.032 (see below). The results of applying the selected SVM 
filters on the 32 pharmacophore hits are detailed in Table 5 and shown diagrammatically in 
Figure 4.  
 
The data points of the training classes together with the decision boundaries that separate 
them in the feature space are visualized in the classification map shown in Figure 4. The radial 
basis function (RBF) kernel handled the non-linearly separable data creating curved decision 
boundaries. 
 
VOCs antagonizing ORco function act as spatial, mosquito anosmia-like inducing agents  
The functionalities of the new ex vivo-validated ORco antagonists, orthosteric and allosteric 
ones, except that for #99 (Table 3) due to unavailability of sufficient quantity, were 
subsequently assessed in vivo against Aedes albopictus as previously described (26,31), at 
different concentrations ranging from a high of 200 to a low of 50 nmole/cm2. At such 
concentrations, all ex vivo validated antagonists were found to cause in vivo inhibition in the 
numbers of mosquitoes that landed on the exposed hand areas to various extents (data not 
shown). Seeking potent repellents, compounds showing significant repellency (RI >50%) at 
the dose of 50 nmole/cm2 were subsequently tested at an even lower dose of 10 nmole/cm2. 

Thus, while compounds #39, #54, #77 and the allosteric antagonist #62 that exhibited mild 
repellent activity (RI 30%-50%; data not shown) were excluded from further testing, 7 new 
antagonists displaying high activities in the preliminary in vivo tests, 4 orthosteric (#60, 83, 88 
and 98) and 3 allosteric ones (#64, 66 and 75) were assessed at the low compound dose of 10 
nmole/cm2 (Figure 5).  
 
As can be seen from the results presented in Figure 5 and Table S4, even at the very low dose 
of 10 nmole of compound per cm2 of naked hand area, mosquitoes exposed to all but one 
(#88) tested ORco orthosteric antagonists, identified through the combined employment of 
in silico and ex vivo screening, were found to display noticeably reduced attraction responses 
to the human smell emissions. Of particular note has been the orthosteric antagonist #60 
[(2E,4E)-Decadienal; RI=0.71± 0.05] and allosteric antagonist #66 (2-Methylquinoline; 
RI=0.93±0.01), which caused aversion to the hand emissions comparable to that of DEET 
(RI=0.84±0.01). 
 
In silico screening by the combined pharmacophore/SVM model for discovery of additional 
ORco orthosteric antagonists  
To examine the combined power of the optimized 2-step in silico screening protocol, we 
virtually screened a new collection of 241 compounds, most of them olfaction-relevant 
volatiles [Supplemental spreadsheet; (32,33)] for the presence of additional orthosteric 
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antagonists of ORco. Initial application of the specific pharmacophore model on this VOC 
collection resulted in the identification of 100 hits (Figure 6), while subsequent application of 
the SVM filter excluded another 56 compounds. Thus, the two-step protocol predicted the 
presence of 44 putative orthosteric antagonists in this compound collection (Figure 6).  
 
Subsequently, a set of 15 compounds comprised of 5 randomly selected in silico hits 
(putative orthosteric antagonists) and 10 randomly selected workflow-rejected compounds 
was selected for ex vivo functional testing. The mapping of the selected 15 compounds, 
relative to the established SVM and SlogP_VSA1 classification map boundaries, is shown 
diagrammatically in Figure 7.  

 
Validation of the combined orhtosteric pharmacophore/SVM model 
The results of the ex vivo functional testing for the 15 selected representatives, whose SVM 
mapping coordinates have been presented in Figure 7, are shown in Figure 8.  
 
As is shown in Figure 8, 3 out of the 5 retained hits showed >40% inhibitory activities, whereas 
the remaining 2, nonanal and citral, displayed reduced activities bordering the arbitrary cutoff 
inhibition limit. On the other hand, 9 out of 10 workflow-excluded compounds exhibited no 
or low (≤40%) inhibitory activity. Of the 10 excluded compounds that were selected for 
validation, only hexanoic acid was found to have a marginal inhibitory activity in the ex vivo 
assay.  
 
A summary of the overall structural properties and ex vivo functionality of the validated 
compounds selected from the combined pharmacophore/SVM in silico screening is shown in 
Table 6.  
 

DISCUSSION 
 
Demand for novel agents to control harmful insects 
Many insect species, including mosquitoes, have the potential to transmit a wide variety of 
pathogens to humans and animals, leading to VBDs with substantial socioeconomic impacts. 
Vector control, mainly through the use of insecticides, has been the principal method of 
preventing vector-borne infectious diseases for over 100 years and remains highly effective 
when comprehensively applied and sustained. However, given the current climatic changes 
worldwide, which have brought substantial temperature increases in geographic regions with 
temperate climates, and the concurrent increases in movements of people due to easier 
travel conditions, such diseases are spreading at an alarming rate in countries where they 
were previously absent. Therefore, there is a growing demand for novel, long lasting and 
environmentally friendly means of control that include repellents and anosmia-inducing 
agents. Yet, the classical research methods for discovery of new protective agents against 
insect bites, particularly in a spatial context that does not involve direct application on human 
or animal skin surfaces, is a time consuming and expensive task that prevents the expedient 
development of novel control measures. 
 
The insect ORco receptor as target for discovery of host-seeking disruptors 
Progress in the rate of discovery of protective agents for humans and domestic animals 
against various insect disease vectors, particularly mosquitoes, has been achieved relatively 
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recently through the employment of ex vivo expression systems developed from cultured 
amphibian oocytes (35-37), and mammalian (36,38-42) or insect cell cultures (15,43-45) upon 
coupling to relevant bioactivity reporter assays. Further enhancement in the rate of discovery 
of relevant bioactive compounds has been achieved recently through the exploitation of the 
seminal discovery that upon ex vivo expression, the evolutionarily conserved, obligatory odor 
receptor co-receptor ORco forms homomeric cation channels (11,13,46) whose function may 
be activated by specific agonists such as VUAA1, OrcoRAM2 and derivatives (11,13,47) and 
inhibited by structurally-related antagonists (10,12,13,48). Equally important has been the 
demonstrated inhibition of general odorant receptor function in vivo as a consequence of 
specific mutations in the ORco subunit (39,49-55). These findings led to the notion that 
inhibition of the olfactory functions producing anosmia-like phenotypes on targeted insect 
species may also be achieved by the binding of volatile ORco antagonists, preferably of natural 
origin, to the ORco subunit in nearly all ORx/ORco heteromeric receptor complexes in live 
insects. This notion has been amply proven by the demonstration that the great majority of 
natural volatiles causing inhibition of ORco function ex vivo, are capable of inhibiting the 
olfactory functions in laboratory and field mosquito populations in a spatial context (26,27).  
 
Accelerating the discovery of new ORco antagonists 
The employment of some of the ex vivo expression-activity detection systems mentioned 
above in throughput formats has allowed a significant acceleration in the rate of discovery of 
relevant bioactive compounds by activity screening of small size compound collections. For 
the specific insect cell-based expression-activity testing system employed in the current study 
(26,33,43), we note that it may be used for the detection of compounds with both agonist 
and antagonist activities against ORco. Indeed, the presence of a few agonists amongst the 
compounds examined for activities against ORco has been detected (33) but to date, all 
detected agonists had activities lower than those of the available synthetic ones (VUAA1 or 
OrcoRAM2). Moreover, because of our current focus on the study ORco antagonists, the 
identified agonist hits have yet to be studied in detail. Given the small size and nature of the 
libraries screened in this study, i.e., ~300 natural volatiles of relatively low molecular weights, 
averaging ~150 Da, it is not surprising that no potent ORco agonists were identified. In 
contrast, VUAA1, the non-volatile synthetic compound and only ORco agonist discovered by 
ex vivo screening, was identified amongst the members of a library of 118,000 small 
molecules (Vanderbilt Small Molecule Library), typically used in drug development (11,56). In 
contrast, the structure-related compounds in the OrcoRAM agonist (and antagonist) series 
(10,46) have been generated by rational chemical synthesis. Therefore, the likelihood of 
identifying a complex aromatic compound resembling the structural features and binding 
mode of VUAA1 from the libraries used in this study, was inherently low. Nevertheless, due 
to its versatility, our ex vivo assay is suitable for screening more diverse libraries, as opposed 
to only focused ones. In the future, such an approach may reveal a number of novel agonists 
including potent ones.  
 
Despite the flexibility of the currently available protein expression-activity detection systems, 
when the requirements for screens of large compound collections are considered in terms of 
time and material costs, such systems are still not adequate by themselves for fast discovery 
of adequate numbers of new, highly active compounds. 
 
A combined orthosteric pharmacophore/SVM model for optimized predictions  

Jo
urn

al 
Pre-

pro
of



 9 

To expedite further the search for new bioactive molecules in large compound collections, 
computational screening methods could be applied as virtual pre-screening tools that might 
reduce the number of molecules to be functionally screened ex vivo to a reasonable level. 
Toward this goal, we have employed in this study a two-step, ligand-based in silico pipeline 
consisting of a first pharmacophore screening (Step-1) and a subsequent SVM filtering step 
(Step-2). This pipeline showed highly satisfactory performance in predicting active orthosteric 
antagonists for ORco, as confirmed by follow-up functional validation.  
 
Pharmacophores are frequently used in virtual screening projects, due to their simplicity and 
their ability to speed up the in silico process (18,57,58). Moreover, since they do not depend 
on specific functional or structural groups, they can identify chemically divergent molecules. 
Creating successful pharmacophores depends on the generation of sufficient ligand 
conformers, so that the bioactive conformation is approximated (57), and on using an 
adequate number of inactive molecules, to balance the sensitivity and specificity of the 
models. Pharmacophores are commonly combined with other computational techniques 
such as Support Vector Machines (SVMs), to improve the accuracy of the results (59). Support 
Vector Machines are well established in bioinformatics and chemoinformatics, since they can 
handle high-dimensional data and small datasets, and they can model non-linear decision 
boundaries. They are also adaptable and versatile. Feature selection and hyper-parameters 
optimization are critical for SVM high performance (60,61). However, SVMs can also be 
computationally expensive for large datasets (62,63). For this reason, we have employed the 
SVM filtering after the pharmacophore screening step in our workflow.  
 
Our virtual screening pipeline achieved 0.75 and 0.82 sensitivity and specificity, respectively, 
resulting in an overall performance of 0.8 for predicting orthosteric antagonists that caused 
more than 40% inhibition to ORco (Figure 6). Such a performance is notable because 
elimination of more than 80% of the number of compounds to be tested translates in 
commensurate time-, material- and labor-cost savings for ex vivo and in vivo tests. Thus, our 
pipeline can both save resources and accelerate the discovery of novel agents. Moreover, 
although similar virtual screening protocols for discovery of novel drugs with defined 
specificities have been reported recently (see below for discussion), to the best of our 
knowledge, our study is the first one that combines a pharmacophore with a SVM model for 
identification of AgamORco antagonists and specifically orthosteric ones that are 
advantageous for future site-specific, ORco structure-based screening as compared to blind-
docking trials.  
 
Our pharmacophore model (Step-1) resembles the model previously proposed by 
Bhattacharjee and colleagues (64). That model consisted of a hydrogen-bond acceptor site, 
two aliphatic and one aromatic hydrophobic site. It was successfully used for virtual screening 
of an in-house compound database that resulted in four new potential insect repellent 
candidates. Other studies on insect olfactory ligands (65), employed a Laplacian-corrected 
Naïve Bayesian machine learning, ligand-based, approach to predict novel volatile Anopheles 
gambiae ORco antagonists. Selected hit compounds were further evaluated for their ability 
to inhibit electrophysiological responses in adult Drosophila melanogaster flies and in 
behavioral attraction assays against D. melanogaster larvae. In contrast to our study, the 
model was not trained to discriminate between orthosteric and allosteric antagonists. 
Electroantennography (EAG) recordings of two selected hits, 2-tert-Butyl-6-methylphenol 
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(BMP) and Linalyl formate (LF) suggested an allosteric and non-competitive ORco-dependent 
mechanism, which was further confirmed by concentration-inhibition analysis of BMP in 
Xenopus laevis oocytes expressing AgamORco. Machine learning techniques such as 
RandomForest and kNN classifier have also been successfully employed to predict new 
receptor agonists other than ORco, i.e., SlitOR24 and SlitOR25 from Spodoptera littoralis (66). 
A Supported Vector Machine (SVM) model, (such as Step-2 in our pipeline) has been used for 
identification of agonists for SlitOR25 (67).  
 
Structural features-activity relationships 
While our approach is characterized by high performance, as with any other prediction 
method, it could not be 100 percent accurate. For example, hexanoic acid that has been 
rejected by our workflow at the pharmacophore selection step, showed antagonist activity 
(Figure 7) and has thus been considered as a false negative compound. A meta-analysis of the 
structure-activity relationship of the hits listed in Table 6, has revealed that hexanoic has the 
smaller length (6 carbon atoms) among the linear hits. In its most extended conformation, 
the distance between the two centroid hydrophobic features Hyd (carbon atoms) is 6.4 Å, 
which does not conform with the pharmacophore model shown in Figure 1, where the 
optimum Hyd1-Hyd2 distance has been determined to be 7.2 Å. Given that the initial set of 
orthosteric antagonists (Table1) as well as the set used for pharmacophore training (Tables 2 
and S2) are dominated by longer chain linear compounds (8 to 10 carbon atoms), that can 
obtain conformations satisfying pharmacophore distances as well as bulky cyclic and aromatic 
compounds, it is possible that the pharmacophore model is negatively biased toward 
molecules of smaller length. Such inconsistencies of the model could be eliminated by 
incorporating more experimental data on short-length agonists. Furthermore, ex vivo 
concentration-inhibition analysis remains to be performed to exclude that hexanoic acid 
cannot act as an allosteric antagonist, i.e., that it is a true negative result (as per terminology 
of our platform for the allosteric ex vivo active compounds). On the other hand, two 
compounds, nonanal and citral that have been retained by our workflow (Figure 7), showed 
borderline activities in the ex vivo experiments (Figure 8) and were classified as false positives. 
These two aldehydes can participate in only one hydrogen bond through their carbonyl group 
(hydrogen bond acceptor), in contrast with the other three active compounds in the series, 
which can participate in two hydrogen bonding interactions. In particular, nerolidol and 
geraniol bear a hydroxyl group that can act as a hydrogen bond acceptor/donor whereas 
linalyl acetate bears an acetate ester with two oxygen atoms in proximity that can act as 
hydrogen bond acceptors (Table 6).  
 
Concerning the pipeline-rejected hits linalool and α-terpineol, both tertiary alcohols of 
molecular weights 154.25, with very similar cLogP values of 2.468 and 2.369, respectively, 
and identical polar surface area (PSA) 20.23 (SlogP_VSA1=0), despite the high variability of 
the ex vivo obtained response values, they are considered no- or low-activity inhibitors 
(Figure 8). Moreover, the rejected carvone and fenchone, can participate in only one 
hydrogen bond, while limonene lacks a functional group for participation in hydrogen bonds 
(Table 6). All three compounds are relatively compact cyclic molecules. The observed 
activities could therefore, upon further investigation, be a result of allosteric binding. Finally, 
the rejected geranyl acetone, similar to the retained nonanal and citral, can only participate 
in one hydrogen bond, while myrcene contains no polar functionalities. Geranyl acetate and 
Octanoic acid have similar KierA2 and SlogP_VSA1 parameters located well outside the 
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decision boundaries for active orthosteric antagonists (Figure 7). Hexanoic acid, which does 
not conform to the pharmacophore model (vide supra) but lies inside the decision 
boundaries, has identical SlogP_VSA1 to geranyl acetate and octanoic acid but different 
KierA2, due to the different spatial density of atoms in this shorter molecule. Similarly, despite 
their similar KierA2, the inactive geranyl acetate, with SlogP_VSA1=7.74, has both larger SPA 
(26.3) and more hydrophobic character (cLogP 3.264) than the active geraniol with 
SlogP_VSA1=0 (SPA=20.23 and cLogP=2.524). 
 
We are noting that compound #88 [ethyl (E/Z)-2-(cyclohex-2-en-1-ylidene) acetate], the 
single orthosteric antagonist that caused minimal behavioral effects at the dose of 10 
nmole/cm2, was found to have the highest IC50 (195.7 μΜ) amongst its active counterparts in 
the ex vivo tests (Tables 3 and 5). Therefore, its low in vivo activity may be due to its low 
inhibitory potency against ORco or/and its relatively high calculated volatility (VP= 0.207 
mmHg), that might affect its performance under the 5-min experimental timescale of the 
behavioral assays. Concerning its weak ex vivo binding to ORco and its low in vivo activity, it 
should be kept in mind that this compound has been tested as a mixture of E/Z isomers. It is 
very likely that ORco selectively binds one of the two isomers, as has been shown be the case 
for compounds binding to other olfactory receptors (68,69). In support of this notion, Figure 
S2 showcases the explicit orientations of either the sp2 or the sp3 hybridization carbons 
towards the spheroid F4 (Figure 1). Among the two isomers, the Z is better fitting the specific 
pharmacophore model because the saturated carbons bearing two hydrogens orient to the 
larger spheroid F2, whilst the unsaturated (sp2) carbon with its one hydrogen is oriented to 
spheroid F4 providing better occupancy. Moreover, the cyclohexene ring carbons holding a 
sp3 hybridization are also bended, thus contributing to the model complementarity in this 
isomer. Hence, it is possible that the E isomer is a weak or a non-ORco binder, resulting in the 
apparent weak inhibitory and behavioral activity of the mixture. While the test of the 
individual isomers is beyond the scope of this study, the ORco specialization against multiple 
geometric, diastereomeric or enantiomeric isomers of an olfactory ligand is worth 
investigating in future studies. Such information can reveal the role of ORco on the 
remarkable selectivity of insect olfaction and be further exploited in ORco-based in silico and 
ex vivo screening approaches.  
 
We also note that compound #74 (Bisabolene; also a mix of isomers) that was found to be 
active in the ex vivo screens (Figure 2), escaped detection by the pharmacophore (Table 3). 
Nevertheless, subsequent analyses showed it to have values placing it within the SVM 
boundaries (KierA2 = 5.4685, SlogP_VSA1 = 0) and also be marginally active in the in vivo 
assays at a dose of 50 nmole/cm2 (data not shown). Accordingly, based on the results of the 
initial pharmacophore screen, we consider it to be a false negative result of our screening 
pipeline. Moreover, compounds #39 (2,4-Octadienal), #54 [(Z)-3-Nonen-1-ol], #74 
(Bisabolene) and #77 (α-Bisabolol) and the allosteric antagonist #62 (α-Pinene oxide), which 
exhibited mild repellent activities (RI 30%-50%) at the same dose (data not shown), were not 
tested at the lower dose of 10nmole/cm2. Future studies should aim to include a more 
comprehensive evaluation of all ex vivo-tested compounds to determine their minimum 
effective doses and thus provide a more complete understanding of their structure-activity 
relationships.  
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Combined pharmacophore-SVM approaches for drug discovery - advantages, limitations 
and future prospects  
Our computational pipeline was successful in predicting the presence of at least two strong 
AgamORco orthosteric antagonists in the collection of 241 odorant compounds, Nerolidol and 
Geraniol and also confirming the presence of a third one, Linalyl acetate, that had been 
identified previously as such (26). These findings assert its validity as a screening tool for 
accelerating discovery of AgamORco orthosteric antagonists.  
 
An advantage of the two-step ligand-based approach presented here is that it can select a 
diverse pool of predicted binders in a short time without the need of previous target-specific 
knowledge. Combining the pharmacophore with the SVM filter could facilitate the 
exploration of big data, improve the screening performance of virtual screening and help to 
study the mechanism of ligands biological activity. Pharmacophore models and SMVs have 
been previously combined in virtual screening pipelines to address other drug discovery 
problems. For example, Chen et al (70), used a Pharmacophore Ensemble/SVM approach that 
predicted the activation of human pregnane X receptor (hPXR) by 160 molecules of known 
activities (EC50 values). That study showed that the combined Pharmacophore/SVM model 
executed extremely well for the 32 molecules in the training set, 120 compounds in the test 
set and 8 additional ones in the outlier set, which were structurally distinct from those in the 
training set. Importantly, the combined model performed better than any of the individual 
pharmacophore models in the ensemble and was thus established as a powerful predictive 
tool to facilitate drug discovery. In a newer study, Cieślak et al (71) screened the ZINC 
database in search of monoamine oxidase (MAO) inhibitors that might function as potential 
antidepressants and agents for slowing down the progression of Parkinson’s or Alzheimer’s 
diseases. During the training step, ligands with known MAO enzyme inhibitory activity values 
were docked against the MAO-A and MAO-B subtype crystal structures and the best results 
were used to generate the pharmacophore hypotheses. Additionally, several ML models were 
trained in order to predict the docking scores. The five ML models with the best performance, 
including SVMs, were selected. Following training, ZINC database compounds fitting the 
pharmacophore hypothesis were ranked according to the consensus scoring of the ML 
models. Twenty-four of the top diverse ligands were then experimentally tested and low 
molecular weight week inhibitors were found. Thus, compared to docking-only VS, the 
combined protocol accelerated the discovery of potential MAO inhibitors. 
 
The number of active and inactive compounds with known activity values is critical for the 
success of the VS process, as they influence the performance of both the pharmacophore 
hypotheses and the SVM algorithms. Moreover, activity values should preferentially originate 
from the same experimental procedure. The diversity of ligand structures is equally important 
for training unbiased models and employing scaffold hopping. Future, optimization of our 
computational pipeline by incorporation of more experimental data could significantly 
improve its performance. Moreover, as inferred above, should more experimental data on 
agonists become available, the same pipeline can be adapted to the discovery of such classes 
of compounds.  
 
To conclude, any ligand-based approach is bound to exhibit some limitations. The shape and 
electrostatic potential of the ORco binding site and the conformation, hydrophobicity, 
polarity, and hydrogen bonding potential of the interacting amino acid residues are the 
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determining factors for discrimination of even subtle differences in physicochemical 
properties and active conformations between inactive compounds and physiologically 
relevant ligands. Given the recent availability of 3D-structures of ORco of the parasitic fig 
wasp Apocrypta bakeri, pea aphid Acyrthosiphon pisum, and the structural homologue 
MhOR5 from the jumping bristletail Machilis hrabei (8,9,72,73), reliable AgamORco homology 
models of apo- and liganded form can be created (28) and combined with our in silico ligand-
based pipeline and ex vivo evaluation platform. To this end, our pipeline can constitute the 
first step for screening large chemical libraries and proposing candidates for subsequent site-
specific molecular docking and MD simulations against AgamORco homology models. Such an 
approach is currently underway for seeking both novel active compounds and gaining 
structural insights on ligand recognition mechanism by AgamORco.  
 
 

 
EXPERIMENTAL PROCEDURES 

 
Pharmacophore model development. Based on the previously published orthosteric 
antagonists and inactive or allosteric compounds, several pharmacophore models were 
developed using Molecular Operating Environment software (MOE v. 2016.0801; Chemical 
Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 
2R7, 2016). The Unified annotation scheme was employed including H-bond Donors and 
Acceptors, as well as Hydrophobic Atoms and Hydrophobic Centroids. The radius of all 
features was set to 1Å, except for the radius of Hydrophobic Atoms, which was set to 0.7 Å. 
Query Spacing and Active Coverage were set to 0.9 and 1 correspondingly. Therefore, the 
generated pharmacophore models were required to match all orthosteric input molecules, 
while keeping the number of false positives to a minimum. The selected pharmacophore 
model was used to screen a collection of small molecules of natural origin to identify 
orthosteric ORco antagonists. 
 
Sensitivity, Specificity and Power Metric (PM) (30) were used for the evaluation of virtual 
screening performance. They are defined as,  
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

𝑃𝑀 =
𝑇𝑃𝑅

𝑇𝑃𝑅 + 𝐹𝑃𝑅
 

 
 
where TPR= TP/(TP+FN) and FPR = FP/(FP+TN) are the true positive rate and the false positive 
rate correspondingly, TP the number of true positives, FN the number of false negatives, FP 
the number of false positives and TN the number of true negatives. PM ranges from 0 to +1. 
Values around 0.5 indicate poor to random models, whereas values between 0.9 and 1.0 are 
calculated for high quality models. PM is statistically robust with respect to the ratio of actives 

Jo
urn

al 
Pre-

pro
of



 14 

to the total number of compounds and can be safely applied in early-recognition virtual 
screening problems. 
 
To improve the performance of the pharmacophore model and to further understand the key 
features of orthosteric antagonists, we implemented the following procedure. Using MOE, 
we calculated all the 2D QuaSAR-Descriptors of the molecules identified by the selected 
pharmacophore model. For each combination of two calculated descriptors, we generated in 
MATLAB a support vector machine (SVM) with a Gaussian or radial basis function kernel, to 
classify the orthosteric antagonists from the rest of the molecules. The SVM with the lowest 
out-of-sample misclassification rate was subsequently optimized and the ten-fold cross-
validation loss was reported. 
 
Chemicals. Compounds analyzed in this study, VOCs and known repellents are presented in 
Tables S1 and S2. Carvacrol (CRV, I), linalyl acetate (LA, 4), (2E,4E)-2,4-octadienal (OCT, 39) 
and ethyl cinnamate (EC, IV) were purchased from Sigma Aldrich; isopropyl cinnamate (IPC, 
II) from Alfa Aesar; cumin alcohol (CA, III) from Acros Organics; N-(4-ethylphenyl)-2-[[4-ethyl-
5-(3-pyridinyl)-4H-1,2,4-triazol-3-yl]thio}acetamide (ORco Receptor Agonist ORcoRAM2; OA) 
from Asinex Corporation and Vitas M Chemical Ltd; N,N-diethyl-3-methylbenzamide (DEET; 
V) from Sigma-Aldrich; and coelenterazine from Biosynth. All other VOCs were provided by 
the Institute of Organic Chemistry, Technische Universität Braunschweig, Germany. For the 
insect cell-based screening assay, initial stock solutions were prepared as needed and stored 
at −20 oC. The ORco agonist ORcoRAM2, stocks were prepared in dimethyl sulfoxide (DMSO) 
whereas the VOCs and coelenterazine stocks were prepared in ethanol. The assay was 
performed in modified Ringer’s buffer (25 mM NaCl, 190 mM KCl, 3 mM CaCl2, 3 mM MgCl2, 
20 mM Hepes, 22.5 mM glucose, pH 6.5; 35), so that the final concentration of DMSO used 
not to exceed the range of 0.2% to 0.35%.  

 
Transformation of Bm5 cells for AgamORco and Photina expression and Ca2+ influx assays. 
An insect cell-based assay was employed as a screening platform for the identification and 
analysis of novel ORco ligands capable of modifying olfaction-mediated mosquito behaviors. 
Lepidopteran cultured cells (Bombyx mori Bm5; (74), constitutively expressing the AgamORco 
ligand-gated ion channel were employed, along with a reporter photoprotein Photina (75). 
Briefly, Bm5 cells were transformed to stably express cDNAs for AgamORco and Photina from 
high-expression-level pEIA plasmid vectors as previously described (44,76-78). Upon ligand 
binding activation of the ORco channel, Ca2+ ions entering the cells in turn activate the 
photoprotein, resulting in an increase in luminescence. Cell lines were grown in IPL-41 insect 
cell culture medium (Genaxxon Bioscience GmbH) supplemented with 10% fetal bovine 
serum (Biosera) in the presence of 10 μg/ml puromycin and maintained at 28 oC. The ligand 
binding to the ORco channel and subsequent functional effects were monitored via 
luminescence emission of the Ca2+ influx Photina biosensor, as previously reported (14,34). 
Specifically, insect cells resuspended in modified Ringer’s buffer were seeded in white 96-well 
plates (200,000–300,000 cells/well), and incubated at room temperature in the dark with 5 
μM coelenterazine. Luminescence emissions were then recorded in an Infinite M200 
microplate reader (Tecan) at 4s intervals for up to 20s, using buffer and 1% Triton-X100 as 
baseline and maximum intensities, respectively. Tested compounds were initially added at a 
100 μΜ final concentration and the ORco channel response was monitored for 10s at 4s 
intervals. Cells were allowed to return to baseline, allowing for the monitoring of the 
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secondary effect of ligand binding (4s intervals for 80s), resulting from the addition of 100 μM 
OA activating the ion channel. Luminescence data were acquired using i-Control 1.3 software 
by Tecan and normalized by considering ORco agonist luminescent response as the maximal 
(100%) receptor response for each experimental set. Independent experiments were run in 
triplicate and repeated at least three times.  
 
Binding assays. ORco response inhibitions of identified antagonists were further analyzed to 
determine orthosteric or allosteric binding, relative to the OA (ORcoRAM2) binding site. 
Solvent or identified antagonists were added to insect cells, constitutively expressing 
AgamORco and Photina, at concentrations ranging from 1 μM to 1 mM. A 96-well format 
assay was also employed as described above, and the induced luminescence, if any, was 
measured. Subsequent addition of OA at different concentrations, 50, 100 or 150 μM were 
carried out as antagonist dose-dependent inhibition assays, illuminating the type of ligand 
binding on ORco. OriginPro 8 software, by OriginLab Corporation, was used for curve fitting 
and IC50 value calculations. Dose–response curves were plotted by fitting the normalized data 
into the equation, where A1 and A2 are the bottom and top asymptotes, respectively, p is the 
Hillslope, y is the percent response at a given concentration, and x is logarithm of ligand 
concentration. Independent experiments were run in triplicate and repeated at least three 
times. 
 
Laboratory rearing of Aedes albopictus. Adult Ae. albopictus mosquitoes were obtained from 
the laboratory colony of the Benaki Phytopathological Institute (Kifissia, Greece). The colony 
is maintained under specific laboratory conditions (25 ± 2 °C, 80% relative humidity, and a 
16/8-hour light/dark photoperiod). Larvae were reared in cylindrical enamel pans filled with 
tap water, with approximately 400 larvae per pan. They were fed ad libitum with powdered 
fish food (JBL Novo Tom 10% Artemia) until they emerged as adults (26).  
 
Repellence Bioassays. For the in vivo determination of the repellent activity of tested 
compounds, the assessment was based on human hand landing counts using cages (33×33×33 
cm) equipped with a 32×32 mesh on one side. Each cage contained 100 adult mosquitoes (5 
to 10 days old, sex ratio 1:1) starved for 12 hours at 25 ± 2 °C and 70–80% relative humidity 
(31). Tested compounds were applied on chromatography paper (Whatman), covering a total 
area of 24 cm², at dose equivalent to 50 nmole/cm², diluted with dichloromethane (DCM). 
Data concerning the repellency indices were analyzed using the Kruskal–Wallis test (79). 
When significant differences were detected, Mann–Whitney U tests were carried out for pair-
wise comparison with a Bonferroni correction for adjustment of p-values (80). Mosquito 
landings for each treatment were counted over 5-minute periods. Each treatment was 
repeated eight times and four human volunteers were used. Landing numbers were 
converted to repellency indices (RI ± SE) using the following equation: RI = [1 - T/C] x 100, 
where C is the number of landings in the control and T is the number of landings in the 
treatment (26). 
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FIGURE LEGENDS 
 
Figure 1. The pharmacophore model. Left: The ligand-based pharmacophore and the 4 
orthosteric antagonists of Table 1 (Isopropyl cinnamate, Ethyl cinnamate, Linalyl acetate, 2,4-
octadienal) used to generate it. The features include one atom-centered hydrophobic feature 
HydA (green), two centroid hydrophobic features Hyd (green) and one projected location of 
potential H-bond donors Acc2 (blue). Right: Spacing distances between the specific 
pharmacophore features.  
 
Figure 2. Ex vivo screening results. All compounds were tested at a final concentration of 
100μM. The primary compound additions (white bars) did not induce significant ORco 
channel function, while secondary additions of the OA (ORcoRAM2) to wells containing 
primary additions of functionally inactive compounds produced responses (grey bars) equal 
to at least 80% of the full response obtained in the control wells (OA only added, set as 100%; 
red bar at right of each panel). ORco antagonist hits (green bars) produced significantly lower 
secondary responses, set arbitrarily at ⩽60% of the normal channel response, upon OA 
addition. Arabic numbers correspond to those of the compounds listed in Table S2, while 
roman numbers are those of the previously characterized ORco antagonists (blue bars) shown 
in Table 1. Error bars indicate mean±SE. Mean values report independent experiments run in 
triplicate, technical repetition, and replicated at least three times, biological repetition.   
 
 
Figure 3. Competition plots for 8 active compounds [orthosteric (upper panels) and allosteric 
antagonists (lower panels)] showing the % response as a function of ligands concentration in 
the presence of 50, 100 and 150μΜ of ORcoRAM2. Error bars indicate mean±SE. Mean values 
report independent experiments run in triplicate, technical repetition, and replicated at least 
three times, biological repetition. (For additional data on pIC50 and R2, please see Table S3) 
 
Figure 4. The selected SVM model. The SVM model was trained on all pharmacophore hits 
(Tables 2 and 3) using the 2D descriptors KierA2 and SlogP_VSA1 (MOE software). Ex vivo 
active orthosteric antagonists are represented by green diamonds whereas non-active 
compounds are indicated by red circles. Compounds with coordinates (KierA2, SlogP_VSA1) 
that lie within the areas delineated by the decision boundaries (solid lines) are predicted to 
be orthosteric antagonists of ORco.  
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Figure 5. Box plots depicting repellency indices (RIs) against Aedes albopictus mosquitoes 
in “hand in a cage” repellence assays. (Α) Selected orthosteric and (Β) allosteric antagonists 
(green) and the widely used insect repellent DEET (red) were examined using 10nmole of each 
tested compound per cm2 of exposed hand area (240nmole/24cm2 total exposed area). Each 
treatment was replicated eight times, utilizing four human volunteers. The previously 
characterized antagonists isopropyl cinnamate (IPC; blue) and carvacrol (CRV; blue) (26) 
served as controls for the tested orthosteric and allosteric antagonists, respectively. The box 
plots represent the mean values with upper and lower quartiles, and the range of outliers 
within 1.5IQR are indicated by error bars. Compound identities are listed in Table S1 and S2. 
Different letters (a, b, etc.) indicate statistically significant differences between tested 
compounds (p<0.05), Mann–Whitney U test with Bonferroni correction (adjusted p values 
a=0.005 and a=0.003 for the orthosteric and allosteric group, respectively). 

Figure 6. in silico screening of a new VOC library (33) for orthosteric Orco antagonists. Starting 
from 241 VOCs, the pharmacophore identified 100 hits, 44 of which were retained by the 
SVM filter. Sensitivity, Specificity and Virtual Screening PM performance were calculated as 
described under Experimental Procedures. 
 
Figure 7. The SVM classification maps. The locations of the five workflow-retained hits (green 
diamonds) and the ten workflow-rejected compounds (red circles) (see also Table 6) are 
shown in the diagram in the context of their inclusion within or exclusion from the defined 
SVM boundaries. Hexanoic acid, which was rejected by the pharmacophore model but was 
found to be marginally active as an antagonist in the ex vivo assays, is indicated by an orange 
circle inside the upper SVM boundary of bioactive hits. The ex vivo activities of the fifteen 
compounds are shown in Figure 8. 
 
Figure 8.  Validation of virtual screening results. Ex vivo functional assays were carried 
out for 15 randomly selected compounds that included 5 workflow-retained (green) 
and 10 workflow-rejected (orange) compounds. The Orco/Photina activity platform 
(14,26,34) was employed using isopropyl cinnamate (IPC; blue) as antagonist activity standard 
(52% response or 48% inhibition of the normal activity in the presence of 100μM OA). The 
primary compound additions, each at a 100μM concentration, did not induce significant ORco 
channel function (<15% for all of them; data not shown). The cutoff response point for 
antagonistic activity against 100μM OA was arbitrarily set at <60% (>40% inhibition of the 
100% activity obtained by addition of 100μM Orco plus solvent shown in red). Box plots depict 
mean values, with upper and lower quartiles, and the range of outliers within 1.5IQR are 
indicated by error bars. The response values for the tested compounds are listed in Table 6.  
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Table 1. Previously identified ORco orthosteric and allosteric antagonists. Structural features of previously 
identified AgamORco orthosteric and allosteric antagonists. Compound numbers are the same as those 
presented in (26). 

 

No Compound Structure Chemical class 
Antagonist 

type 

I Carvacrol (CRV) 

 

Monoterpene 
alcohol 

allosteric 

II 
Isopropyl cinnamate 

(IPC)  

 

cinnamate ester orthosteric 

III Cumin alcohol (CA)  
 

Monoterpene 
alcohol 

allosteric 

IV Ethyl cinnamate (EC) 

 

cinnamate ester orthosteric 

4 Linalyl acetate (LA) 

 

monoterpene 
ester 

orthosteric  

39 2,4-octadienal (OCT) 
 

fatty aldehyde orthosteric 

45 (1S)-3-Carene (CAR) 

 

monoterpene allosteric  
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Table 2. ORco orthosteric antagonist hits and ex vivo validation. The training set for the selected 
pharmacophore model consisted of the four confirmed orthosteric antagonists shown in Table 1 and fifty 
negative examples (3 allosteric and 47 inactive) shown in Table 1 and Table S1. Compound numbering is as per 
(26) and Table S1; functionally validated (bioactive) hits are shown in bold, while inactive ones are shown in 

italics; : >40% inhibition; NA: not active (<40% inhibition). 
 

No Compound  Structure Chemical class 
Ex vivo 

validation  

 
II 

Isopropyl cinnamate  

 

cinnamate ester 
  
 

IV Ethyl cinnamate  

 

cinnamate ester 
  
 

4 Linalyl acetate 

 

monoterpene 
ester 

  
 

39 2,4-octadienal  
 

fatty aldehyde 
  
 

33 2-Heptanone 
 

ketone 
NA 

 

40 
6-Methyl-5- hepten-2-

one  
ketone 

NA 
 

42 4-Octanone 
 

ketone NA 

43 2-Octanone 
 

ketone 
NA 
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Table 3. Virtual screening of a new compound collection with the specific pharmacophore model. Validated 
antagonist hits have been defined as VOCs causing at least 40% inhibition of ORco activity in the ex vivo assays 

shown in Figure 2. X: not detected by the in silico screen; : pharmacophore antagonist hits; NA: Not active or 
less than 40% maximum inhibition in the competition assay. IC50: Concentration of 50% inhibition in the presence 
of 100μM ORco agonist. Bold font indicates ex vivo active pharmacophore hits whereas italics indicates the ex 

vivo active compound that escaped detection by the pharmacophore.  
 

No Compound Structure 
Pharmacophore 

hits 
Chemical 

class 

Ex vivo 
validation 

(IC50) 

53 2-Nonanone 
 

 ketone NA 

54 (Z)-3-Nonen-1-ol 

 

 
aliphatic 
alcohol 

  
(48.9μM) 

57 Pulegone 

 

 
monoterpene 

ketone 
NA 

59 
Limonene oxide 
(cis/trans mix) 

 
 

monoterpene  
epoxide 

NA 

60 
(2E,4E)-
Decadienal   

 
fatty 

aldehyde 
  

(66.7μM) 

65 
p-Menth-1-en-9-
ol 

 
 

monoterpene 
alcohol 

NA 

68 cis-Jasmone 

 

 terpenoid NA 

71 γ-Undecalactone 
 

 lactone NA 

72 2-Tridecanone 

 

 ketone  NA 

74 
Bisabolene 
(mix of isomers) 

 

X sesquiterpene  
 

(47.7μM) 

77 α-Bisabolol 

 

 
sesquiterpene 

alcohol 
  

(47μM)  

78 1-Hexadecanol 
 

 fatty alcohol NA 
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No Compound Structure 
Pharmacophore 

hits 
Chemical 

class 

Ex vivo 
validation 

(IC50) 

79 Phytol 
 

 terpenoid NA 

81 
(Z)-Octadec-11-
ene nitrile 

 

 fatty nitrile NA 

83 
13-Methyl 
tetradec-3-ene 
nitrile  

 fatty nitrile 
 

(25μM) 

84 
(9Z,12Z,15S)-
Octadeca-9,12-
dien-15-olide 

 

 

Macrocyclic 
unsaturated 

lactone 
NA 

85 

N-(3-Methyl 
butyryl)-O-(2-
methyl 
propionyl)-L-
serine methyl 
ester  

 diester amide NA 

88 

ethyl (E/Z)-2-
(cyclohex-2-en-1-
ylidene) acetate 
(mix of isomers)  

 ester 
 

(195.7μM) 

89 
7-Tetradecynoic 
acid 

 

 
unsaturated 

fatty acid 
NA 

93 
N-Phenylethyl-2-
methyl propionic 
acid amide 

 

 peptide NA 

94 
(R)-2-Heptyl 
acetate 

 
 ester NA 

95 
2-Pentyl 2-
methylbutanoate 

 

 ester NA 

96 
13-Methyl 
tetradecane-1-ol  

 fatty alcohol NA 
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No Compound Structure 
Pharmacophore 

hits 
Chemical 

class 

Ex vivo 
validation 

(IC50) 

98 
(E)-3-Methyl-2-(3-
methylbutyliden)-
4-butanolide 

 

 lactone 
 

(43.2μΜ) 

99 
(4R,6R,8R)- 
trimethyldecan-2-
one  

 ketone 
  

(57μΜ)  
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Table 4. Ex vivo validated ORco allosteric antagonists. Structural features and chemical classes of identified 
AgamORco allosteric antagonists. IC50 values shown here are those obtained in the presence of 100 μM ORco 
agonist. 

 

 
No 

Compound Structure 
Pharmacophore 

hits 
Chemical class IC50 

62 α-Pinene oxide 

 

X 
Monoterpene 

epoxide 
52μM 

64 Borneol 

 

X 
Monoterpene 

alcohol  
86.5μM 

66 2-Methylquinoline 

 

X hydroquinoline 115μM 

75 Aromadendrene 

 

X sesquiterpene  26.2μM 
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Table 5. Results of the selected SVM classification of the 32 pharmacophore hits. The table lists the orthosteric 
antagonist hits identified by the pharmacophore model after the application of the selected SVM model on the 
training set of compounds. The ex vivo active compound #99 was laid outside the decision boundaries of the 
SVM model (Figure 4) and was defined as a false-negative result yielding a cross-validation loss of 0.032. NA: not 
or marginally active (<40% inhibition) in the ex vivo assays.  

 

Compound 
Cell-based 

activity 
(IC50 in μM) 

KierA2 SlogP_VSA1 
within SVM  

decision 
boundaries 

II 41.7 4.5847445 7.7454643 Yes 

IV 64.5 4.4210858 7.7454643 Yes 

4 67.7 5.2678456 7.7454643 Yes 

33 NA 4.4425101 5.6876111 No 

39 59.8 5.5963559 0 Yes 

40 NA  3.809427 5.6876111 No 

42 NA 5.4008284 5.6876111 No 

43 NA 5.4008284 5.6876111 No 

53 NA 6.368185 5.6876111 No 

54 48.9 8.1811314 0 Yes 

57 NA 2.9886453 5.6876111 No 

59 NA 2.0609839 0 No 

60 66.7 7.5834055 0 Yes 

65 NA 3.795996 0 No 

68 NA 3.8128579 5.6876111 No 

71 NA 5.9534798 7.7454643 No 

72 NA 10.287 5.6876111 No 

77 47 5.4362946 0 Yes 

78 NA 16 0 No 

79 NA 13.104808 0 No 

81 NA 16.544603 0 No 

83 25 11.143562 0 Yes 

84 NA 12.104386 7.7454643 No 

85 NA 8.1214361 20.749712 No 

88 195.7 5.1365461 7.7454643 Yes 

89 NA 11.143562 7.7454643 No 

93 NA 5.4330149 5.2587838 No 

94 NA 6.0677109 7.7454643 No 

95 NA 5.9571776 7.7454643 No 

96 NA 13.066667 0 No 

98 43.2 3.932668 7.7454643 Yes 

99 57 6.7910275 5.6876111 No 
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Table 6. Selected Pharmacophore-SVM pipeline hits and initial functional testing. Compounds causing ≤60% response are indicated in bold.  

 

PubChem ID Compound Structure 
Pipeline 
Retained 

Chemical class 
% Response 

at 100μΜ OA 

5284507 Nerolidol 

 

Y 
sesquiterpene 

alcohol 
51 

31289 Nonanal  Y fatty aldehyde 65 

637566 Geraniol 
 

Y 
Acyclic 

Monoterpene 
alcohol  

43 

638011 Citral 
 

Y 
Monoterpene 

aldehyde 
69 

8294 
Linalyl 
acetate 

 

Y 
Monoterpene 

ester 
59 

7439 Carvone 

 

N 
monoterpene 

ketone 
71 

1549026 
Geranyl 
acetate 

 
N 

Monoterpene 
ester 

67 

1549778 
Geranyl 
acetone  

N 
monoterpene 

ketone 
92 

379 
Octanoic 

Acid 
 

N fatty acid 81 
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6549 Linalool 
 

N 
Monoterpene 

alcohol 
98 

17100 α-Terpineol 

 

N 
monoterpene 

alcohol 
100 

31253 Myrcene 

 

N monoterpene 71 

8892 
Hexanoic 

Acid 
 

N fatty acid 59 

14525 Fenchone 

 

N 
monoterpene 

ketone 
67 

22311 Limonene 
 

N monoterpene 82 
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