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We show that ultrathin metasurfaces with a specific multiresonant response can enable simultane-
ously arbitrarily-strong and arbitrarily-broadband dispersion compensation, pulse (de-)chirping and
compression or broadening. This breakthrough overcomes the fundamental limitations of both con-
ventional non-resonant approaches (bulky) and modern singly-resonant metasurfaces (narrowband)
for quadratic phase manipulations of electromagnetic signals. The required non-uniform trains of
resonances in the electric and magnetic sheet conductivities that completely control phase delay,
group delay, and chirp, are rigorously derived and the limitations imposed by fundamental phys-
ical constraints are thoroughly discussed. Subsequently, a practical, truncated approximation by
finite sequences of physically-realizable linear resonances is constructed and the associated error is
quantified. By appropriate spectral ordering of the resonances, operation can be achieved either in
transmission or reflection mode, enabling full space coverage. The proposed concept is not limited
to dispersion compensation, but introduces a generic and powerful ultrathin platform for the spatio-
temporal control of broadband real-world signals with a myriad of applications in modern optics,

microwave photonics, radar and communication systems.

I. INTRODUCTION

Metasurfaces (MSs), ultrathin artificial media com-
posed of subwavelength resonant meta-atoms, are being
extensively studied for a myriad of applications [1-5]. De-
spite their ultrathin nature, MSs can impart a nontriv-
ial phase delay on the impinging wave due to the meta-
atom resonance, which when spatially modulated is typ-
ically exploited for wavefront manipulation [6, 7]. How-
ever, this resonant phase delay is inherently dispersive,
resulting in narrowband operation. Therefore, conven-
tional metasurfaces can sustain their functionality over
very limited bandwidths and fail to perform well for real-
world signals which necessarily have significant temporal
bandwidth. Thus, researchers have recently focused on
the search for broadband (achromatic) MSs that are suit-
able for practical applications.

Prominent examples of broadband functionalities re-
ported thus far with MSs include wavefront manipula-
tion (e.g., beam steering/splitting, focusing and imaging)
[8-12] and pulse delay [13]. Both require a spectrally-
constant group delay by the MS [or, equivalently, a
linear phase profile ¢(w)], in order to uniformly de-
lay all frequency components of the broadband input
pulse and avoid pulse distortion [Fig. 1(a),(b)]. How-
ever, a wider class of very important applications de-
pend on a quadratic phase profile, e.g., dispersion com-
pensation, chirped pulse amplification (CPA), and in
general any application requiring control over the in-
stantaneous frequency (chirp) and temporal duration
of a broadband input pulse through pulse chirping/de-
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chirping [Fig. 1(c)]. Such operations conventionally re-
quire lengthy bulk media, e.g., dispersion compensation
fibers in optical telecommunications [Fig. 1(d)].

Thus far, the approaches to dispersion compensation
with metasurfaces are scarce [14-17]. They are either
very narrowband or do not guarantee pulse integrity.
This is because the phase profile is not designed to be
purely quadratic across a wide bandwidth (accompanied
by a flat amplitude response); rather, typically a sin-
gle frequency featuring maximum group delay dispersion
(GDD) is being exploited [15], Fig. 1(e). In Ref. 16
a broadband pulse is separated into many frequency
components and each of them is handled separately by
a different, narrowband sub-metasurface. Note that
electromagnetically-induced-transparency (EIT) [14] or
Huygens’ metasurfaces [15] can help to capture the peak
of GDD under high transmission. Operation in reflection
is not being discussed.

In this work, we present a solution to these prob-
lems. We show that by using multiresonant metasur-
faces we can overcome the limitations of both traditional,
non-resonant approaches (bulky) and modern, singly-
resonant metasurfaces (narrowband). Our approach al-
lows to design MSs that implement a general quadratic
phase profile which is both arbitrarily strong (despite
the ultrathin nature) and (almost) arbitrarily broadband,
controlled at will by the number and spacing of the im-
plemented resonances. We derive an explicit construction
for the sheet conductivities of a multiresonant surface
that can completely control the first three dispersion pa-
rameters (phase delay, group delay, and chirp) and dis-
cuss the fundamental limitations of physically-possible
phase manipulations of broadband chirped pulses by such
metasurfaces. We subsequently approximate by finite
sequences of physically-realizable Lorentzian resonances
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FIG. 1. Motivation and scope of current work. (a) Broadband
pulse (centered at frequency ) interacting with a medium de-
scribed by a transfer function of the form H(w) = explid(w)],
where ¢(w) = ®o + 1 (w — Q) + Pa(w — Q)? + ... includes
arbitrarily-high orders resulting in pulse distortion. Impact
of leading terms of the Taylor expansion on the output pulse
shape uout(t). (b) The first-order term describes pulse de-
lay by ¢'(Q2) := d¢/dw|o = ®1. The constant @ leads to
a simple shift of the carrier oscillation under the envelope.
(c) The second-order term (P2, group delay dispersion) de-
scribes pulse chirping (variation of instantaneous frequency
along pulse), typically leading to pulse broadening due to the
different delay of constituent frequency components (useful
for e.g. chirped pulse amplification). For a pre-chirped pulse
with chirp parameter C, pulse compression can be achieved
when ®2C' < 0 (useful for e.g. dispersion compensation).
(d,e) Prototypical examples of physical systems for dispersion
compensation. (d) Dispersion compensation fiber: The re-
sponse is broadband but the system is bulky. (e) Conventional
singly-resonant metasurface: Thin structure but narrowband
operation. Electromagnetically-induced-transparency (EIT)
[14] or Huygens metasurfaces [15] can help to capture the
peak of group delay dispersion (GDD) under high transmis-
sion.

and rigorously quantify the associated error. Both signs
of GDD can be implemented and both operation in trans-
mission and reflection mode; as a result, full-space cov-
erage can be provided. Importantly, the required phase
delay is solely provided by the resonances implemented
on the surface itself. Thus, the proposed surfaces are es-
sentially 2D, apart from a small finite thickness to allow
for implementing magnetic polarizability without mag-
netic materials.

Note that using multiple Lorentzian resonances is the
basis of many models meant to capture the response func-
tion of solids (susceptibility or permittivity) as accurately
as possible. For instance, the Brendel-Borrman model
takes into account statistical variations in the vibrational
frequencies of amorphous media and models the resulting
inhomogeneous broadening by convolving the different
Lorentzians with a Gaussian function centered at the re-
spective resonant frequency [18]. Inhomogeneous broad-
ening should have implications for our work as well, since
in a realistic metasurface deviations in the meta-atom di-
mensions along the metasurface would lead to linewidth
broadening. In the process of deriving such models, it
is important to adhere to the restrictions of causality
and the Kramers-Kronig criteria [19]. This means sym-
metrizing the spectrum of the response function and re-
moving any singularity in the upper complex half-plane
[19], which are common elements with our work. Fur-
thermore, ending up with a causal and real-valued time-
domain representation of the material response function
is also important in the context of time-domain computa-
tional electromagnetics (e.g. the Finite-Difference Time
Domain Method). In such cases, the efficient incorpo-
ration of the material model in the numerical algorithm
becomes important as well [20].

II. THEORY OF MULTIRESONANT
METASURFACES FOR A QUADRATIC PHASE
PROFILE

The main elements of our approach are presented in
Fig. 2. Implementing a surface with a very specific mul-
tiresonant surface conductivity can provide a perfectly
quadratic phase profile ¢p(w) = Po(w— Q)2+ &1 (w—Q) +
®y [Fig. 2(a),(b)]. The corresponding slope (GDD) is
constant and equals 2®5. By making the resonant fea-
tures denser(sparser) as the frequency increases, a posi-
tive(negative) chirp can be implemented; the linewidths
of the resonances follow a similar trend. Note that the
simpler, special case of equally-spaced resonances would
result in a constant (positive) group delay that can be
used for delaying broadband pulses [21, 22], see Fig. 2(c).
In addition, the linewidth (imaginary part of the com-
plex frequency) is constant for all resonances. A nega-
tive constant group delay would require anti-resonances
[Fig. 2(d)]. Importantly, operation in transmission and
reflection mode can be handled in a uniform manner
by spectrally interleaving (antimatching) or overlapping
(matching) the electric and magnetic resonances, respec-
tively [Fig. 2(e),(f)].

In order to impart a positive or negative lin-
ear chirp (slope of instantaneous frequency) and
broaden/compress a broadband Gaussian input pulse,
the required response of the metasurface (be it reflec-
tion or transmission) should be of the form H(w) =
Aexp{i[®@2(w — Q)2 + ®1(w — Q) + D]}, where Q is
the center frequency of the pulse spectrum and 0 <
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FIG. 2. Proposed multiresonant approach for positive/negative chirp and reflection/transmission operation. Generic multires-
onant metasurface with a quadratic transmission/reflection phase profile [p(w) = ®2(w — Q)2 + &1 (w — Q) + Po] providing
a spectrally-linear group delay of slope GDD = 2®, for pulse (de-)chirping and pulse broadening/compression. (a) Surface
conductivity with multiple resonances of decreasing spacing and linewidth for a positive (constant) slope of the group delay.
(b) Multiple resonances of increasing spacing and linewidth for a negative slope. (c) A constant group delay is achieved with
equally-spaced resonances [21]. (d) A negative constant group delay would require anti-resonances. (e) An initially un-chirped
pulse is temporally broadened and chirped after interacting with the metasurface. Operation in transmission requires overlap-
ping (matched) electric and magnetic resonances. (f) A pre-chirped pulse can be compressed when @, is of opposite sign. This
is the basis of dispersion compensation in e.g. optical fiber systems. Operation in reflection requires interleaved (antimatched)

resonances.

A < 1 allows for some absorption in a realistic MS.
With lowercase ¢; (i = 0,1,2) we indicate coeflicients
of a Taylor expansion about zero frequency instead of
Q; for relations between capital ®; and lowercase ¢;
see Appendix B. Such quadratic transfer functions are
used for controlling the group velocity dispersion e.g.
in fiber optics [23]. However, H(w) is not a physi-
cal transfer function (TF) since it does not correspond
to a real-valued convolution kernel in the time domain,
h(t). In order to obey the required Hermitian symme-
try, |[X(w)| = [X(-w)| and arg X(w) = —arg X (-w),
we introduce the symmetrized transfer function H'(w) =
Aexplisgn(w)[®a (] — Q)2 + By (| — Q) + B)]}, de-
noted by the prime symbol. Using H'(w) in the place
of H(w) introduces a negligible error as long as the sig-
nal half-bandwidth is smaller than the central frequency
(Aw < Q), such that the positive-frequency part g(w) of
the pulse spectrum Ui, (w) = g(w)+g* (—w) of the real in-
put signal does not extend into negative frequencies. For
the error to be strictly zero, the support of g(w) needs to
contain only non-negative frequencies, g(w) =0V w < 0.
For details see Appendix A.

Although H'(w) possesses the correct symmetry, it is
discontinuous, i.e., it jumps across the imaginary axis.
(In addition, it is not guaranteed to satisfy causality;

this will be discussed later on). To side-step this discon-
tinuity, we focus on frequencies w > 0 for which H'(w)
is meromorphic; this will allow to use the Mittag-Leffler
partial fraction expansion of complex analysis [24]. Note
that the analytical continuation of H'(w > 0) into nega-
tive frequencies coincides with the initially defined H(w).
We now specify the required surface conductivities of
a MS implementing the transfer function H'(w > 0). For
operation in transmission, we require scattering ampli-
tudes t(w) = Ae'?@) and r(w) = 0, where ¢(w) is the
quadratic phase. Substituting in the expressions relat-
ing plane-wave scattering coefficients with dimensionless
conductivities (Gge = (0se/2 and Ggp = Tsm /(2€), where
¢ is the wave impedance, see Appendix B), we find (for
operation in reflection it would be &g, = 1/65.)

Fse= Ogm=—1 tan(W) =—itanz(w). (1)

Equation 1 constitutes the “target spectrum” of the con-
ductivities. However, only certain types of resonant be-
havior are available in nature. In the following, we
will thus be seeking a good approximation of the tar-
get spectrum using Lorentzian resonances, which can be
physically implemented with resonant meta-atoms. The
w—poles for the desired conductivities of Eq. (1) can be



Analytically cont'd H,(a)>0) Lorentzian approx.

8
b
5 (a) i§ (b)
Wi .i k<P
8 -
g 0 ; " -= Pt @000 0O+ — — “oecceed
{ o
| % \/
g >~ (~oH*
-5 § 7
8
-5 @, O 5 -5 5
Re @ Re @
FIG. 3. (a) Positions of poles of Eq. (1) in the complex

w—plane assuming the analytically-continued transfer func-
tion H'(w > 0). The two branches, w;" and w; , diverge at
Re(w) = wa. A subset of the poles of the w;’ branch sat-
isfies Rew;” > 0 and Imw;” < 0 and is denoted by k € P.
(b) Strategy for Lorentzian approximation: the k € IP poles in
panel (a) are used along with their negative-conjugate coun-
terparts. This specific example is for ¢2 = +0.25, ¢1 = 2.48,
¢o = 0, and A = 0.7. The normalized frequency is defined
as @ = wy/|P2| and the normalized apex frequency equals
wq = —2.48. Note that all the poles in panel (b) satisfy
Imw < 0; the imaginary part is small and they might seem
to overlap with the horizontal axis. For the particular poles
depicted in panel (b) it holds —0.0585 < Im& < —0.0187.

found analytically by solving a quadratic equation [see
Appendix BJ, resulting in two sets of poles in the com-
plex w-plane
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where w, is a real quantity coinciding with the apex of
the parabolic phase and wy a complex quantity that de-
termines the offset of the poles in the complex plane.
The poles reside on two curves which asymptotically ap-
proach the vertical axis Re(w) = w, for kK — —o0 and the
horizontal axis Im(w) = 0 for k& — +o00. Depending on
the specific choice for ®;, the index k is “re-normalized”
and the poles shift to different discrete positions along
the curves (see Appendix B). The discrete poles along
with the underlying continuous curves are depicted in
Fig. 3(a) for a characteristic positive-chirp (®2 > 0)
case. Note that the pole index k is under the square
root, leading to non-uniform spacing along the real axis
and a varying imaginary part, in contrast to the case of
multiresonant metasurfaces for pulse delay [21], where
the poles are equidistant and the imaginary part con-
stant. The study of pole structure in nanophotonics and
metasurfaces/scatterers in particular is recently receiving
increased interest, since it can help to achieve advanced
functionalities and provide physical insight [25-32].

In Fig. 3(a) we have chosen ®; > 2050 so that w,
where the two branches diverge, lies in the left complex

(2)

half-plane. When w, < 0, all the poles in the right com-
plex half-plane are predominantly real and possess a neg-
ative imaginary part. They are compatible with physical
resonances and can form the basis for a Lorentzian ap-
proximation discussed below [see Fig. 3(b)]; poles to the
left of w, possess a positive imaginary part and would
not satisfy causality (anti-resonances). Importantly, this
means that there is no fundamental limit on the band-
width that can be accommodated by the metasurface; in
contrast, if w, > 0 a low-frequency limit for the positive-
frequency content of the pulse would be imposed.

Having specified the simple w—poles of Eq. (1), we
can write the corresponding Mittag-Leffler expansion (see
Appendix C)

@ 1 1
—ita = — . (3
“tan z(w) k;m wr P2 (w—w,‘: w—wk_) ®)
The residues are r,j =i/(wp®2) and r;, = —i/(wpP2) for

w,': and w, poles, respectively. We now identify a subset
of the poles of the w,j branch that satisfies Re w,j >0
and Im w,‘: < 0 and can play the role of positive-frequency
poles of an underdamped linear oscillator (resonant meta-
atom), see Appendix C 1. The corresponding indices are
denoted by k£ € P in Fig. 3(a). We can thus use these
simple poles, along with their complex conjugate coun-
terparts, to construct a physical, Lorentzian approxima-
tion of the target spectrum. This procedure is schemat-
ically depicted in Fig. 3(b). Looking at the form of
a Lorentzian resonance in the surface conductivity (see
Appendix C1), we also require that the corresponding
residues are of the form r = a(iw;’), with a € R and
a > 0. This suggests approximating the actual residues
with rf = i/(wp®2) ~ Re[l/(wpPow)) )]iw; . For any rea-
sonable value of loss, the k& € P poles are predominantly
real and the error of approximating the residues by taking
the real part is negligible. The Lorentzian approximation
(LA) then takes the form

Fra(w) =% Re (wkquw,j) (w Ziui,j T w —(%(ﬁi,f» '
(4)

Note that by construction the proposed response func-
tion given by Eq. (4) is analytic in the upper half-plane
and of Hermitian symmetry (the time-domain counter-
part is real). In addition, for a finite number of terms
it also holds &p,4(w) — 0 as |w| — oo. This means that
the real and imaginary parts are related via Kramers-
Kronig relations. What remains in &(w) = —i tan z(w) =
1A (w)+Ad(w) is the error of the Lorentzian approxima-
tion and is comprised of four contributions: (i) the sub-
traction of the negative frequency counterparts we added
in Eq. (4), (ii) what is left from taking the real part of
the residues, (iii) the poles omitted from the w,” branch
(k ¢ IP), and (iv) the entire w, branch. See Appendix C2
for details.




The procedure is entirely analogous for a negative chirp
(P2 < 0). In this case, necessarily w, > 0 and only poles
in the strip Re(w) € (0,w,) can be used for the LA; this
imposes a high-frequency limit for the positive-frequency
content of the pulse [see Appendix, Fig. 7(b)].

It is also interesting to note that not only the proposed
response function, o4 (w), but also the corresponding
transfer function ¢t = (1 — pa)/(1 4+ dLa) (we have used
Ose(w) = Ggm(w) = dpa(w) in Eq. (B1), Appendix B)
is analytic in the upper half-plane. This is discussed in
more detail in Appendix D. The corresponding scattered
field, t(w)—1 (the total transmitted field is the sum of in-
cident field plus scattered field), possesses the additional
property that it vanishes at infinity (for a finite sum of
Lorentzians). We thus conclude that Kramers-Kronig re-
lations apply to the scattered field, t(w) — 1.

IIT. TRUNCATION OF INFINITE
LORENTZIAN SUM AND PERFORMANCE
ANALYSIS

The final step that enables a practical, physical pre-
scription for the implementation of a metasurface for dis-
persion compensation and pulse chirping is to truncate
the sum in Eq. (4). The impact of this truncation on the
MS performance is tractable and the associated error is
negligible provided that the pulse spectrum is accommo-
dated within the bandwidth supplied by the finite set of
resonances. This is demonstrated in Fig. 4 and 5, where
the effect of the LA and its truncation on the transfer
function of the MS, as well as the pulse in the time do-
main, are documented.

Figure 4 deals with positive chirp (®2 > 0) and stud-
ies compression (dispersion compensation) of a negatively
pre-chirped (C' < 0) broadband Gaussian pulse upon in-
teraction with the metasurface. The input pulse is a
delayed, modulated Gaussian pulse of the form wu;,(t) =
exp[—(1+iC)(t—t0)?/(278)] exp[—iQ(t —to)], with Aw =
1/70 being the transform limited spectral half-width (e~!
intensity point) of the pulse spectrum. The parameters
of the example are: Q = 27 x 4.5-10° rad/s, initial chirp
C=-1,Aw=1/79 = 2m x 0.28 - 10° rad/s, A = 0.95,
Oy = +0.04 ps?, & = 2.26 ps, Pyp = 32 (equivalently,
¢o = 0.04 ps?, ¢ = 0, ¢g = 0). Microwave frequencies
are selected for this example, since for the physical im-
plementation we can directly rely on an experimentally-
verified multiresonant unit cell based on ELC (electric-
LC) electric resonators and SRR (split ring resonator)
magnetic resonators [13]. The approach of using metal-
lic meta-atoms can be utilized practically unchanged up
to THz frequencies. For optical frequencies, Mie reso-
nances in dielectric particles may constitute a favorable
approach, since metals are associated with significant re-
sistive loss. Note that such engineering challenges, as-
sociated with a particular physical implementation, are
outside the scope of the current work, in which we es-
tablish the theoretical principles and foundations that
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FIG. 4. Results for operation in transmission. Compression of
a negatively pre-chirped (C' < 0) Gaussian broadband pulse
upon interaction with a metasurface exhibiting a quadratic
phase profile with positive ®2 (e.g. for dispersion compensa-
tion). Different levels of approximation in the transfer func-
tion and impact on the output pulse uout(t). (a,b) Ideal
transfer function: (a) Ideal transmission amplitude and phase;
some loss is included (A := |t(w)| = 0.95). The correspond-
ing required surface conductivity and the pulse spectrum are
overlaid. (b) Input and output pulse and frequency chirp.
The output pulse is de-chirped and compressed by 1/ V2, as
verified by the pulse durations measured at the e™' inten-
sity points. (c,d) Physical approximation of the ideal tar-
get spectrum with an infinite train of Lorentzian resonances
[Eq. (4)]: (c) Transmission amplitude and phase along with
surface conductivity and pulse spectrum. The ideal surface
conductivity from panel (a) is also included with a dashed
line. (d) Input and output pulse and frequency chirp. The
performance is practically indistinguishable from the ideal
case. (e,f) Truncated physical approximation using seven
resonances: (e) Some ripples manifest in the transmission
phase/amplitude due to the truncation. The untruncated sur-
face conductivity from panel (c) is included with a dashed line.
(f) The compression is only slightly affected and the residual
output chirp is negligible along the duration of the output
pulse.

are prerequisite to any subsequent physical implemen-
tation. The target spectrum is depicted in Fig. 4(a):
the transmission amplitude is flat and equal to 0.95 over
arbitrarily-broad bandwidths and the phase is exactly
quadratic. In effect, the input pulse is compressed by ex-
actly 1/4/2, as designed, and the output chirp (variation
of instantaneous frequency) is zero across the entire pulse
duration [Fig. 4(b)]. The untruncated train of physical
Lorentzian resonances [Eq. (4)] is depicted in Fig. 4(c).
The target spectrum is included with a dashed line; they
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FIG. 5. Results for operation in transmission. Broadening of
an initially un-chirped Gaussian broadband pulse upon inter-
action with a metasurface exhibiting a quadratic phase profile
with negative ®5 (e.g. for chirped pulse amplification). Dif-
ferent levels of approximation in the transfer function and
impact on the output pulse uout(t). (a,b) Ideal transfer func-
tion: (a) Ideal transmission amplitude and phase; some loss
is included (A := [t(w)| = 0.95). The corresponding re-
quired surface conductivity and the pulse spectrum are over-
laid. (b) Input and output pulse and frequency chirp. The
output pulse acquires a negative chirp and is broadened by
V2, as verified by the pulse durations measured at the e !
intensity points. (c¢,d) Physical approximation of the ideal tar-
get spectrum with an infinite train of Lorentzian resonances:
(c) Transmission amplitude and phase along with surface con-
ductivity and pulse spectrum. The ideal surface conductivity
from panel (a) is also included with a dashed line. (d) Input
and output pulse and frequency chirp. The performance is
practically indistinguishable from the ideal case. (e,f) Trun-
cated physical approximation with nine resonances: (e) The
untruncated surface conductivity from panel (c) is also in-
cluded with a dashed line. (f) The broadening is only slightly
affected; the output chirp is in good approximation linear
along the duration of the output pulse.

are almost indistinguishable and so is the effect on the
output pulse [Fig. 4(d)]. Subsequently, the infinite res-
onance train is truncated keeping only seven resonances
[Fig. 4(e)]. The available bandwidth becomes finite but
is approximately 3 GHz, corresponding to a vast relative
bandwidth of 67%. Due to the crude truncation, a rip-
ple develops in the transmission amplitude and phase.
However, the pulse compression is only slightly affected
and the residual output chirp is negligible throughout the
duration of the output pulse [Fig. 4(f)]. If even higher

integrity is required, one can fine-tune the positions and
strengths of the considered resonances after truncation
and/or introduce an additional background contribution
[see Appendix, Fig. 10(d)].

Next, the case of negative chirp (®5 < 0) and pulse
stretching (e.g. for chirped pulse amplification) is con-
sidered in Fig. 5. The parameters of the example are:
Q = 27 x 4.5 - 10° rad/s, initial chirp C = 0, Aw =
2m x 0.28 - 10° rad/s (transform-limited spectral half-
width, e~! intensity point), A = 0.95, &3 = —0.04 ps?,
®; = 2.83 ps, Pyp = 112 (equivalently, ¢o = —0.04 ps?,
¢1 = 5.1 ps, ¢g = 0). The target spectrum is depicted
in Fig. 5(a). The initially un-chirped Gaussian broad-
band pulse acquires a linear induced chirp and is broad-
ened by a factor v/2, as designed [Fig. 5(b)]. The infinite
Lorentzian approximation is depicted in Fig. 5(c). As was
the case with the positive chirp scenario, the output pulse
[Fig. 5(d)] is almost indistinguishable compared with the
ideal case. Finally, the infinite resonance train is trun-
cated keeping nine resonances [Fig. 5(e)]. Pulse stretch-
ing is only slightly affected and output chirp is linear
throughout the duration of the output pulse [Fig. 5(f)].
Results for operation in reflection mode (both positive
and negative chirp) are included in the Appendix E.

IV. CONCLUSION

In conclusion, we have presented a solution to
arbitrarily-strong and arbitrarily-broadband quadratic
phase shaping with multiresonant metasurfaces. Our
approach aspires to bring dispersion engineering to the
nanoscale and overcome the current limitations of both
(i) conventional, non-resonant approaches with bulk me-
dia (too bulky) as well as (ii) modern, singly-resonant
metasurfaces (too narrowband). The proposed concept
is not limited to dispersion compensation or chirped pulse
amplification, but provides a generic and powerful ultra-
thin platform for the spatio-temporal control of broad-
band real-world signals with a myriad of applications in
modern optics, microwave photonics, radar and commu-
nication systems.
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Appendix A: Finding a proper transfer function for pulse chirping

Let the output physical field quantity be a chirped and delayed modulated Gaussian pulse in the time domain,

(t—t)?
Uous(t) =€ 272 2cos{[Q+ A(t — to)](t — to) + ¢}

) (A1)
= exp{ - (2 5 —l—zA) (t —t0)? —iQt — to) — icp} + c.c.,

where 7 > 0 is the output (broadened) pulse duration (i.e., the half-width at the e~! intensity point), to is the group
delay, Q the center frequency, A a linear chirp of the instantaneous frequency,' and ¢ a constant phase that shifts the
carrier oscillation with respect to the Gaussian envelope.

In Fourier-space?

—+oo
Uous(w) := / Uout (1) e“tdt

1 T2 9
o \/%eiwto 7’7— e 5 + 2'LA7—2( Q) e_isa
- T+ 2iAr (A2)
1 72
[ 0)2
LT 21— Az Wt e“’v’}.
V1—2iAT2

Since a physical field u(t) is real, its Fourier transform should satisfy U(w) = U*(—w), i.e., it should be a Hermitian
function. This translates into the absolute part being an even, |U(w)| = |U(—w)|, and the argument an odd function
of frequency, argU(w) = —argU(—w). In order to define a simple, physical device that would transform between an
unchirped and a chirped pulse and vice-versa over a large bandwidth, we aim to separate the output field into an
input field times a transfer function (TF) that acts on the phase (which should be of quadratic profile). We can thus
write

Uont(w) = G(w) + G* (—w), (A3)
where
(w) x
= ( {A(T70)*(w — Q) +to(w — Q) — [p — Qo + % arg(l + i2AT2)]}> (A4)
\/7 27TT0 exp (—%Tg(w — Q)z) )
with
Tig - 7—12 +(2A7)? (A5)

connecting the output (7) and input (7p) pulse durations with the chirp parameter A (linear slope of instantaneous
frequency).® From Eq. (A5), one sees that 79 < 7 as appropriate due to chirp-induced pulse broadening. The function
g(w) corresponds to the positive frequency part of the unchirped, undelayed input pulse. Its spectral half-width at
the e~! intensity point is related with the temporal duration through Aw = 1/79, as expected for an unchirped

(transform-limited) pulse [23]. Note that the inverse Fourier transform F~!{e=270%"} = \/27TT026_t2/(27—§); the extra

1 A Gaussian pulse shape maintains its shape and acquires a per-
fectly linear chirp upon interaction with a dispersive medium
possessing a quadratic phase profile [23]. This is not necessarily
true for other pulse shapes.

2 2 .
2 fjoo: e~ (az”+bate) gy — \/Ee(b —4ac)/4a  In our case, integra-
a

bility is guaranteed since Rea > 0.

3 For a prescribed A there are two (or none) possible solutions of 7
for a given 79. Note, however, that they correspond to a different
quadratic coefficient of the spectral phase profile ®o = A(TT())Z.
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amplitude factor \/7/m9 > 1 expresses that due to pulse broadening there is a corresponding amplitude decrease in
order to preserve the pulse energy; as a result, the input Gaussian pulse possesses a larger amplitude by +/7/79. Note
that this amplitude factor is independent of frequency.

The physical requirement for real fields and a real transfer function means that it should hold

Uout(w) = H(w)Uip(w), (A6)
which implies

G(w) + G (—w) = Hw)[g(w) + g"(-w)]

= H(w)g(w) + H(w)g*(~w) (A7)
= H(w)g(w) + H* (~w)g" (~w).

However, one can readily spot that H(w) # H*(—w), due to the presence of even powers of w in the argument of the
transfer function. Hence, H(w) in Eq. (A4) does not represent a physical transfer function.

We now try to find a physical transfer function that transforms the unchirped input pulse, g(w) 4+ g*(—w), into
the chirped output pulse, G(w) + G*(—w). We will demonstrate that this is possible for pulse spectra that do not
contain zero frequencies. In other words, when the positive-frequency part does not extend into negative frequencies
and vice-versa.

Lets assume a modified, symmetrized transfer function

H'(w) = exp(isgn(w){A(170)*(Jw| = 2)* + to(Jw| = Q) — [p — Qto + % arg(1 +i2A7°)]}), (A8)
where
+1 : w>0
sgn(w) = 0 : w=0 (A9)
-1 : w<0

for which the Hermitian symmetry property H'(w) = H'*(—w) holds and in addition
H(w) = H(w) : o.)>0' (A10)
H* (—w) @ w<0
If supp{g(w)} excludes frequencies w < 0, then continuing from the last row of Eq. (A7)
H(w)g(w) + H*(~w)g"(-w) = H'(w)[g(w) + 9" (—w)] = H'(w)g(w) + H" (-w)g"(-w). (A11)

In this case, H'(w) is a proper transfer function that maps between input and output pulses.

Next, we want to quantify the error introduced by adopting the modified TF H’(w) when the support of g(w) is
not strictly finite and involves negative frequencies. Let ©(w) = (1 +sgn(w)) be the Heaviside function. Further, let
Hi(w) = Hw)O(w) and H_(w) := H(w)O(—w) be the positive and negative frequency part of H(w). Then

H(w)=Hy(w)+ H_(w) = Hy(w) + H (—w) — H} (~w) + H_(w) =: H'(w) + P(w), (A12)

where it can be seen that

H(w) :w>0
H'(w)=Hw)O(Ww) + H (—w)O(—w) =< Re H(w) : w=0, (A13)
H(—w) @ w<0
0 :ow>0
Pw)=[H(w)— H (—w)|®(—w) = ¢ iIm H(w) D ow=0. (A14)

H(w)—H(—w) : w<0
Then, from Eq. (A12) we can write the output pulse spectrum

H(w)g(w) + H (~w)g"(~w) = H'(w)g(w) + H™ (-w

T Plw)g(w) + P (—w)g (A15)

* —
—~ Q
*
—
€
~—



which states that if we use the proper transfer function H’'(w) instead of H(w), an error term will be introduced, i.e.,
the corresponding output spectra differ by the function F(w)

Usni@) = Uty (@) + E(w). (A16)
Note that the error term is given by
P*(—w)g*(—w) Dow>0
Ew)=< —2ImH(0)Img(0) : w=0 (A1T7)
P(w)g(w) D w<0

and depends only on the negative (w < 0) frequency content of g(w). (For real input signals Im ¢(0) = 0 resulting in
E(0) =0). If g(w) = 0V w < 0, a quite typical case for signals where the pulse half-bandwidth is smaller than the
center frequency (Aw < 2), then the error vanishes.

In Fig. 6 we plot the output pulse spectra, Uoyt(w) and Ul (w), when using the initially considered, H(w), or
symmetrized, H'(w), transfer functions, respectively. Their difference, i.e., the error term, is plotted on the right
panels. As the pulse bandwidth decreases, the positive frequency part crosses less into negative frequencies and the
error becomes negligible.

Note that the symmetrized transfer function is physical in the sense that it corresponds to a real-valued convolution
kernel. However, it is discontinuous, i.e., it jumps across the imaginary axis, as seen by the behavior of the error in
the right panels of Fig. 6. In order to satisfy causality, an additional requirement should hold: the poles of H'(w)
should lie in the lower complex half-plane. This will be discussed in the following Sections of the Appendix. The
initially considered transfer function can be thought as the analytical continuation of H'(w > 0) into the negative
frequencies; this removes the discontinuity but the resulting TF does not possess the correct symmetry.

Appendix B: Analytic structure of sheet conductivities that implement the transfer function

Let us consider an abstract metasurface, with which we aim to implement the pulse-chirping transfer function
derived in Section A. The metasurface is described by electric and magnetic complex surface conductivities o
and o4, measured in S and €, respectively.* The equations relating the surface conductivities with reflection and
transmission plane wave scattering coefficients are [21]

r(w,0) = — e T Om (Bla)
1+Us€05m+ase+asm
1- ~sequm
tw,0) = ———Tm (BIb)
1+Us€05m+ase+asm
~ Cose 1—r—t
se 79 — - 5 B2
sm 1 —1
Gom(w,0) = T — T2 (B2b)
2¢ 1—r+t

where we have defined dimensionless conductivities 7 (w, 0) = (s /2 and Gepm (w, ) = 0em /(2¢). Note that (TE(0) =
wi/ky = nsec(f) and (™(0) = k; /(we) = ncos(f) for the TE and TM polarization, respectively, where 6 is the
incidence angle and n = y/p/e is the characteristic impedance of the homogeneous host medium.

For operation in transmission, the prescription for the scattering amplitudes should be t(w) = Aet?@) and r(w) =0,
where ¢(w) is the quadratic phase of the transfer function defined in Eq. (A8) and 0 < A < 1 allows for absorption
in the metasurface. Substituting in Eq. (B2), the required metasurface conductivity (i.e., the target spectrum) is®

1 — Aei(w) 1 _ ¢ild(w)—ilog A]

T 14 Aeiow) T 1 4 eild(w)—ilog A]

Ose = Osm

. w) +i|log A B3
)+ 10 A (B3)
2
= —itan z(w).
4 . . ey
These quantities are related to the surface susceptibilities 5 For operation in reflection it would simply be Gsm = 1/Gse =

through ose = —iweoXse, Osm = —iwWpoXsm and can be also (1 —Aew(“’))/(l +Aei¢>(w)).
found as Yse and Zs,, in the literature.
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Output Pulse Spectra U, (o), Usui(®) Error U,y(w)-Uj (o)
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FIG. 6. Comparison of output pulse spectra when using the initially considered vs the symmetrized transfer functions, Uout (w) =
H(w)Uin(w) (solid curves) vs Ul (w) = H'(w)Uin(w) (dashed curves), for input pulses whose positive frequency part extends
to negative frequencies (Aw ~ Q). The envelope of the input pulse spectrum is included with a red dashed line. The error
(difference Uous (w) — Ulye(w)) is plotted on the right panels. Progressively, the input pulse bandwidth is decreased, the positive
frequency part crosses less into negative frequencies and the error becomes negligible. The parameters of the example are:
Oy = 40.15, &1 = 5, Do = 30, A = 0.95, pulse center frequency Q = 27 (Q = 2.43), and input pulse spectral half-width (e
intensity point) Aw = 4.24,3.39, 1.83 for the three cases (Aw = 1.64,1.31,0.71).

The phase profile in Eq. (B3), ¢(w), should be quadratic to allow for pulse chirping and dispersion compensation.
According to the discussion in Section A, we can write the complex function z(w) in the following form that will result
in the correct symmetry for the transfer function ¢(w)

2(w) = %sgn(w) [¢g(|w| — )2 4+ (Jw| - Q) + @0)} + z%| log Al. (B4)
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Comparing with Eq. (A4), we identify
(1)2 = A(TT())Q,
P, = to, (B5)
1
By = —[p — Uty + 5 arg(1 +i2A77)].

It is also useful to note that if we use lowercase ¢; (i = 0, 1,2) to indicate a Taylor expansion of the phase about zero
frequency instead of €, i.e., ¢(w) = sgn(w)[p2|w|?* + ¢1|w| + ¢o), the following relations hold

P2 = Po Oy = ¢
b1 = By — 20,0 & D= d1 +20:0Q : (B6)
po = P — P1Q + P22 Do = o + P12+ Q2

Equation (B3) constitutes the target spectrum of the conductivities. However, only certain types of resonant
behavior are available in nature. In the following, we will thus be seeking a good approximation of the target
spectrum using Lorentzian resonances, which can be provided by subwavelength meta-atoms. Now let ®5 % 0 and
focus on w > 0, i.e., on the analytical continuation of H'(w) for w > 0 into negative frequencies (this coincides with
H(w), see Section A). The poles of H'(w > 0) can be found by solving the quadratic equation

1
2(w) = 3 (o (w — Q) + @1 (w — Q) + ©o + i|log A|)] = kr + g, keZ, (B7)
hence,
2 (I)l 1 .
(w—Q)° + (}T(w -Q) - E[(2k+ I)w—®g —i|log A|] =0, keZ, (B8)
2 2

resulting in two sets of poles in the complex w-plane, w,f, marked by the sign selection and given by

D, o \* 1

+ .

=0-—= — — [(2k + 1)m — D — 4|1

i 20, (2%) * g, [GR+ T =20 —illog Al (B9)
= W, + wg,

where w, = Q@ — ®1/(202) = —¢1/(2¢2) is a real quantity denoting the apex of the parabolic phase and wy is a

complex quantity that determines the offset of the poles in the complex plane about the vertical axis Re(w) = wg; it
depends on the pole index k. The quantity ¢ = (2k + 1)m — &y — i|log . A| inside the square bracket in Eq. (B9) is
connected with the poles of a metasurface for the simpler case of broadband group delay (linear phase profile) [12, 21].
In the group delay case, the poles are equidistantly spaced along the real axis and their imaginary part is constant.
In the present case (quadratic phase profile), this quantity is under a square root: this leads to uneven spacing of the
poles along the real axis and a varying imaginary part. In terms of the lowercase ¢; we can write [Eq. (B6)]

+ (bl (bl : 1 )
wiE = ~20c 4 \/<2T¢2) + %[(2]{3 + 1) — ¢ — i log Al] (B10)
= W, + wg,

From Eq. (B9) we expect two branches of discrete poles that shift between being predominantly real or predom-
inantly imaginary depending on the index k and whether the quantity underneath the square root is positive or
negative. We can cast wy in the form

o \? @
2P, Dy

2 (1)2

W =4|—1k+—
k (1)2 { 2T

and see that the quantity in the square bracket which depends on the selected ®5, ®1, &y “re-normalizes” the index

k shifting the discrete subset k € Z within the continuum k € R. Hence, for any choice of ®o, ®1, ®y the poles w,:ct

are discrete points on the curves

wi(n)—wa:t\/%r (n+l>—i|log“4|, KER (B12)

2 Dy

+3}—Z|1°g“4| kel (B11)

Dy 2 o,
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The two branches of discrete poles along with the underlying continuous curves are depicted in Fig. 7 for both a
positive (P2 > 0) and a negative (P < 0) chirp scenario. For the positive chirp scenario [Fig. 7(a)], ®1/(2®2) > 0
and the apex frequency w, = Q0 — ®;/(2®5) where the two branches diverge lies in the left complex half-plane when
®q > 29,0, This is desirable in order to stay away from the pulse bandwidth (positive frequency part). Note that
poles to the left of w, possess a positive imaginary part and would not satisfy causality. For the negative chirp scenario
[Fig. 7(b)], the apex frequency w, =  — ®1/(2®5) lies always in the right complex half-plane since 3 < 0 and P4
should be positive. It is, thus, required to position w, at a sufficiently high frequency to avoid running into poles that
lie to the right of w, and possess a positive imaginary part.

Positive chirp ©,>0 Negative chirp ®,<0
(@ §i (b) 8
5 ;F Q 10 Q i

|
e ———

0]
e
A
10}
s

oF—— ; —0—0—0-0-0- 00000009 0f  —e
»g 'ra-),;r k—+0 ,E k——o0 wor
J k
1
’ =
-5 T 10 v
§ 3 i
-5 @, 0 5 -10 0 10 @,
Re @ Re @

FIG. 7. Pole positions for the conductivity in Eq. (B3) assuming the analytically-continued transfer function H'(w > 0) for (a)
a positive (®2 > 0) and (b) a negative (®2 < 0) chirp scenario. The frequency is normalized ©@ = w+/|®2|. The two branches
are clearly marked. Color-coding corresponds to the value of the k index (red: k — +oo, blue: kK — —o0). Parameters for
(a): ¢2 = +0.25, ¢p1 = 2.48, ¢o = 0, and A = 0.7. the normalized apex frequency equals w, = —2.48. Parameters for (b):
¢2 = —0.25, ¢1 = 10.45, ¢po = 0, and A = 0.7. The normalized apex frequency equals @, = +10.45.

Let us now visualize the positions of the poles by evaluating the conductivity in the complex frequency plane and
plotting the magnitude (absolute part). We will compare (i) the symmetrized TF H’(w) that possesses the correct
symmetry (Hermitian), but jumps at the imaginary axis (ii) the analytically continued H'(w > 0) = H(w) that is
meromorphic in the entire w-plane but does not possess the correct symmetry.

The positive chirp scenario is depicted in Fig. 8(a),(b). When w, < 0, all the poles in the right complex half-
plane are predominantly-real and possess a negative imaginary part. These poles can form the basis for a Lorentzian
approximation discussed in Section C. Note that the symmetrized H'(w) does not lead to the diverging behavior of
the pole positions, since the negative frequencies are removed and replaced by a different analytic function; however,
if wg >0 (P71 < 2020Q) two such divergences would occur: at w, and —w,. In terms of the Lorentzian approximation
that will follow (Section C), this would impose a low-frequency limit for the positive-frequency content of the pulse,
g(w).

The negative chirp scenario is depicted in Fig. 8(c),(d). In this case, necessarily w, > 0 and two pole divergences are
seen when using the symmetrized H'(w). Only poles inside (—w,,w,) are predominantly real and possess a negative
imaginary part. In terms of the Lorentzian approximation that will follow (Section C), this imposes a high-frequency
limit for the positive-frequency content of the pulse, g(w).

Appendix C: Partial fraction expansion and multi-resonant Lorentzian approximation

We next perform a partial fraction expansion of Eq. (B3), in order to proceed to approximate the target spectrum
for the surface conductivities by a physically-realizable train of Lorentzian resonances. The Mittag-Leffler expansion®

6 Expansion for meromorphic functions into (many) simple poles
(24].
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Symmetrized, discontinuous H (w) Analytical continuation of H (w>0)
3
2
1
IS]
E 0
-1
-2
-3
5
IS]

0

: ’ ’

1 1

i i

! !

] !

-5 i -5 |

-5 0 Oy 5 -5 0 o, 5
Re @ Re &

FIG. 8. Comparing the pole positions of the conductivity corresponding to the transfer function H’'(w) and the analytically
continued H'(w > 0) = H(w). The magnitude (absolute value) of the complex conductivity is plotted in the complex frequency

plane @ = w+/|P2|. (a,b) Positive chirp case with ¢1 = 5.16/ @2, ¢o = 0, and A = 0.7. (c,d) Negative chirp case with
1 = 11.62+/|p2|, po = 0, and A = 0.7.

of f(z(w)) = —itan z(w) reads

io ! kel
=1
Z_Zkv 9

k=—o0

where (i) zp = k7 + 7/2 are the poles of tan(z), (ii) it is easy to identify that the residues at the poles of f(z) equal
rp = 4, and (iii) the first and second terms in the first row of Eq. (C1) amount to zero. It now helps to write the
denominator (second order equation of w) in a factored form in terms of the w-poles identified in Section B:

|log A|
— — z

1
2(W) — 2k = = [Po(w — Q)2 + Py (w—Q P
()ké[( )+ @1 (w = Q) + @o)] i )
= 5w —w)w—w).
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Then, we can write

2 X 1
—ttan z(w) = 1—
() Dy Zm (w—wi)(w—wy)

9 Ix 1 1 1
iz 3 o (e ) (3)

e Wi T w — wy W — Wy
B *f i < 1 1 >
W wk®2 \w — Wi w-wg /)’
which states that we have expanded &(w) = —itanz(w) in partial fractions of simple poles, w,j and w, , and allows

to directly identify the residues, i.e., 7 =i/(wp®2) and r, = —i/(wiP2).

1. Dispersion of a Lorentzian meta-atom resonance

Let us consider a homogenizable metamaterial comprised of resonant meta-atoms. The susceptibility of such a
linear driven oscillator exhibits a dispersion of the following form

2
W
XL(w):_2+XO ) (UO,XQ,F>O
w? — wj +il'w
5 (C4)
_ WoXo
(w—wh)(w—-w")’
where
T 2
wi:—%:lz wd — (5) . (C5)

Note that for an underdamped oscillator (w3 — (I'/2)? > 0) it holds Rew™t > 0, Imw* < 0, and w* = (—w¥)*. The
latter can be used to show that xr(—w) = x7J (w), as anticipated for a physical, real-valued polarization in the time
domain.

The corresponding surface conductivity of a metasurface (a thin sheet of thickness d of this metamaterial) is

or(w) = —iweoxr(w)d
icowd xod wt w™ (C6)
wtr—w- \w—wt w—-w"

It can be seen that the conductivity for a physically-realizable Lorentzian has two poles, w™ and w™ = (—w™)*, and
the corresponding residues are

L ) p wt B 9 d jw™T

= deowpXod T wh)* C0WX0 R T C7

v = ieowiyod— ") (e .
WO X0 () '

This poses a constraint on the poles and residues of any resonant term in the multi-resonant expansion of the
metasurface sheet conductivities that can be implemented by a real physical linear resonant meta-atom.

2. Lorentzian approximation of target spectrum for surface conductivity

We can now construct a Lorentzian approximation to the target spectrum of Eq. (C3). Let us first focus on the
positive chirp case, 5 > 0. Observing Fig. 7(a), only a subset of the poles of the w,j branch satisfies Re w,j > (0 and
Im w,j < 0 and can play the role of positive-frequency poles of a dampened oscillator [cf. Eq. (C5)]. The corresponding
indices will be denoted by k € P [see Fig. 9(a)]. Looking additionally at the oscillator residues [Eq. (C7)] we require
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F to be of the form 7 = a(iw;}), with a € R and @ > 0 [a corresponds to eowixod/(2Rew™) in Eq. (C7)]. This

suggests to approximate the actual residues with

o ! Wi R ) (C8)
rt = = ~Re | —— | iwi".
wiPo wk@gw,j wki)gwlj k

The corresponding error is proportional to Im([wk@gw;]_l). Note that for any reasonable value of loss the positive-
frequency poles of the w,j branch in Fig. 7(a) are predominantly real and, thus, the error of approximating the residues
by taking the real part is anticipated to be negligible.

Having selected the poles that can act as positive-frequency oscillator poles, we reconstruct their negative-frequency
counterparts according to w™ = (—w™)* and r~ = —(rT)*. Hence, the Lorentzian approximation of the target
spectrum for ®5 > 0 and w > 0 takes the form

Gra(w) =Y Re (wk%wk ) (w’i"’i - —(%(Jii,j)> (C9)

kel

What remains in 6(w) = —itan z(w) = dpa(w) + Ad(w) is the error of the Lorentzian approximation and is comprised
of four contributions: (i) the subtraction of the negative frequency counterparts we added in Eq. (C9), (ii) what is left
from taking the real part of the residues, (iii) the poles omitted from the w; branch, and (iv) the entire w; branch.

) e () (5
Re + 7Im
;P <Wk(1)2wk ) (w — (—w,:')* ;P U.)k(bzw;: w— w,:'
1 7 1
* Z wkq)g (w wk)_zw;ﬂ)g <w—w;)'

keZ\P keZ

(C10)

This procedure is schematically depicted in Fig. 9(a)-(c). The three panels depict, respectively, the poles of the
conductivity when assuming analytically continued H'(w > 0) [Fig. 9(a)], the poles of the Lorentzian approximation
[Fig. 9(b)], and the poles of the remaining error [Fig. 9(c)]. Note that the error mainly resides in the negative half-
plane, far away from the positive-frequency part of the pulse spectrum (apart from the second contribution to the
error that is not schematically represented).

The case of negative chirp (®o < 0) is entirely analogous [Fig. 9(b)]. In this case, we need to select a subset of
the w, branch, i.e., the poles that satisfy 0 < Rew, < w, and are predominantly-real. They will be used for the
subsequent Lorentzian approximation (they will play the role of positive-frequency poles of a dampened oscillator)
and the corresponding indices are denoted with k € P [see Fig. 9(d)].

For the residues [Eq. (C7)] we require r,; to be of the form r, = a(iw, ), with a € R and a > 0. Thus, we
approximate the actual residues with

- { Wy, 1 -
I T PN Wt (wk|<1>2|wk) "k (c1L)

Hence, the Lorentzian approximation of the target spectrum for @5 < 0 and w > 0 takes the form

ra(w) = Re (wk%% > <wif,z‘uk_ - _(ZO(JEZ,;)) (C12)

keP

and the corresponding error, which comprises (i) the subtraction of the negative frequency counterparts we added in
Eq. (C12), (ii) what is left from taking the real part of the residues, (iii) the poles omitted from the w, branch, and
(iv) the entire w; branch, reads

B N 1 .

ZR@( ) () i () (25)

e wk@gwk w— (—w, )* = wiPowy, w— wy,
W) Tawm ()

rez\p w-w ) g wr®e \w ey

We can now plot the Lorentzian approximation to the required surface conductivity, as well as the remaining error.
The positive chirp case is depicted in Fig. 10; the parameters are identical to Fig. 4 in the main text. The Lorentzian

(C13)
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FIG. 9. (a,b,c) Positive chirp case with parameters ¢2 = 40.25, ¢1 = 2.48, ¢o = 0, and A = 0.7. The frequency is normalized
according to @ = w+/|P2| and the normalized apex frequency equals W, = —2.48. Positions of conductivity poles for (a)
the analytically-continued symmetrized transfer function H'(w > 0) the (b) Lorentzian approximation (the positive half-
plane poles in panel (a) are used along with their negative-conjugate counterparts) and (c) the error term by the Lorentzian
approximation. (d,e,f) Negative chirp case with ¢o = —0.25, ¢1 = 10.45, ¢o = 0, and A = 0.7. The normalized apex frequency
equals @, = +10.45. Positions of conductivity poles for (d) the analytically-continued symmetrized transfer function H'(w > 0)
the (e) Lorentzian approximation (the positive half-plane poles in panel (d) are used along with their negative-conjugate
counterparts) and (f) the error term by the Lorentzian approximation.

approximation is depicted in Fig. 10(a) and compared with the target spectrum (thin black curves). The error is
plotted in Fig. 10(b) and is benign across the pulse bandwidth. The small kinks that can be discerned in Fig. 10(b) at
the positions of the resonances are due to the approximation in the residues (taking their real part), i.e., the second
contribution to the error [cf. Eq. (C10)].

We next proceed to truncate the infinite Lorentzian train [Fig. 10(c),(d)]. This introduces additional error, man-
ifesting as a negative slope in the imaginary part of the conductivity due to the missing resonances; however, if we
take care to use a sufficient number of resonances so as to accommodate the pulse bandwidth, the error across the
pulse bandwidth is small. It can be even further improved by introducing a counteracting background contribution
and/or fine-tuning the positions and strengths of considered resonances.

Finally, the negative chirp case is depicted in Fig. 11; the parameters are identical to Fig. 5 in the main text.

Appendix D: Analyticity of transfer function in upper complex half-plane

In the main text, we have shown that the proposed response function, i.e., the Lorentzian approximation &y, (w)
given by Eq. (4), exhibits poles that reside only in the lower complex half-plane. For convenience this is also shown
in Fig. 12(a) by plotting |61,4(w)| in logarithmic scale. The poles correspond to diverging positive values and the
zeros to diverging negative values. In this Section, we discuss the transfer function, i.e., the transmission or reflection
(complex coefficients), which are connected with the surface conductivities via Eqgs. (S18). Let us focus on operation
in transmission, meaning that we opt for overlapping conductivities G (w) = Fsm(w) = (w). Then, the transmission
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FIG. 10. Quantifying the error introduced by approximating the target conductivity (assuming the discontinuous transfer
function H'(w)) with Lorentzians for the positive chirp scenario depicted in Fig. 4 of the main text. (a,b) Untruncated
Lorentzian train. (a) Comparison of conductivity target spectrum and Lorentzian approximation and (b) their difference
(error). (c,d) Truncated Lorentzian train. (c¢) Comparison of conductivity target spectrum and Lorentzian approximation and
(d) their difference (error). The pulse spectrum is included in all panels with a red dashed line. The error in both cases is
benign along the pulse bandwidth. A small contribution with negative slope develops in the truncated case due to the missing
resonances. The small kinks that can be discerned in panels (b) and (d) at the positions of the resonances are due to the
approximation in the residues (taking their real part).

coefficient given by Eq. (S18a) becomes

152 (1-6)(1+3)

1
t = = = . D1
@ =155 (1+06)2 1+6 (D1)
Note that operating in reflection (G5, (w) = 1/ sm(w) = &(w)) results in the very same form, r(w) = —(1—27)/(14+7),
and can be treated entirely similarly.
Next, we can see from the partial fraction decomposition
1—0 1 c 1 2
Hew) = _ _ - — (1= = -1 D2
© =% =155 T+5 147 ( 1+a) 116 (D2)
that the only singularity is found at ¢ = —1. Now, we have to find the corresponding frequencies in the complex
frequency plane. We will show that for a Lorentzian conductivity the real part, Re &, cannot become negative in the
upper complex half-plane. This means that the condition ¢ = —1 cannot be satisfied in the upper half-plane and the
transfer function is analytic there. We focus on a single term of the Lorentzian sum given by Eq. (4), i.e.,
Gy = — 2k ad (D3)
w — Wk w + wp,

where we have omitted the real constant prefactor and removed the “4” superscript for brevity. It is important to
note that for all the terms included in the sum (k € P) it holds Rewy, > 0 and Imwy, < 0. Next, we take the real part
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FIG. 11. Quantifying the error introduced by approximating the the target conductivity (assuming the discontinuous trans-
fer function H'(w)) with Lorentzians for the negative chirp scenario depicted in Fig. 5 of the main text. (a,b) Untruncated
Lorentzian train. (a) Comparison of target spectrum and Lorentzian approximation and (b) their difference (error). (c,d) Trun-
cated Lorentzian train. (c¢) Comparison of target spectrum and Lorentzian approximation and (d) their difference (error). The
pulse spectrum is included in all panels with a red dashed line. The error in both cases is benign along the pulse bandwidth.
A small contribution with negative slope develops in the truncated case due to the missing resonances. The small kinks that
can be discerned in panels (b) and (d) at the positions of the resonances are due to the approximation in the residues (taking
their real part).

of Eq. (D3) and define w =: z + iy and wy =: x) + iy,. We have
Re el + Wi — ¢ =—1Im LI i "
w — Wk w + wp, W — Wk w + wp,

_ 2w Rewy,
- w? — |wg|? — 12w Im wy,

_ —Im{ 2z (T + iy) }
(22 —y? — a7 — yi + 2yur) +122(y — yr)

2a, [y(a® —y* — 27—y + 2yyn) — 222 (y — yn)]
(@ =2 — 1] — R+ 2yyn)® + 422 (y — )2

The denominator is positive except on the pole y = yix Az = xy, (i.e., w = wy). It is thus positive in the entire upper
half-plane, since the pole resides strictly in the lower half-plane. We are, thus, interested in the sign of the numerator.
Since z > 0 (for k € P), we can write

sgn {Redr} = sgn {—yla? — o — (y — yx)’] + 22 (y — yu) }

= sgn {U[(y —yr)? + i)+ 2% (y — 2yk)} . (D5)

The expression in square brackets is positive. Given that y; < 0, it can be readily seen that for y > 0 both terms in
the right hand side of Eq. (D5) are positive and it holds Re 6 > 0. In other words, we have shown that the condition
& = —1 cannot be satisfied in the upper half-plane (including the real axis) and the transfer function is analytic
there.
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To visualize the pole structure of the transfer function given by Eq. (D2), we plot |[2/(1 + )] — 1| in logarithmic
sale [Fig. 12(b)]. Clearly, the poles, which are indicated by diverging positive values (dark red), are residing in the
lower complex half-plane.

(a)

s &eo

(c)

Im o

Re @ Re @ Re @

FIG. 12. Visualization of poles/zeros: (a) The surface conductivity 1.4 (w) has both poles and zeros in the lower half-plane;
(b) the transfer function t = 2/(1+ )] — 1 has poles in the lower half-plane and zeros in the upper half-plane; (c) the scattered
field t — 1 =2/(14 &)] — 2 has again all poles and zeros in the lower half-plane. In all cases, we plot the absolute value of the
complex function in logarithmic scale. The poles correspond to diverging positive values (dark red) and the zeros to diverging
negative values (dark blue).

Regarding the application of the Kramers-Kronig relations between the real and imaginary parts of the transfer
function, we note that ¢ does not vanish at infinity (even in the case of a finite sum of Lorentzians). This is not
specific to our system: even a sheet of vacuum would lead to the same problem since it would correspond to t(w) = 1.
This issue is lifted if we consider the scattered field given by ¢t — 1 = [2/(1 + )] — 2 (the total transmitted field is the
sum of incident field plus scattered field). In this case, for frequencies extending beyond the finite sum of Lorentzian
resonances ¢ — 0 and, consequently, t — 1 — 0. Thus, we conclude that the usual Kramers-Kronig relations apply to
the scattered field, t(w) — 1.

Obviously, since the real and imaginary parts of t — 1 are related, this will necessarily impose some relation between
the corresponding magnitude and phase. In general, this cannot be cast in a simple closed-form relation [33]. However,
according to Ref. 33, when the function obeys the Kramers-Kronig criteria and moreover does not have zeros in the
upper half-plane the mag-phase relation can take the form of a Hilbert transform pair (Bode relation), similar to the
usual Kramers-Kronig relations. In Fig. 12(c) we plot the structure of poles/zeroes for ¢t — 1. It can be seen that both
poles and zeros reside in the lower half-plane.

Appendix E: Operation in reflection

In this Section, we present results for operation in reflection to complement the results for operation in transmission
presented in the main text (Fig. 4). Figure 13 focuses on the case of positive chirp (®o > 0). The input pulse is
a broadband modulated Gaussian pulse of the form wi,(t) = exp[—(1 + iC)(t — t9)?/(273)] exp[—i2(t — to)], with
Aw = 1/79 being the transform limited spectral half-width (e ! intensity point) of the pulse spectrum. The parameters
of the example are Q = 27 x 4.5-10° rad/s, initial chirp C' = —1, Aw = 1/79 = 27 x 0.28 - 10? rad /s, A = 0.95, &5 =
+0.04 ps?, ®; = 2.26 ps, g = 32 (equivalently, ¢o = 0.04 ps?, ¢1 = 0, ¢p = 0). We focus on the truncated Lorentzian
approximation. As a result, the available bandwidth is finite and some ripples manifest in the reflection amplitude,
primarily at the edges of the band [Fig. 13(a)]. The electric and magnetic (dimensionless) surface conductivities
(imaginary part) are depicted in Fig. 13(b),(c); they are interleaved (G, = 1/8se). The truncation only slightly
affects the intended performance: the pulse is compressed by approximately 1/v/2 [Fig. 13(d)], as designed (verified
by the pulse durations measured at the e~! intensity points) and de-chirped [Fig. 13(e)].

Figure 14 shows the case of negative chirp (@2 < 0). The parameters of the example are = 27 x 4.5 - 10 rad/s,
initial chirp C = 0, Aw = 1/79 = 27 x 0.28 - 10° rad/s, A = 0.95, &3 = —0.04 ps?, &; = 2.83 ps, &y = 112
(equivalently, ¢ = —0.04 ps?, ¢; = 5.1 ps, ¢g = 0). We focus on the truncated Lorentzian approximation. As a
result, the available bandwidth is finite and some ripples manifest in the reflection amplitude, primarily at the edges of
the band [Fig. 14(a)]. The electric and magnetic (dimensionless) surface conductivities (imaginary part) are depicted
in [Fig. 14(b),(c)]; they are interleaved (75, = 1/75.). The truncation only slightly affects the intended performance:



20

1 60 z 10 g
3 (a) P - (b) e
=] = =] -
= @ S 5i. 2
S 40 & S 53
€ o 38 O
<< =] g
_g > > n
g T £
§o) = = ©
x 3 3 : & : } o
0 0 w-10 : £-10 —— —
0 2 4 6 “To 2 4 6 =% 2 4 s
Frequency (GHz) Frequency (GHz) Frequency (GHz)
1.5 5
[\l o
3 . IS .
s @ — 5 |© ==,
R 5
D NP
5 20
ﬁ 05 0.59ns ('C_)
w ol g
03_ 0.8ns T
0 -5
-0.5 0 0.5 -05 0 0.5
Time (ns) Time (ns)

FIG. 13. Operation in reflection for the positive chirp scenario in Fig. 4 of the main text. Truncated recipe resulting in a finite
bandwidth. (a) Reflection amplitude and phase along with pulse spectrum. Some ripples manifest in the reflection amplitude
due to the truncation, primarily at the edges of the band. (b) Electric (dimensionless) surface conductivity (imaginary part).
The ideal surface conductivity is included with a dashed line. The magnetic conductivity is also included with a thin solid
line. The resonances are interleaved (Gsm = 1/0se). (c) Magnetic (dimensionless) surface conductivity (imaginary part). The
ideal surface conductivity is included with a dashed line. and the electric conductivity with a thin solid line. (d) Input and
output pulse. The output pulse is compressed by approximately 1/ V2, as designed (verified by the durations measured at the
e~ ! intensity points). (e) Frequency chirp (variation of instantaneous frequency). The output pulse is de-chirped; the residual
chirp is negligible along the pulse duration.

the pulse is broadened by approximately v/2 [Fig. 14(d)], as designed (verified by the pulse durations measured at the
e~ ! intensity points) and acquires a linear chirp [Fig. 14(e)].
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FIG. 14. Operation in reflection for the negative chirp scenario in Fig. 5 of the main text. Truncated recipe resulting in a finite
bandwidth. (a) Reflection amplitude and phase along with pulse spectrum. Some ripples manifest in the reflection amplitude
due to the truncation, primarily at the edges of the band. (b) Electric (dimensionless) surface conductivity (imaginary part).
The ideal surface conductivity is included with a dashed line. The magnetic conductivity is also included with a thin solid
line. The resonances are interleaved (Gsm = 1/0se). (c) Magnetic (dimensionless) surface conductivity (imaginary part). The
ideal surface conductivity is included with a dashed line. The magnetic conductivity is also included with a thin solid line.
(d) Input and output pulse. The output pulse is broadened by approximately V2, as designed (verified by the pulse durations
measured at the e ! intensity points). (e) Frequency chirp (variation of instantaneous frequency. The output pulse acquires a
linear chirp along the pulse duration.
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