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Preface to ”Transition Metal Catalyzed
Cross-Coupling Reactions”

Transition metal-catalyzed cross-coupling reactions, such as Suzuki–Miyaura, Mizoroki–Heck,

Negishi, Sonogashira, Kumada–Tamao–Corriu, Migita–Kosugi–Stille, Tsuji–Trost, and

Buchwald–Hartwig reactions, have proved to be powerful tools for carbon–carbon as well as

carbon–heteroatom bond formation in the development of synthetic methodologies for applications

ranging from pharmaceuticals to materials. Intensive research efforts continue to be made to find

ways of improving and expanding the scope of the processes, and the development of more efficient

catalytic systems is a hot research topic of enormous academic and industrial interest.

This book, consisting of an editorial, two reviews and two articles, focuses on recent

promising research and novel trends in the field of cross-coupling reactions, employing a range

of different catalysts. The review by Kostas and Steele provides a survey of the research

in the area of cross-coupling catalytic reactions with transition metal complexes based on the

thiosemicarbazone unit and a discussion of the prospects for future developments. The other review

by Polychronopoulou, Shaya and co-authors describes the progress made over the 21st century

concerning the utilization of C(sp3)–organoboranes as partners in metal-catalyzed C(sp3)–C(sp2) cross

couplings, such as B-alkyl Suzuki–Miyaura reactions. The article by Waldvogel, Breinbauer and

co-authors demonstrates for the first time the synthetic potential of combining the electro-oxidative

dehydrogenative cross-coupling of ortho-substituted phenols with Pd-catalyzed cross-coupling

reactions. In the second article, Štĕpnička and co-workers describe the preparation of palladium

catalysts deposited over silica gel-bearing composite amide-donor functional moieties on the surface,

which were evaluated in the Sonogashira-type cross-coupling of acyl chlorides with terminal alkynes.

In summary, this collection of publications represents some of the progress and recent trends

in the expanding field of transition metal-catalyzed cross-coupling reactions. Special thanks are,

of course, given to all the contributing authors and to the reviewers for their assessments and

recommendations concerning the submitted manuscripts. I would also like to thank my colleague

Dr. Barry R. Steele and the editorial team of Catalysts for their kind support and fast response.

Ioannis D. Kostas

Editor
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Transition metal catalyzed cross-coupling reactions have proved to be powerful tools
for carbon–carbon as well as carbon–heteroatom bond formation in the development of
synthetic methodologies for applications ranging from pharmaceuticals to materials. Inten-
sive research efforts continue to be made into finding ways of improving and expanding
the scope of the processes, and the development of more efficient catalytic systems is a hot
research topic of enormous academic and industrial interest. Improvements in catalyst
design are continually being made and have led to the use of milder conditions, immobili-
sation on solid supports, biphasic systems for ease of separation, more benign solvents,
etc. Research in this area has led to a wide variety of very efficient and useful procedures
which are now most often known by the names of the scientists who pioneered their use,
such as Suzuki–Miyaura, Mizoroki–Heck, Negishi, Sonogashira, Kumada-Tamao-Corriu,
Migita–Kosugi–Stille, Tsuji–Trost, Buchwald–Hartwig [1–8]. These procedures are mainly
based on palladium although other metals have been shown to be effective in a number
of cases.

This Special Issue, consisting of two reviews and two articles, focuses on recent
promising research and novel trends in the field of cross-coupling reactions employing a
range of different catalysts.

A review by Kostas and Steele provides a survey of the research in the area of cross-
coupling catalytic reactions with transition metal complexes based on the thiosemicar-
bazone unit, and a discussion of the prospects for future developments [9]. Phosphanes
have traditionally been the ligands of choice for transition metal catalysis but, since they
can often be water- and air-sensitive, a number of efforts have been made to develop water
and air-tolerant phosphane-free ligands. Thiosemicarbazone ligands possessing a wide
variety of coordination modes via N, S or additional donors are excellent candidates for
catalysis under phosphane-free conditions, and their use in coupling reactions was first
reported in 2004 and 2005 for the Heck and Suzuki reactions, respectively [10,11]. The fact
that the ligands are relatively readily accessible and that the complexes formed show good
stability make them popular subjects for investigation. This review covers a large number
of thiosemicarbazone-based catalysts for a variety of cross-coupling reactions, indicating
the importance of these systems in catalysis.

Another review by Polychronopoulou, Shaya and co-authors describes progress dur-
ing the 21st century concerning the utilization of C(sp3)–organoboranes as partners in metal-
catalyzed C(sp3)–C(sp2) cross-couplings, such as B–alkyl Suzuki–Miyaura reactions [12].
Important topics of this review include the use of organic halides or pseudohalides as cou-
pling partners, the strong interest in C–O–alkyl electrophiles, and progress in the syntheses
of stable and isolable sp3-boron reagents impacting the development of C(sp3)–C(sp2)
cross-couplings.

The article by Waldvogel, Breinbauer and co-authors demonstrates for the first time
the synthetic potential of combining the electrooxidative dehydrogenative cross-coupling
of ortho-substituted phenols with Pd-catalyzed cross-coupling reactions [13]. This synthetic
methodology resulted Bcl9 quateraryl α-helix mimetics for inhibition of protein-protein
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interactions (PPIs), and it is expected that it will find applications in the synthesis of
oligoarene structures. In the first step of the process, two phenols undergo electrooxidative
dehydrogenative cross-coupling for the formation of 4,4’-biphenols. For the next step,
the researchers found it necessary to activate the phenols as nonaflates that could be
conveniently subjected to Pd-catalyzed cross-coupling reactions, whereas triflates show
considerable issues in the subsequent Pd-catalyzed reactions due to their hydrolytic lability
against bases. The nonaflate moiety serves as a leaving group for iterative Pd-catalyzed
Suzuki-cross-coupling reactions with substituted pyridine boronic acids.

In a second article, Štĕpnička and co-workers describe the preparation of palladium
catalysts deposited over silica gel bearing composite amide-donor functional moieties on
the surface [14]. These heterogeneous catalysts were evaluated in the Sonogashira-type
cross-coupling of acyl chlorides with terminal alkynes producing synthetically useful 1,3-
disubstituted prop-2-yn-1-ones. In general, they showed a good catalytic activity under
relatively mild reaction conditions even without addition of a copper co-catalyst, but a
careful optimization was required as the catalytic properties are significantly affected by
the reaction conditions (solvent and base) and depend on the nature of the functional
pendant on the support’s surface.

In summary, this collection of publications represents some of the progress and recent
trends in the expanding field of transition metal catalyzed cross-coupling reactions. I wish
to thank the authors of the publications for their valuable contributions, my colleague Dr.
Barry R. Steele, and the editorial team of Catalysts for their kind support and fast response.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Catalysis of cross-coupling reactions under phosphane-free conditions represents an
important ongoing challenge. Although transition metal complexes based on the thiosemicarbazone
unit have been known for a very long time, their use in homogeneous catalysis has been studied only
relatively recently. In particular, reports of cross-coupling catalytic reactions with such complexes
have appeared only in the last 15 years. This review provides a survey of the research in this area and
a discussion of the prospects for future developments.

Keywords: thiosemicarbazone; metal complex; transition metal catalysis; cross-coupling reaction;
Heck reaction; Suzuki reaction; Sonogashira reaction; Kumada reaction; Buchwald–Hartwig reaction

1. Introduction

Catalysis by means of transition metal complexes is now a well-established tool for the organic
chemist, and the continued interest in the field has led to increasingly more effective and efficient
systems for carrying out a wide range of reactions, both on a laboratory and on an industrial scale.
The benefits of transition metal catalysis are that the reactions are often very clean and have very
high turnovers, meaning that waste products are kept to a minimum, which is one of the precepts
of Green Chemistry. In addition, improvements in catalyst design are continually being made and
thus allow the use of milder conditions, immobilisation on solid supports, biphasic systems for
ease of separation, more benign solvents, etc. Research in the area of transition metal catalysed
carbon–carbon and carbon–heteroatom coupling reactions has led to a wide variety of very efficient
and useful procedures which are now most often known by the names of the scientists who pioneered
their use such as Suzuki–Miyaura, Mizoroki–Heck, Negishi, Sonogashira, Kumada–Tamao–Corriu,
Migita–Kosugi–Stille, Tsuji–Trost, Buchwald–Hartwig [1–9]. These procedures are mainly based on
palladium although other metals have been shown to be effective in a number of cases. Phosphane
ligands have traditionally been the ligands of choice for transition metal catalysis and particularly
so for coupling reactions. Such systems are generally rather stable and have been refined to a very
great extent. However, since phosphanes can often be water- and air-sensitive, a number of efforts
have been made to develop catalysts which avoid them and instead τo employ ligands with C, N, O,
or S donor groups [10], e.g., N-heterocyclic carbenes, carbocyclic carbenes, oxazolines, Schiff bases,
amines, imidazoles, hydrazones, semicarbazones, thiosemicarbazones, thioureas, amidates, and so
on. This review focuses on complexes of thiosemicarbazones and on how they can play a role in
these developments.

The use of thiosemicarbazones, as well as other closely related chalcogen compounds, as ligands
in metal complexes has proved to be a fruitful field of study for many years but initial reports on
their application in catalysis did not appear until the 1990’s [11–14], while their use in coupling
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reactions was only first reported several years later [15,16]. One of the primary motivations for research
into these complexes has been the various areas in which they have been proposed for application.
For example, apart from their activity as catalysts, which will be covered in more detail in this review,
many thiosemicarbazone metal complexes have been widely studied as potential treatments for various
types of cancer, for viral, bacterial, or fungal infections, and for neurodegenerative diseases, or for
malaria [17–26]. Thiosemicarbazone metal complexes have also found potential application in medical
imaging [27,28], while thiosemicarbazones themselves show promise as metal ion sensors and for the
scavenging of metals due to their selective and specific coordination properties [28–34]. Although related
compounds such as isothiosemicarbazones, dithiocarbazates, and selenosemicarbazones have so far
found less application in the catalysis of coupling reactions and will not feature in this review, it is
appropriate to mention that a number of metal complexes have nevertheless been reported and
that they too have been studied in areas such as oxidation processes [35–37], cytotoxicity [38–47],
antimicrobials [48], imaging [49,50], and antioxidants [43,51,52].

Another important aspect of thiosemicarbazones as ligands is the wide variety of coordination
modes which can be adopted. Numerous structural studies have been carried out and this area has
been the subject of a number of reviews [17,53–55]. An equilibrium mixture of thione (I) and thiol (II)
tautomers exists in solution (Scheme 1). The simplest thiosemicarbazones, without any additional
potential donor sites, can adopt a bidentate configuration either in their neutral form or in their
deprotonated form as an anionic ligand. Many thiosemicarbazones, however, also have additional
functionality which provides further potential donor sites and thus enables tridentate or higher degrees
of denticity (Scheme 2). This becomes important when dealing with carbon–carbon coupling reactions,
and especially those involving palladium complexes, since pincer-type Pd(II) complexes are known
to efficiently catalyse carbon–carbon coupling reactions [56], and it has been hypothesised that the
tridentate coordination of the pincer ligand stabilises the metal–carbon bond during the catalytic
cycle [57].
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This versatility of coordination, together with the relative ease with which these ligands can
often be prepared, has provided a considerable impetus into the study of their metal complexes,
and particularly how it can be exploited for the development of new catalysts. Reactions which
have been studied using these systems include oxidation [58–74], transfer hydrogenation [75–77],
reduction [14], silane alcoholysis [12,13,78], condensation reactions [79–81], and the cyclo propanation
of olefins [82,83], as well as coupling reactions which are described here. Some of these have also
previously been covered by Kumar et al. in reviews of the role of organochalcogen ligands in
Mizoroki–Heck and Suzuki–Miyaura reactions [84–86]. The present review is organised according to
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the nature of the bond formed, i.e. carbon–carbon or carbon–heteroatom, with further subdivisions
within these categories. It should be noted that, as with many other catalytic systems, the complexes
used should usually more accurately be referred to as pre-catalysts since the active species are often
formed in the reaction system. Indeed, there may be more than one active species formed, giving rise
to a catalytic “cocktail” [87,88]. There have been numerous studies concerning the mechanism of
coupling reactions catalysed by transition metal complexes which discuss the nature and formation of
these cocktails as well as other related features of these reactions such as the aggregation of complexes
or their de-aggregation, leaching effects, the role of nanoparticles and so on [89–92] but relatively little
such work has been done, however, on thiosemicarbazone complexes. This aspect is therefore very
much in its infancy and the present review will attempt to highlight the most significant studies in
this area.

2. Carbon–Carbon Coupling Reactions

2.1. Mizoroki–Heck Reaction

The palladium catalysed coupling of alkenes and aryl halides was discovered independently by
Mizoroki and Heck (Scheme 3). The numerous modifications and variations of this reaction have been
so extensively reviewed that there is even a review of reviews on the subject [93]. Metal complexes of
thiosemicarbazones that have been used as catalysts for this reaction are shown in Figure 1.
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Scheme 3. Mizoroki–Heck reaction.

The first reported use of a thiosemicarbazone in the Heck reaction was in 2004 by the groups
of Kovala-Demertzi and Kostas using a palladium complex of salicylaldehyde N(4)-ethylthiosemi
carbazone (1a) (Figure 1) [15]. The crystal structure of the complex indicated that the ligand behaved
as a tridentate ligand with N, S and O bonded to the metal. The reaction of styrene with a range
of aryl bromides in the presence of varying concentrations of the complex was carried out in DMF
(dimethylformamide) at 150 ◦C both in air and also under an argon atmosphere (Scheme 4). It was found
that, as is normally the case for the Heck reaction, the catalytic activity was greater for aryl bromides
with electron-withdrawing groups and decreased in the order NO2 > CHO > H > OMe, leading to the
conclusion that the oxidative addition of the aryl bromide to the complex was the rate-determining
step. The use of an inert atmosphere in general gave better results, particularly for the least active aryl
bromides and for low catalyst concentrations. However, the complex was stable enough in air under
the reaction conditions to catalyse the reaction for the more activated aryl bromides, and turnover
numbers (TONs) ranging from 120 to 14,000 and turnover frequencies (TOFs) in the range 5–583 h–1

were found. Using similar systems, 2, involving derivatives of salicylaldehydethiosemicarbazone
with an additional PPh3 ligand, Xie et al. studied the catalysis of the Heck reaction of iodobenzene
with methyl acrylate [94]. Having found that the methoxy-derivative 2c gave the best yields in initial
experiments, they examined the reaction with a range of other aryl iodides and aryl bromides, and with
different solvents and bases. Generally, good to very good yields were obtained using aryl iodides and
various acrylate esters under an argon atmosphere with DMF as solvent, K2CO3 as base, a temperature
of 110–130 ◦C and a catalyst loading of at least 0.01 mol%. Using Na2CO3, lower catalyst loading also
gave good results and this base was used in the reactions of the aryl bromides (Scheme 5). In the latter
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case, catalyst loadings of 0.1 or 1 mol% were necessary in order to obtain acceptable yields. Bidentate
thiosemicarbazone complexes of palladium were investigated as catalysts in coupling reactions by
Paul et al. [95]. They found that, in the Heck reaction, the complexes 3 and 4 displayed catalytic
behavior at 0.5 mol% catalyst loading for the reaction between some aryl bromides and n-butyl acrylate
(Scheme 6). The authors used Cs2CO3 as base and either ethanol-toluene or PEG (polyethylene glycol)
as solvent at 110–150 ◦C. Although the results were only moderately good, this system could have
much room for optimization taking into account the observation of Xie et al. (see above) that PEG
was a poor solvent for the similar system that they examined and that K2CO3 was a superior base
than Cs2CO3.
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Scheme 6. Heck reaction of aryl bromides and n-butyl acrylate catalysed by complexes 3 or 4.

The dinuclear bis-bidentate palladium complex 5, which also possesses PPh3 ligands coordinated
to the metal, was prepared and structurally characterized by Prabhu and Ramesh who subsequently
made a systematic study of its catalytic activity in the Heck reaction of p-bromoacetophenone
with t-butyl acrylate, examining the effect of temperature, solvent, base and catalyst loading [96].
Inorganic bases such as K2CO3 or Na2CO3 were superior to amines, DMF was the optimal solvent
and a temperature of 100 ◦C provided the best results within a reasonable time. Catalyst loadings of
1 or 0.1 mol% gave quantitative yields but it is worth noting that the reaction proceeds even at very
low catalyst loading of 0.00001 mol%, and, although the yield in this case is low (11%), the turnover
number (1,100,000) and the turnover frequency (137,500 h–1) are still impressive. Using optimized
conditions, the authors were able to demonstrate the activity of the complex for a wide range of
electron-withdrawing and electron-donating aryl bromides with methyl and t-butyl acrylate, styrene,
p-methylstyrene, and p-chlorostyrene (Scheme 7). TONs of 6,000 to 9,800 and TOFs in the range
750–1225 h–1 were reported.
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Scheme 7. Heck reaction of aryl bromides with acrylate esters or substituted styrenes catalysed by
complex 5.

The above studies all involved complexes of palladium but there have also been reports of the
application of thiosemicarbazone nickel complexes to coupling reactions. One of the main motivations
for this is the relatively low cost of nickel compared with palladium while, on the other hand, the main
difficulty that needs to be surmounted is the well-established high efficiency of palladium complexes.
It is also conceivable that there are important mechanistic differences in the mode of action of the
complexes of the two metals but, for thiosemicarbazone complexes at least, no systematic studies have
yet been carried out. The first report of the application of thiosemicarbazone nickel complexes to the
Heck reaction was by Datta et al., who prepared and characterized three complexes with 2-hydroxyaryl
thiosemicarbazone ligands [97]. Dinuclear complexes with tridentate N,S,O-coordination were formed
which were reacted with PPh3, pyridine, or bipyridine to give mononuclear complexes that retained
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the tridentate coordination. The complexes were examined for their catalytic efficiency in the reaction
of p-bromoacetophenone, p-bromobenzonitrile, and p-bromobenzaldehyde with butyl acrylate in
DMF at 130 ◦C. Catalyst loadings of 2 mol% were found to give good yields but TONs (18–50) and
TOFs (2.1 × 10–4 sec–1) were modest compared with TONs of analogous palladium complexes (8000).
One encouraging feature, however, was that coupling reactions of aryl chlorides also proceeded with
yields of a similar order of magnitude to the more reactive aryl bromides and iodides. Better results,
at least as far as aryl bromides are concerned, were obtained using the nickel complex 6 reported
by Suganthy et al. [98]. Using optimized conditions, this bis(thiosemicarbazone) nickel complex
catalysed the reaction between a series of aryl bromides and methyl and t-butylacrylate, styrene,
p-methylstyrene and p-chlorostyrene (Scheme 8). Using catalyst loadings of 0.5 mol%, moderate to
very good conversions were obtained with turnover numbers ranging from 120 to 188 and turnover
frequencies in the range 5–8 h–1. However, it is significant that, compared with the system mentioned
above [97], no catalytic activity was observed in the coupling of 4-chloroacetophenone with t-butyl
acrylate in DMF/K2CO3 even after 24 h at elevated temperatures.
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complex 6.

Very recently, a comparative study has been made of similar thiosemicarbazone complexes of
nickel, palladium, and platinum [99]. Using a tetradentate bis-thiosemicarbazone ligand, Lima et al.
synthesized the complexes 7. The tetradentate coordination was verified by X-ray diffraction structural
determinations and the complexes were subsequently studied in the Heck reaction of iodobenzene
with styrene. The palladium complex was an active catalyst at loadings of 3.5 mol% or above in
a reaction carried out in DMF at 120 ◦C using triethylamine as the base. The platinum and nickel
complexes showed activity but much less than the Pd complex. The palladium system appears to show
much less catalytic activity than previously reported complexes and this may be due to the lack of
free coordination sites in the tetracoordinated complex. On the other hand, it should be noted that
the use of an organic base instead of an inorganic one is known to play a significant role and this also
should be taken into account. It is also not clear from the report whether an inert atmosphere was
employed. The authors performed preliminary DFT calculations from which they postulate that the
process involving the tetradentate Pd complex does not follow the typical reaction mechanism for
Heck catalysts involving an initial Pd(0)-Pd(II) oxidative-addition step. The calculations indicated a
partial charge of +1.154 on the metal in the palladium complex compared to a much lower charge of
+0.284 on the metal in the nickel one. Taking into account the increased catalytic activity of the Pd
complex, and on the basis of their calculations for the likely steps in the catalytic cycle, the authors
suggest that the reaction proceeds via an initial Pd(II)-Pd(IV) oxidative-addition of the aryl halide
followed by olefin insertion and reductive elimination.

Published reports of the use of thiosemicarbazone complexes as described above for the
Mizoroki–Heck reaction are summarised in Table 1 for indicative reactions.
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Table 1. Mizoroki–Heck reactions catalysed by thiosemicarbazone complexes: representative conditions
and yields 1.

Metal T (◦C) Solvent Time (h) Ligand 2 Base Catalyst (mol%) Yield (%) Ref.

Pd 150 DMF 24 O,N,S NaOAc 0.1 46–95 [15]
Pd 130–145 DMF 24–36 O,N,S Na2CO3 0.1–1.0 50–90 [94]

Pd 110–150 EtOH/toluene
or PEG 12–48 N,S Cs2CO3 0.5–1.0 57–80 [95]

Pd 100 DMF 8 N,S K2CO3 0.01 60–97 [96]
Ni 130 DMF 24 O,N,S Cs2CO3 2.0 36–99 [97]
Ni 110 DMF 24 N,S K2CO3 0.5 60–94 [98]
Pd 120 DMF 5–24 S,N,N,S Et3N 3.5 67–82 3 [99]

1 conditions refer to reactions involving aryl bromides and (substituted) styrenes or acrylates. 2 ligand donor atoms.
3 for the reaction of PhI with styrene.

2.2. Suzuki–Miyaura and Related Reactions

The coupling of alkenyl, alkynyl, and aryl halides with boronic acids and related derivatives by
palladium complexes, first reported in 1979 by Miyaura and Suzuki, led to intense research activity
aiming at optimising the reaction and extending its application to increasingly more demanding
systems (Scheme 9). Numerous reviews have appeared and continue to appear on the subject [2,3].
Representative metal complexes of thiosemicarbazones that have been used as catalysts for this reaction
are shown in Figures 2–4; see also in Figure 1.

The first report of the use of thiosemicarbazone complexes in this reaction was by Kostas et al.,
who studied the cross-coupling of aryl halides with phenylboronic acid (Scheme 10) [16]. The complexes
1a and 1b used were derived from salicylaldehyde (Figure 1), and one of them (1a) having already
been successfully used in the Heck reaction as mentioned above [15]. The complexes are air-stable
and this therefore enabled the reactions to be carried out without the need for an inert atmosphere.
In addition, they are moisture-stable and in fact the addition of one equivalent of water was found to be
beneficial. Aryl bromides with varying substitution were used and, as had been previously observed
in reactions with other catalysts, the best results were obtained with electron-withdrawing substituents.
Catalyst loadings of 0.1 mol% gave moderate to very good conversions for most substrates in reactions
in DMF at 100 ◦C using Na2CO3 as base, but even lower loadings of 0.001 mol% were also active
systems, albeit with lower conversions. TONs ranging from 400 to 49,000 and TOFs in the range
17–2042 h–1 were reported. The reaction with aryl chlorides was also catalysed by these complexes but,
as expected, with somewhat lower TONs (260–370) and TOFs (11–15 h–1). These complexes were less
active than some previously reported P-systems but have the important advantage of being phosphane
free and requiring less demanding conditions. In a subsequent paper, the same group reported on
the synthesis and characterisation of a new palladium thiosemicarbazone complex 8 (Figure 2) [100].
The thiosemicarbazone was again derived from salicylaldehyde but with a tertiary amino end group
derived from hexamethyleneimine. The crystal structure determination of the bis-ligand palladium
complex demonstrated that the two ligands were coordinated in a bidentate fashion via N and S
donors. In contrast with the complexes in the previous study, the oxygen on the salicylaldehyde
portion was not involved in direct bonding to the metal but was connected via a hydrogen bond to
the unsubstituted thioamide nitrogen. This complex did not demonstrate catalytic activity in the
Suzuki–Miyaura reaction using the conditions employed in the previous work, and it was proposed
that this is because the metal is bonded to two thiosemicarbazone moieties by four intramolecular
bonds, resulting in inhibition of the addition of the aryl halide to the metal during the catalytic cycle.
However, using microwave irradiation, positive results were obtained for the reaction of bromobenzene
and p-nitrobromobenzene with phenylboronic acid (Scheme 11). As in the previous study, the addition
of water was found to be beneficial and good yields were obtained after up to 60 min irradiation using
DMF as solvent and Na2CO3 as base. Catalyst loadings of 0.1 mol% were used for reactions with
bromobenzene and 0.001 mol% for those with p-nitrobromobenzene. TONs of up to 37,000 and TOFs
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of up to 617 min–1 were recorded. The reaction of phenylboronic acid with p-nitrochlorobenzene was
also successful under these conditions. The observation that conventional heating failed to promote
the reaction prompted the authors to postulate that the acceleration of the reaction was due to specific
microwave effects [100,101].
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acid catalysed by complex 8.

Bidentate complexes 3 and 4 prepared and characterised by Paul et al., and described above
in relation to their catalytic activity in the Heck reaction (Figure 1), were also examined for their
possible use in the Suzuki–Miyaura reaction [95,102]. The coupling of phenylboronic acid with
p-bromoacetophenone, p-bromobenzaldehyde, or p-bromobenzonitrile was investigated using both the
mono-ligand complex 3 containing PPh3 as a supporting ligand and the bis-ligand phosphane-free
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complex 4 (Scheme 12). Relatively mild conditions were used (ethanol-toluene or PEG solvent,
NaOH as base, temperature 95–110 ◦C) and very high TONs (100,000) and TOFs (up to 11,111 h–1) were
recorded for the former complex while lower, but still high, TONs (up to 8,800) and TOFs (up to 733 h–1)
were recorded in the latter case. The mono-ligand complexes showed tolerance to water although the
best results were obtained in dry conditions. The reaction involving p-bromoacetophenone using the
mono-ligand complex 3 was even successful at 25 ◦C giving a conversion of 99%, TON of 100,000,
and TOF of 5,000 h–1.
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Scheme 12. Suzuki reaction of aryl bromides with phenylboronic acid catalysed by complex 3.

The phosphane-free complex 9 was reported by Castiñeiras et al. (Figure 2) [103]. The tridentate
coordination of the dianionic ligand derived from 5-acetylbarbituric-4N-dimethylthiosemicarbazone
was confirmed by XRD crystallography. In the reaction between phenylboronic acid and bromobenzene,
p-bromoanisole, p-bromonitrobenzene and the corresponding chloro-derivatives, conversions of
between 46 and 78% were observed for the aryl bromides, while somewhat lower values from 21 to 32%
were found for the chlorides (Scheme 13). The authors postulated that, since the ligand is dianionic,
the mechanism involves initial oxidative addition of the aryl halide and cycling between palladium
+2 and +4 oxidation states as had previously been proposed for other Pd catalysts possessing pincer
ligands, rather than via the 0 and +2 states [104,105]. However, it should be noted that it is now
generally accepted that cross-couplings catalysed by cyclometallated Pd(II) complexes proceed via a
Pd(II) to Pd(0) pathway and that Pd(0) species are the active catalysts [57].
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Scheme 13. Suzuki reaction of aryl halides with phenylboronic acid catalysed by complex 9.

In 2012 the group of Bhattacharya reported new thiosemicarbazone complexes (10, 11) of
palladium with 1-nitroso-2-naphtholate or quinolin-8-olate supporting ligands (Figure 2) [106].
The thiosemicarbazone ligands were derivatives of benzaldehyde with a range of para-substituents
in order to investigate their effect on catalytic activity. The complexes contain two 5-membered
rings and only the configuration where the two nitrogens are trans to each other was observed.
Catalysis of the Suzuki–Miyaura reaction by complexes 10 and 11 was studied, with optimisation
of certain parameters being carried out with phenylboronic acid and p-bromoacetophenone as
substrates. Using catalyst loadings of 0.001 mol%, 100% conversions were obtained after 24 h in PEG
at 120 ◦C using either NaOH or Cs2CO3 as base (Scheme 14). Under these conditions, TONs of up
to 100,000 and TOFs of up to 16,667 h–1 were recorded. Reduction of the loading to 0.0001 mol%
gave slightly lower conversions as did replacement of p-bromoacetophenone with the less reactive
p-bromobenzaldehyde or p-bromobenzonitrile. Other halo-derivatives were also examined and,
as expected, p-iodoacetophenone also gave 100% conversion while p-chloroacetophenone required a
higher loading of 0.1 mol% to achieve a similar result. Interestingly, low but significant yields, 10–12%,
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of the product of coupling p-fluoroacetophenone with phenylboronic acid were observed with 1 mol%
catalyst loading. Although no specific studies of the likely mechanism were described, the authors
favoured a process involving initial formation of a zerovalent Pd species, in which the protonated
thiosemicarbazone and N,O-donor ligands remain coordinated, followed by oxidative addition of the
aryl halide. If indeed the active species is as proposed, it could be of interest to determine if it remains
active for reuse in repeated cycles. In an attempt to produce analogous complexes with 2-picolinic acid
as the supporting ligand, Dutta and Bhattacharya, instead of the expected mono-ligand complexes,
obtained the bis-ligand complexes 12 with a rare cis-configuration and also a second product which
was postulated to be a polymeric bridged complex containing a tridentate cyclometallated ligand
(Figure 2) [107]. This was confirmed by cleavage of the bridges by triphenylphosphine to give the
mononuclear complexes of the type 13a whose structures were also confirmed by X-ray crystallography.
The two sets of complexes were examined for their potential as catalysts for the Suzuki–Miyaura reaction
for a range of aryl halides and substituted phenylboronic acids (Scheme 15). Very good conversions
were observed for most of the reactions with aryl iodides and bromides under relatively mild conditions
(PEG as solvent, 120 ◦C, NaOH as base, 1–8 h) and catalyst loadings of 0.001 mol%, while aryl chlorides
required higher catalyst loadings of 0.1 mol% to achieve comparable results. The p-methoxyphenyl
and p-chlorophenylboronic acids reacted more sluggishly than phenylboronic acid itself. Of the two
sets of complexes, the mono-ligand complexes gave somewhat superior results and this was attributed
to the presence of the triphenyphosphine supporting ligand. For both sets of complexes, no additional
ligand was needed and the authors argue that this implies that the ligands in the pre-catalyst do
not dissociate and that they stabilize the intermediate Pd(0) species. The same research group has
also reported further examples of the mono-ligand cyclometallated complex with PPh3 supporting
ligand (complexes 13b, 14, 15). These were prepared by a slightly different route and, together with
a non-cyclometallated complex containing a bidentate thiosemicarbazone ligand as well as PPh3,
were examined for their activity in the coupling of p-haloacetophenones with phenylboronic acid
(Scheme 16) [108]. Results similar to those given above were obtained, the cyclometalated complexes
giving the better results. Notably, coupling of the fluoro-derivative could also be achieved with these
catalysts. Analogous cyclometallated palladium complexes 16 based on 3,4-dichloroacetophenone
thiosemicarbazone have also been reported by Yan et al. [109]. These complexes were screened for
their activity in the Suzuki–Miyaura reaction and the most promising of the four, a dinuclear complex
with a 1,1’-bisdiphenylphosphinoferrocene bridging supporting ligand, was used for further study.
Reactions were carried out for 24–48 h in air or argon, using DMF as a solvent, K3PO4 as base and
a temperature of 130 ◦C, using a range of aryl bromides and chlorides and various aryl boronic
acids (Scheme 17). Substitution on the boronic acid had no major effect except for 2-methoxyphenyl
boronic acid, which gave lower yields, possibly because of steric effects. The aryl bromides all gave
moderately good to excellent yields while the chlorides, as expected, gave lower conversions except
for p-nitrochlorobenzene.
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Scheme 17. Suzuki reaction of aryl halides with substituted phenylboronic acids catalysed by
complex 16.

The complex 17 was reported by Pandiarajan et al. (Figure 3) [110]. The dianionic ligand binds
through S, N, and O donors and the complex is air and moisture stable. It catalysed the Suzuki–Miyaura
reaction in refluxing DMF with K2CO3 base with very good conversions after 3 h for a number of
aryl bromides and boronic acids (Scheme 18). Coupling of p-iodoacetophenone was also achieved
with excellent conversion while with the analogous chloro-derivative moderate yields of product were
obtained after 12 h. In the same year, another phosphane supported thiosemicarbazone palladium
complex, 18, was reported by Verma et al. (Figure 3) [111]. The thiosemicarbazone in this case is
derived from a sugar aldehyde and the complex from the analogous semicarbazone was also prepared.
These ligands were shown by structural studies to bind to the metal in a bidentate manner. The authors
were particularly interested in the catalytic activity of these complexes in the coupling of aryl chlorides
with boronic acids and found that this could be achieved in good to excellent yields at ambient
temperatures using a catalyst loading of 0.2 mol% in EtOH, with K2CO3 as base and reaction times of
just 30–90 min (Scheme 19). At lower catalyst loadings, however, the reaction times were much longer
and yields were also reduced. The authors were able to demonstrate that the catalysts retained their
activity after five cycles.

15



Catalysts 2020, 10, 1107
Catalysts 2020, 10, x FOR PEER REVIEW 15 of 42 

 

 

Scheme 18. Suzuki reaction of aryl bromides with substituted phenylboronic acids catalysed by 

complex 17. 

 

Scheme 19. Suzuki reaction of aryl chlorides with phenylboronic acid catalysed by complex 18. 

 

Scheme 20. Suzuki reaction of aryl bromides with phenylboronic acid catalysed by complex 19. 

The use of aqueous media for carrying out catalytic reactions has many attractions and in 2017, 

Matsinha et al. reported the synthesis of two water-soluble palladium complexes 20a and 20b 

containing sulfonated-thiosemicarbazone ligands (Figure 3) [113]. In both complexes, the ligand is 

tridentate, and the vacant position is occupied by a tertiary phosphine (PPh3 in 20a and 1,3,5-triaza-

7-phosphaadamantane in 20b). The complexes displayed good stability in water. Catalytic coupling 

of a range of aryl bromides with aryl boronic acids was investigated in water at 70 °C using Na2CO3 

as base and TBAB (tetrabutylammonium bromide) as a phase-transfer mediator (Scheme 21). 

Satisfactory results were obtained, although it should be noted that rather long reaction times (24 h) 

and higher catalyst loadings (1 mol%) were employed than were usual for reactions in non-aqueous 

media. An investigation into the reusability of the catalysts indicated that activity drops off quite 

rapidly and that during the fourth cycle activity was low. The authors speculate that this could be 

due either to leaching of the active catalyst during the extraction step or to partial decomposition of 

the active species. However, the possibility that the catalyst was the precursor to a heterogeneous 

system which then degraded quickly was ruled out by the authors, since the mercury drop test for 

such cases failed to affect the catalytic activity to any significant extent. An aqueous media was also 

employed by Baruah et al. for the complex 21 (Figure 3) [114]. In this case, the supporting ligand is 

imidazole and the thiosemicarbazone adopts bidentate coordination as a monoanion. After a number 

of optimisation runs, the authors examined the coupling of a range of aryl halides and aryl boronic 

acids using this complex as a precatalyst. Ambient temperatures were employed with K2CO3 as the 

base and a catalyst loading of 1.18 mol%. For most of the aryl bromides, good conversions were 

achieved after 2–6 h, while the aryl chorides examined needed an elevated temperature (60 °C) and 

longer reaction times for comparable results. The complex itself was not soluble in water and was 

Scheme 18. Suzuki reaction of aryl bromides with substituted phenylboronic acids catalysed by
complex 17.

Catalysts 2020, 10, x FOR PEER REVIEW 15 of 42 

 

 

Scheme 18. Suzuki reaction of aryl bromides with substituted phenylboronic acids catalysed by 

complex 17. 

 

Scheme 19. Suzuki reaction of aryl chlorides with phenylboronic acid catalysed by complex 18. 

 

Scheme 20. Suzuki reaction of aryl bromides with phenylboronic acid catalysed by complex 19. 

The use of aqueous media for carrying out catalytic reactions has many attractions and in 2017, 

Matsinha et al. reported the synthesis of two water-soluble palladium complexes 20a and 20b 

containing sulfonated-thiosemicarbazone ligands (Figure 3) [113]. In both complexes, the ligand is 

tridentate, and the vacant position is occupied by a tertiary phosphine (PPh3 in 20a and 1,3,5-triaza-

7-phosphaadamantane in 20b). The complexes displayed good stability in water. Catalytic coupling 

of a range of aryl bromides with aryl boronic acids was investigated in water at 70 °C using Na2CO3 

as base and TBAB (tetrabutylammonium bromide) as a phase-transfer mediator (Scheme 21). 

Satisfactory results were obtained, although it should be noted that rather long reaction times (24 h) 

and higher catalyst loadings (1 mol%) were employed than were usual for reactions in non-aqueous 

media. An investigation into the reusability of the catalysts indicated that activity drops off quite 

rapidly and that during the fourth cycle activity was low. The authors speculate that this could be 

due either to leaching of the active catalyst during the extraction step or to partial decomposition of 

the active species. However, the possibility that the catalyst was the precursor to a heterogeneous 

system which then degraded quickly was ruled out by the authors, since the mercury drop test for 

such cases failed to affect the catalytic activity to any significant extent. An aqueous media was also 

employed by Baruah et al. for the complex 21 (Figure 3) [114]. In this case, the supporting ligand is 

imidazole and the thiosemicarbazone adopts bidentate coordination as a monoanion. After a number 

of optimisation runs, the authors examined the coupling of a range of aryl halides and aryl boronic 

acids using this complex as a precatalyst. Ambient temperatures were employed with K2CO3 as the 

base and a catalyst loading of 1.18 mol%. For most of the aryl bromides, good conversions were 

achieved after 2–6 h, while the aryl chorides examined needed an elevated temperature (60 °C) and 

longer reaction times for comparable results. The complex itself was not soluble in water and was 

Scheme 19. Suzuki reaction of aryl chlorides with phenylboronic acid catalysed by complex 18.

In an attempt to develop a phosphane-free catalyst, the group of Kostas synthesised a
binuclear palladium complex 19 with a ligand derived from β-D-glucopyranosyl-thiosemicarbazone
(Figure 3) [112]. The complex was characterised spectroscopically and investigated as a potential
catalyst for the Suzuki–Miyaura reaction between aryl bromides and phenyl boronic acid (Scheme 20).
After 24 h at 100 ◦C in DMF and with K2CO3 as base, good to excellent conversions were obtained
using a 0.05 mol% catalyst loading. Aryl chlorides, however, gave rather poor conversions. Tests were
carried out in order to determine the nature of the catalyst and it was concluded that the active species
was heterogeneous and possibly composed of Pd(0) nanoparticles. The complexes used in this study
and in the study mentioned in the previous paragraph [111] are of additional interest in that they
employ chiral ligands. Although in these studies, possible applications in asymmetric catalysis were
not explored, the amenability of thiosemicarbazone ligands to functionalisation with chiral groups
could provide a promising avenue for future work.
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Scheme 20. Suzuki reaction of aryl bromides with phenylboronic acid catalysed by complex 19.

The use of aqueous media for carrying out catalytic reactions has many attractions and
in 2017, Matsinha et al. reported the synthesis of two water-soluble palladium complexes 20a
and 20b containing sulfonated-thiosemicarbazone ligands (Figure 3) [113]. In both complexes,
the ligand is tridentate, and the vacant position is occupied by a tertiary phosphine (PPh3 in 20a and
1,3,5-triaza-7-phosphaadamantane in 20b). The complexes displayed good stability in water. Catalytic
coupling of a range of aryl bromides with aryl boronic acids was investigated in water at 70 ◦C using
Na2CO3 as base and TBAB (tetrabutylammonium bromide) as a phase-transfer mediator (Scheme 21).
Satisfactory results were obtained, although it should be noted that rather long reaction times (24 h)
and higher catalyst loadings (1 mol%) were employed than were usual for reactions in non-aqueous
media. An investigation into the reusability of the catalysts indicated that activity drops off quite
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rapidly and that during the fourth cycle activity was low. The authors speculate that this could be due
either to leaching of the active catalyst during the extraction step or to partial decomposition of the
active species. However, the possibility that the catalyst was the precursor to a heterogeneous system
which then degraded quickly was ruled out by the authors, since the mercury drop test for such cases
failed to affect the catalytic activity to any significant extent. An aqueous media was also employed by
Baruah et al. for the complex 21 (Figure 3) [114]. In this case, the supporting ligand is imidazole and
the thiosemicarbazone adopts bidentate coordination as a monoanion. After a number of optimisation
runs, the authors examined the coupling of a range of aryl halides and aryl boronic acids using this
complex as a precatalyst. Ambient temperatures were employed with K2CO3 as the base and a catalyst
loading of 1.18 mol%. For most of the aryl bromides, good conversions were achieved after 2–6 h,
while the aryl chorides examined needed an elevated temperature (60 ◦C) and longer reaction times
for comparable results. The complex itself was not soluble in water and was used as a suspension and
it was suspected that the actual catalyst could be a Pd(0) species. Support for this came from a mercury
drop test, which inhibited catalytic activity. The activity of the catalyst falls of in subsequent cycles but
no significant leaching of palladium was observed. The catalyst isolated after a first cycle was therefore
examined by TEM, SEM-EDX, and XRD and was determined to consist of Pd(0) nanoparticles whish
are presumed to be formed by dissociation of the ligands from the initial complex during the reaction.
SEM-EDX examination of these nanoparticles indicated that they are possibly stabilized by surface
thiosemicarbazone ligands. They were found to have an initial size of 1.5–2.0 nm, but after successive
runs they aggregated to larger particles with lower activity.
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Scheme 21. Aqueous Suzuki reaction of aryl bromides with substituted phenylboronic acids catalysed
by complex 20a or 20b.

Dharani et al. reported a series of palladium complexes 22 derived from 3-acetyl-7-methoxy-
2H-chromen-2-one thiosemicarbazones (Figure 3) [115]. Three of the products (22a–c) proved to be
tetranuclear complexes in which ligands are bonded via S, N, and C, cyclometallation having taken
place by activation of the ortho-C–H bond. The palladium atoms are connected via thiolate bridges.
The fourth complex, with phenyl substitution on the terminal nitrogen of the thiosemicarbazide,
was the mononuclear species 22d. All of the complexes were screened for activity as catalysts for the
Suzuki–Miyaura reaction and one them (22b) was chosen for further study. Using a 0.125 mol% loading
of the complex, EtOH-H2O as solvent, K2CO3 as base, and a temperature of 70 ◦C, good conversions were
obtained for the coupling of phenyl boronic acid with a range of aryl halides including chloroquinolines.
The results were found to compare well with those obtained for other tetranuclear palladium complexes
in aqueous conditions. The catalyst isolated from the reaction could be used up to four more times with
only partial loss of activity. In further cycles, however, a 50% loss of activity occurred. A mechanism
was proposed involving initial cleavage of the tetranuclear complex into a mononuclear species
followed by a Pd(II)-Pd(IV) oxidative addition/elimination sequence. The fall-off in activity in fifth
and successive cycles was ascribed to the gradual aggregation of the mononuclear species to form
less active nanoparticles, evidence for which was obtained by powder X-ray diffraction studies.
More recently, Bakir et al. have reported similar tetranuclear complexes derived from di-thienyl
ketone thiosemicarbazone [116]. These were screened for their possible use as precatalysts in the
Suzuki–Miyaura reaction but the results were only moderate. This was ascribed by the authors to be at
least partly due to the polymeric nature and insolubility of the complex.
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Cationic complexes 23 of the type [Pd(dppe)L]NO3 (dppe = 1,2-bis(diphenylphosphino)ethane),
where L is a bidentate thiosemicarbazone ligand derived from a p-substituted benzaldehyde were
prepared by Thapa et al., and structurally characterised, confirming the formation of N,S-chelated
5-membered rings (Figure 4) [117]. The authors hypothesised that, in view of the previously observed
improvements in catalytic efficiency due to the presence of phosphine supporting ligands, the use of
a diphosphine could potentially enhance this even further. Indeed, compared with other analogous
complexes prepared by these workers [95], superior results were seen. Good conversions with high
TONs (up to 980,000) and TOFs (up to 326,667 h–1) were observed for a number of aryl iodides and
bromides at 95 ◦C in EtOH-toluene with Cs2CO3 as base and catalyst loadings of 0.001–0.0001 mol%
(Scheme 22). Chlorides also engaged quite readily in the coupling reaction with somewhat higher
catalyst loadings and slightly modified conditions, while aryl fluorides could also be coupled with
the unsubstituted phenyl boronic acid at 130 ◦C in PEG using NaOBut as base and with a 1 mol%
catalyst loading.
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Scheme 22. Suzuki reaction of aryl bromides with substituted phenylboronic acids catalysed by
complex 23.

Catalysis of the Suzuki–Miyaura reaction by nickel complexes has attracted attention in
recent years due to the greater accessibility of nickel and also its greater activity in certain cases.
Thiosemicarbazone complexes of nickel, however, have been much less investigated than their
palladium counterparts. In 2011, Datta et al. reported the synthesis of mono- and dinuclear
nickel complexes 24 and 25, respectively, derived from salicylaldehyde, 2-hydroxyacetophenone and
2-hydroxynaphthaldehyde thiosemicarbazones with bipyridine or terpyridine supporting ligands
(Figure 4) [118]. The tridentate ligands are bonded via N, S, and O donors and the dinuclear
complexes are bridged via thiolate and phenolate groups. The complexes were examined for their
activity in the Suzuki–Miyaura reaction for some aryl bromides and iodides with phenyl boronic acid.
Relatively good activity was observed although it was much less than that shown by similar palladium
complexes. Similar O,N,S-bonded nickel complexes 26 derived from 9,10-phenanthrenequinone
thiosemicarbazone, 9,10-phenanthrenequinone N-methylthiosemicarbazone and 9,10-phenanthr
enequinone N-phenylthiosemicarbazone have also been reported by Anitha et al., but these complexes
gave only rather moderate results for Suzuki–Miyaura couplings [119].

Although it is not a normal Suzuki–Miyaura reaction, we may also mention here the application
of the palladium thiosemicarbazonato complex 27 as a catalyst for the synthesis of diaryl ketones via
the C–C coupling reaction between aryl aldehydes and aryl boronic acids reported by Prabhu and
Ramesh (Scheme 23) [120]. Optimal conditions were found to be 110 ◦C in toluene in the presence of
Cs2O3 and using 5 mol% of the complex. The scope of the reaction was demonstrated by the synthesis
of diaryl ketones from the reaction of a wide variety of aromatic and heteroaromatic aldehydes with
phenyl boronic acid as well as from the reaction of a selection of aryl boronic acids with benzaldehyde.
Satisfactory to excellent isolated yields were obtained.
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Scheme 23. Synthesis of diaryl ketones by carbon–carbon coupling reaction between aryl aldehydes
and aryl boronic acids.

Table 2 summarises representative conditions and yields for Suzuki–Miyaura reactions catalysed
by thiosemicarbazone complexes.

Table 2. Suzuki–Miyaura reactions catalysed by thiosemicarbazone complexes: representative
conditions and yields 1.

Metal T (◦C) Solvent Time (h) Ligand 2 Base Catalyst
(mol%)

Yield
(%) Ref.

Pd 100 DMF/H2O 24 O,N,S Na2CO3 0.1 40–88 [16]
Pd 100–157 DMF/H2O 0.25–1 O,N,S Na2CO3 0.001–0.1 25–85 [100] 3

Pd 25–95 EtOH/toluene 9–20 N,S NaOH 0.001 >99 [102]
Pd 140 DMF 24 O,N,S K2CO3 2.0 46–78 [103]

Pd 120 PEG 6–24 N,S NaOH or
Cs2CO3

0.001 100 [106]

Pd 120 PEG 6–24 N,S NaOH 0.001 65–100 [107]
Pd 120 PEG 4–24 C,N,S NaOH 0.001 71–100 [107]
Pd 25–95 EtOH/toluene 9–20 N,S NaOH 0.001 98–100 [108]
Pd 25–95 EtOH/toluene 3–14 C,N,S NaOH 0.001 100 [108]
Pd 130 DMF 24–48 C,N,S K3PO4 0.5 31–99 [109]
Pd reflux DMF 3 O,N,S K2CO3 0.001 78–99 [110]
Pd 25 EtOH 0.5–1.5 N,S K2CO3 0.2 76–98 [111] 4

Pd 100 DMF 24 N,S K2CO3 0.05 60–99 [112]
Pd 70 H2O 24 O,N,S Na2CO3 1.0 25–98 [113]
Pd 28 H2O 2–12 N,S K2CO3 1.18 65–90 [114]
Pd 60–70 EtOH/H2O 1–4 C,N,S K2CO3 0.125 51–99 [115]
Pd 95 EtOH/toluene 6–8 N,S Cs2CO3 0.001 79–100 [117]
Ni 140 DMF 24 O,N,S Cs2CO3 2.0 40–99 [118]
Ni 90 DMA 7 O,N,S K2CO3 1.0 28–64 [119]
Pd 110 toluene 12 N,S Cs2CO3 5.0 62–97 [120] 5

1 conditions refer to reactions involving aryl bromides and phenyl or aryl boronic acids. 2 ligand donor atoms.
3 microwave irradiation 4 aryl chlorides were used. 5 Aryl aldehydes used instead of aryl halides.

2.3. Sonogashira and Related Reactions

Since the first report by Sonogashira in 1975 [121], the metal complex-catalysed coupling of
terminal alkynes with haloorganics has developed into an essential tool for the synthetic organic
chemist (Scheme 24) [1,5,9]. Palladium or copper complexes are generally employed to facilitate this
reaction and some very efficient systems have been reported for a wide variety of halides. Reports of
the use of thiosemicarbazone complexes for this reaction have appeared only relatively recently.
Representative metal complexes are shown in Figure 5; see also Figures 1, 3 and 4.
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Figure 5. Representative metal complexes of thiosemicarbazones as catalysts for the Sonogashira reaction.

Reports of the use of thiosemicarbazone complexes for this reaction have appeared only relatively
recently. The few studies that have been made concern Pd and Ni complexes and are often subsidiary
to studies of other coupling reactions. Thus there have been no significant studies on the nature of the
active species in these reactions or of other features which may confer advantages over previously
reported complexes.

In 2011, Paul et al. in their study described above in connection with the use of thiosemicarbazone
complexes of palladium in the Mizoroki–Heck or Suzuki–Miyaura couplings also examined their
application to the Sonogashira reaction (see complexes 3 and 4 in Figure 1) [95]. Moderate to good
conversions were obtained for the coupling of a limited number of aryl bromides with phenyl acetylene
using either toluene-ethanol or PEG as solvent in the presence of Cu(I) and NaOH at 75–110 ◦C
(Scheme 25). Catalyst loadings of 0.5 mol% were employed giving TONs of up to 200 and TOFs of up
to 20 h–1.
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In addition to the Suzuki–Miyaura reaction, Verma et al. also applied their carbohydrate
derived thiosemicarbazone Pd complex 18, shown in Figure 3, to the Sonogashira reaction between
phenylacetylene and chlorobenzene, p-nitrobromobenzene or iodobenzene in triethylamine at
80 ◦C [111]. Moderate conversions of about 65% were obtained with 0.5 mol% catalyst loadings.
In order to avoid the use of copper compounds in the Sonogashira reaction, a number of attempts
have been made to develop complexes that are active under copper-free conditions. The first instance
of a such a catalyst containing a thiosemicarbazone ligand was reported by Prabhu and Pal who
synthesised a pyrenealdehyde thiosemicarbazonide palladium complex 28 (Figure 5) containing a
Ph3P supporting ligand [122]. Single crystal X-ray diffraction indicated bidentate N,S-coordination of
the ligand. The complex is air stable and was shown to catalyse the Sonogashira reaction between
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phenylacetylene and a range of aryl chlorides and bromides at room temperature in DMF/Et3N using a
0.5 or 1 mol% catalyst loading (Scheme 26). Moderate to very good conversions were obtained after
12 h (for the bromides) or 24 h (for the chlorides).
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Scheme 26. Copper-free Sonogashira reaction of aryl halides with phenylacetylene catalysed by
complex 28.

The octahedral nickel complexes 26 (Figure 4) prepared by Anitha et al. derived from 9,10-
phenanthrenequinone thiosemicarbazone, 9,10-phenanthrenequinone N-methylthiosemi carbazone
and 9,10-phenanthrenequinone N-phenylthiosemicarbazone described briefly above in connection
with the Suzuki–Miyaura reaction were also examined for their activity in the Sonogashira reaction of
phenyl acetylene with aryl halides [119]. Using catalyst loadings of 0.5 mol%, they were found to give
good to very good conversions after 4 h in MeOH and in the presence of Cu(I) and pyridine (Scheme 27).
Heteroaromatic chlorides also entered into the reaction as did ortho-substituted aromatics, albeit in
lower yields. The authors concluded that steric effects in the ligands play a more important role than
electronic effects in the catalytic activity of the complexes. Very good conversions were observed by
Prabhu and Ramesh with a square-planar nickel complex NiL2 (29) (Figure 5) where ligand L is derived
from the reaction of 4-phenyl-3-thiosemicarbazide with 3-methyl-thiophene-2-carboxaldehyde [123].
The structure was confirmed by X-ray diffraction studies. Very promising results were obtained in the
reaction of a range of aryl bromides and iodides with phenyl acetylene in the presence of the nickel
complex together with Cu(I) in Et3N at 80 ◦C (Scheme 28). Very good yields of the coupled products
(79–99%) with good TONs were obtained after 2 h in the case of iodides (TONs of up to 1980 and TOFs
of up to 990 h–1) or 8 h in the case of the bromides (TONs of up to 990 and TOFs of up to 124 h–1).
Aryl halides with ortho-substitution also coupled readily.
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It is also appropriate to mention here a reaction related to the Sonogashira reaction, which involves
coupling between aryl boronic acids with alkynes or alkynyl carboxylic acids (Scheme 29) reported by
Lu et al. [124] using tridentate salicylaldiminato-thiosemicarbazone palladium catalysts 2 (Figure 1),
which had previously been shown to catalyze the Mizoroki–Heck coupling [94]. The best yield was
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obtained by complex 2a. Using mild conditions (CH2Cl2, KOAc, Ag2O, 24 h, under argon) and a
2 mol% catalyst loading very good yields of coupled products were obtained except where steric
hindrance was present (in the case of 1-naphthyl boronic acid and ortho-substituted aryl boronic
acids) as well as for 2-pyridyl boronic acid. When carboxylic acids are used, decarboxylation occurs
before coupling.
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Scheme 29. Alkynylation coupling reaction between alkynes or alkynyl carboxylic acids and
arylboronic acids.

Additionally related to coupling reactions involving alkynes is the A3 coupling reaction, which is
particularly useful in asymmetric synthesis [125]. This is a three-component reaction with an aldehyde,
an amine and a terminal alkyne as the substrates. The reaction has been shown to be catalysed by a
number of transition metal systems, including the thiosemicarbazone complex [Pd(PPh3)L] 30 where
L is a dianionic tridentate O,N,S-coordinating ligand derived from pyridoxal thiosemicarbazone or
pyridoxal N-methylthiosemicarbazone as reported by Manikandan et al. (Scheme 30) [126]. In this case
an ionic liquid, [emim]BF4 (emim = 1-ethyl-3-methylimidazolium) was used as the reaction medium.
After optimisation runs, a number of substrates were subjected to the reaction at 80 ◦C, 8 h reaction
time with a 1 mol% catalyst loading. Phenyl acetylene was used as the terminal alkyne together with
a range of aromatic or heteroaromatic aldehydes, formaldehyde or cyclohexyl carboxaldehyde and
piperidine, morpholine, pyrrolidine or diethylamine as the amine component. In all cases, very good
yields of the coupled products were obtained. Importantly, the catalyst could be recovered readily and
retained its activity for at least five further cycles.
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Sonogashira-type reactions catalysed by thiosemicarbazone complexes are summarised in Table 3.
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Table 3. Sonogashira reactions catalysed by thiosemicarbazone complexes: representative conditions
and yields 1.

Metal T (◦C) Solvent Time (h) Ligand 2 Base Catalyst
(mol%)

Yield
(%) Ref.

Pd 75–110 EtOH/toluene
or PEG 10–15 N,S NaOH 0.5 68–99 [95]

Pd 80 Et3N 8 N,S Et3N 0.5 65 [111]
Pd rt DMF 12 N,S Et3N 0.5 67–99 [122]
Ni 70 MeOH 4 O,N,S pyridine 0.5 55–85 [119]
Ni 80 DMF 8 N,S Et3N 0.1 79–99 [123]
Pd 35 CH2Cl2 24 O,N,S KOAc 2.0 30–99 [124] 3

1 conditions refer to reactions involving aryl bromides and phenylacetylene. 2 ligand donor atoms. 3 reaction
between arylboronic acids and phenylacetylene.

2.4. Kumada–Tamao–Corriu Reaction

The use of organometallic reagents to form carbon–carbon bonds is a standard procedure in organic
synthesis but there are still many instances where the simple stoichiometric reaction is unsuccessful
for one or more reasons. A number of transition metal catalysts have been developed for specific
cases such as the Negishi coupling of organozinc reagents with aryl or alkenyl halides [127], or the
related Kumada–Tamao–Corriu reaction involving the analogous coupling with Grignard reagents
(Scheme 31) [8]. There are a number examples of the latter involving thiosemicarbazone complexes
although the majority of the reports describe only one instance of a coupling of an aryl bromide
and aryl magnesium bromide and thus do not permit a good assessment of wider applicability
(Figure 6). Thus, there are accounts of ruthenium complexes derived from thiosemicarbazones.
The mixed ligand complexes of Ru(II) 31, [RuCO(EPh3)2L] and [RuCO(PPh3)(py)L] (where E = P
or As and L is a dibasic tridentate ligand derived from the condensation of ethylacetoacetate or
methylacetoacetate and thiosemicarbazide) catalysed the coupling of PhMgBr and PhBr as reported by
Thilagavathi et al. [64]. Using a 200:1 substrate to catalyst ratio, rather low conversions were reported.
Analogous complexes derived from chalcone thiosemicarbazone gave similar results [128]. Somewhat
better yields were reported by Raja et al. for the complexes 32 [RuCO(EPh3)L] and [RuCO(py)L],
where L is a tetracoordinated dianionic ligand derived from the reaction of 2-hydroxyaryl aldehyde,
thiosemicarbazide and furfuraldehyde [62]. The coupling of PhMgBr with p-bromoanisole catalysed by
a Ru(III) complexes 33 containing a monoanionic 2-acetylpyridine thiosemicarbazone ligand has also
been reported by Manikandan et al. [81]. A 300:1 substrate to catalyst ratio was used and conversions
of 28–48% were obtained.

Priyarega et al. reported nickel thiosemicarbazone complexes 34 with Ph3P supporting ligand that
catalyse the formation of biphenyl in good yield [129]. From the experimental data, it is stated that a
large amount (0.05 mol) of complex is used for 0.01 mol of PhBr but presumably this is a typographical
error with the correct amount of complex to be probably 0.05 mmol. Güveli et al. have prepared a
series of thiosemicarbazone complexes 35 derived from o-hydroxyacetophenone in which either O,N,S-
or O,N,N-tridentate coordination is observed [130]. In addition to structural and computational studies,
the authors also examined the coupling of PhMgBr with PhBr in the presence of these compounds.
The ONN-complexes gave higher yields compared to the ONS-complexes and this was ascribed to
the larger size of the S atom and also to the higher charge on the metal. A range of aryl halides
were employed by Anitha et al. in their study of Ni(II) complexes containing O,N,S-tricoordinating
thiosemicarbazone ligands, which have also been described above as catalysts for the Suzuki–Miyaura
and Sonogashira reactions (see complexes 26 in Figure 4) [119]. Moderate to excellent yields of biaryls
were obtained under mild conditions (Et2O, 4 h) and with catalyst loadings of 0.2 mol% (Scheme 32).
TONs of up to 93 and TOFs of up to 2 h–1 were recorded. Reactions for aryl halides with electron
withdrawing substituents were found to give slightly higher yields than those with electron-donating
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substituents, while ortho-substituted aryls gave lower yields. Overall, their catalytic efficiency was
found to compare favorably with previously reported catalysts.
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3. Carbon–Heteroatom Coupling Reactions

Although the majority of the work on metal complex catalysed coupling reactions concerns the
formation of carbon–carbon bonds, carbon–heteroatom coupling reactions have also been widely
studied. These predominantly concern the formation of carbon–nitrogen bonds for systems where
non-catalysed coupling is not possible or very difficult. Reactions in this category include the
Pd-catalysed arylation of amines (the Buchwald–Hartwig coupling shown in Scheme 33) [131,132],
the Pd-catalysed formation of C–N, C–O or C–S bonds using aryl boronic acids and suitable heteroatom
derivatives (the Chan-Lam coupling shown in Scheme 34) [133,134], and also the metal-catalysed
Ullmann reaction (Scheme 35) [135,136]. Representative metal complexes catalyzed carbon–heteroatom
coupling reactions are shown in Figure 7; see also in Figures 2 and 4.

A number of thiosemicarbazone complexes of palladium have been screened as potential
catalysts for C–N coupling reactions. Many of these have also been investigated as catalysts for C–C
couplings and have therefore been described above in the relevant sections. Thus, the mixed-ligand
benzaldehyde thiosemicarbazone Pd-complexes 10, 11, 12, and 13a (Figure 2) prepared by Dutta et
al., described previously [106,107], are also active catalysts for the Buchwald–Hartwig arylation
of primary and secondary amines (Scheme 36). The addition of the hindered XPhos ligand
(2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl) was required for good activity and it was
presumed that it was necessary to stabilize the active species, the other ligands having been displaced.
Although somewhat higher catalyst loadings were found to be necessary for the C–N couplings than
were used in the Suzuki–Miyaura reaction, catalytic efficiency was comparable to other palladium
complexes under similar conditions. Very good results were also obtained under slightly milder
conditions when the same group employed the cyclopalladated complexes 13b, 14, and 15 (Figure 2)
for the coupling of selected aryl halides with aniline, providing TONs of 10,000 and TOFs of up to
833 h–1 (Scheme 37) [108]. A much broader range of aryl halides were used by Prabhu and Ramesh in
their study of the catalytic activity of the complex 36 (Figure 7), [PdBr(PPh3)L], where L is a bidentate
chelating monoanionic ligand derived from 1-naphthaldehyde thiosemicarbazone [137]. Good to
excellent results were obtained under relatively mild conditions (2-BuOH as solvent, K2CO3 as base,
100 ◦C, N2 atmosphere, 24 h) using a 500:1 of substrate to complex molar ratio for the coupling of
aromatic and heteroaromatic bromides with cyclic secondary amines (Scheme 38). Dibromides could
also be successfully coupled with the same secondary amines under similar conditions. The coupling
of aryl chlorides took place using slightly longer reaction times (30 h) and with somewhat lower
conversions. It was found that the catalyst could be used twice without any detectable loss of activity
but that gradual loss of activity was observed for subsequent cycles. Apart from the aforementioned
monophosphine complexes, a recent study reports the synthesis of a cationic Pd thiosemicarbazone
complex 23 (R = OCH3; see in Figure 4) containing a diphosphine which, apart from catalysing
the Suzuki–Miyaura reaction (see above) was also found to be effective in the Buchwald–Hartwig
arylation [117]. Aryl bromides and iodides gave good conversions in the reaction with primary or
secondary amines in either dioxane at 100 ◦C or PEG at 150 ◦C with low catalyst loadings (0.01 mol%)
in the presence of NaOBut. Aryl chlorides, however, generally gave poor yields.
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N-arylation of heterocycles can been achieved by using a palladium catalyst derived
from 9,10-phenanthrenequinone thiosemicarbazones 37 (Figure 7) as well as the corresponding
semicarbazone as reported by Anitha et al. [138]. The ligand in these complexes is tridentate
monoanionic and the most efficient one in initial screening experiments was that derived from
phenanthrenequinone N-methylthiosemicarbazone. A range of aromatic and heteroaromatic chlorides,
bromides and iodides were employed for coupling with imidazole in DMSO at 110 ◦C in the presence
of KOH and 0.75 mol% of the complex. Moderate to very good yields were obtained, and it was shown
that the reaction had the potential to be extended to other related heterocycles. Due to the fact that
the best solvent for the reaction was DMSO, the authors favour a Pd(II)/Pd(IV) mechanistic oxidative
addition pathway over a Pd(0)/Pd(II) one.

Copper complexes are also known to catalyse C–N coupling reactions. These are often Cu(I)
complexes but the first instance of a thiosemicarbazone copper complex catalysed C–N coupling
involves the Cu(II) oxidation state as reported by Shan et al. [139]. The use of copper compounds
in this oxidation state offers some advantages since they are generally more convenient to handle.
The catalytic procedure involved in situ complex formation from CuCl2 (10 mol%) and excess ligand,
3-methoxy, 4-hydroxybenzaldehyde thiosemicarbazone in the presence of K2CO3 together with the
appropriate substrates in DMF at 110 ◦C. Under these conditions, moderate to good yields of coupled
products were obtained from the reaction of imidazole or benzimidazole with aryl bromides or iodides.
The use of Cu(I) instead of CuCl2 gave inferior results under the same conditions and the authors
speculate that the reaction proceeds via a Cu(II)/Cu(IV) oxidative-addition pathway which is favoured
by the stabilisation of the copper intermediate by the electron-rich ligand and the consequent decrease
in the oxidation potential. Another instance of Cu(II) catalysed N-arylation was also recently reported
by Gogoi et al. [140]. This involves a Chan-Lam coupling of a number of aryl or heteroaryl boronic
acids with aniline or with N-containing heterocycles. Here again the complex was formed in situ,
in this case from Cu(OAc)2 and 2,5-dimethoxy benzaldehyde-4-phenylthiosemicarbazide; use of the
preformed complex gave inferior results. Moderate to very good yields were obtained under mild
conditions (room temperature, aqueous DMF as solvent, Et3N as base, 10 mol% catalyst loading) which
compare very favorably with previously reported results for similar systems.

N-alkylation of amines by means of alkyl alcohols can be catalysed by Cu(I) complexes and this
has been demonstrated for complexes 38 (Figure 7) containing 2-(2-(diphenylphosphino) benzylidene)
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thiosemicarbazone ligands by Ramachandran et al. (Scheme 39) [141]. In these complexes, the ligand is
bound to the metal through P, N and S. A range of substituted benzyl alcohols were employed together
with a number substituted aminobenzothiazoles as well as 1-amino-diphenylthiazole, benzimidazole
and 2,6-diaminopyridine. n-Butanol and n-hexanol were also successfully used as the alkylating agent.
The conditions used involved a catalyst loading of 0.1 mol%, KOH as base, toluene as solvent and
heating to 100 ◦C for 12 h. Good to excellent yields, TONs of up to 990 and TOFs of up to 83 h–1 were
obtained, in particular for complex in which R is the CH3 group.Catalysts 2020, 10, x FOR PEER REVIEW 28 of 42 
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Several reports have also appeared from the group of Viswanathamurthi and
co-workers concerning C–N coupling reactions catalysed by ruthenium complexes [74,142–145].
The initial report briefly describes the benzylation of aniline catalysed by ruthenium
hydroxyquinoline–thiosemicarbazone complexes 39 (Figure 7) at 100 ◦C under nitrogen in the presence
of KOBut. Good conversions were obtained using a 1000:1 substrate to catalyst molar ratio [74].
Subsequent reports from this group describe XRD structurally characterised complexes containing
tridentate P,N,S-chelating thiosemicarbazone derivatives of 2-diphenylphosphino benzaldehyde
as ligands in which the effect of terminal N-substitution is examined. Thus, the complexes
[RuCl(CO)(EPh3)L] (40) (Figure 7), where E = P, As and L = 2-(2-(diphenylphosphino)
benzylidene)-N-R-thiosemicarbazone (R = H, CH3 or Ph) were prepared and their catalytic
activity studied for the N-alkylation of heteroaromatic amines by alcohols [142]. Optimisation
experiments indicated that the complex containing the 2-(2-(diphenylphosphino)benzylidene)-
N-methylthiosemicarbazone was found to give the best results, with a 0.5 mol% catalyst loading
in the presence of KOH in toluene at 100 ◦C for 12 h (Scheme 40). Good to very good yields
were obtained for the alkylation using p-C6H4CH2OH or ferrocenylCH2OH and primary amines
such as aniline, 2-aminopyridine 2-aminobenzothiazole while dialkylation of 2,6-diaminopyridine
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could also be affected. In addition to straightforward alkylations, when 2-nitropyridine was
employed as substrate initial reduction to the primary amine and subsequent alkylation could
be achieved, while for aminobenzene ortho-substituted with NH2, OH or SH, the alkylation
reaction with primary alcohols gave good yields of 2-substituted heterocyclic products, viz.
benzazoles, benzoxazoles, or benzothiazoles. In a subsequent report, comparable catalytic
activity was demonstrated for complexes of the type [RuCl(CO)(AsPh3)(L)] (41) where L =

2-(2-(diphenylphosphino)benzylidene)-N-ethyl-thiosemi carbazone or 2-(2-(diphenylphosphino)
benzylidene)-N-cyclohexyl-thiosemicarbazone (Figure 7) [143]. The authors propose that the mechanism
for the reaction is via a so-called “borrowed hydrogen” pathway, whereby the alcohol is catalytically
dehydrogenated to the corresponding aldehyde, which then condenses with the amine to give an
intermediate imine, which is subsequently hydrogenated by the catalyst. A further series of ruthenium
complexes, bearing the 2-(2-(diphenylphosphino) benzylidene)-N-ethyl-thiosemicarbazone ligand, L,
were prepared, namely [RuCl(CO)(PPh3)L], [RuH(CO)(PPh3)2L], [RuCl(PPh3)2L], [RuCl(dmso)2L],
and [RuL2] [144]. Of these complexes, the last one showed little or no catalytic activity while the
first three complexes showed the best results and were studied in more detail. Using conditions
comparable with those in the previous studies, and with similar substrates, the complexes were
found to give good to excellent conversions. N-Alkylation of sulfonamides was also very successful.
We may also mention here that the complex [RuL2], where L is the monoanionic ligand derived from
2-(2-(diphenylphosphino)-benzylidene)-N-phenylthiosemicarbazone, has also been screened for its
catalytic activity in the N-alkylation of primary amines [145]. In this investigation, the complex proved
to be inferior to other semicarbazone complexes that were examined and was not subjected to further
detailed study.
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Scheme 40. N-alkylation of (hetero)aromatic amine/amides with alcohols catalysed by Ru complex 40
(R = CH3, E = P).

Apart from the above C–N coupling reactions, there has also been one report by Suganthy et al. of
C–O coupling catalysed by a thiosemicarbazone complex [146]. Thus the coupling of p-cresol with a
number of aryl halides containing electron-withdrawing or electron-donating groups could be effected,
with moderate to very good yields, in DMF at 80 ◦C after 12 h in an inert atmosphere using a 1 mol%
loading of the catalyst [PdCl(PPh3)L] (42), where L is the bidentate N,S-chelating ligand derived from
the deprotonation of 3-methyl-thiophene-2-carboxaldehyde thiosemicarbazone (Figure 7).

Published results of the use of thiosemicarbazone complexes as described above for C-heteroatom
coupling reactions are summarised in Table 4.
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Table 4. Carbon–heteroatom coupling reactions catalysed by thiosemicarbazone complexes:
representative conditions and yields.

Metal Substrates T (◦C) Solvent Time
(h) Ligand 1 Base Catalyst

(mol%)
Yield
(%) Ref.

Pd ArBr + 2ary amine 145 PEG 24 N,S NaOBut 1.0 50–62 [106]
Pd ArBr + 1ary/2ary amine 145 PEG 24 N,S NaOBut 0.1 100 [107]
Pd ArBr + 1ary/2ary amine 145 PEG 18 C,N,S NaOBut 0.1 100 [107]
Pd ArBr + aniline 105 toluene 12–18 C,N,S NaOBut 0.01 100 [108]
Pd (het)ArBr + 2ary amine 100 2-BuOH 24 N,S K2CO3 0.2 77–99 [137]

Pd (het)ArBr +
N-heterocycle 110 DMSO 10 O,N,S KOH 0.75 75–90 [138]

Cu ArBr + N-heterocycle 110 DMF 24 O,N,S K2CO3 10.0 42–56 [139]

Cu (het)ArB(OH)2 +
aniline r.t. DMF/H2O 14–18 N,S Et3N 10.0 74–95 [140]

Cu (het)ArB(OH)2 +
N-heterocycle r.t. DMF/H2O 18–24 N,S Et3N 10.0 70–94 [140]

Cu RCH2OH + 1ary amine 100 toluene 12 P,N,S KOH 0.1–0.2 89–99 [141]
Ru RCH2OH + aniline 100 none 6 O,N,S KOBut 1.0 61–86 [74]
Ru RCH2OH + 1ary amine 100 toluene 12–24 P,N,S KOH 0.5–1.0 45–99 [142]
Ru RCH2OH + 1ary amine 100 toluene 12 P,N,S KOH 0.5 79–98 [143]
Ru RCH2OH + 1ary amine 100 toluene 12 P,N,S KOH 0.5 59–98 [144]

Ru RCH2OH +
sulfonamide 120 toluene 12 P,N,S KOH 0.5 21–99 [144]

Pd ArBr/ArI + p-cresol 80 DMF 12 N,S K2CO3 1.0 62–94 [146]
1 ligand donor atoms.

4. Immobilised and Heterogeneous Catalysts

Recovery of catalysts after use is an important factor for consideration for all reactions which
involve transition metal complexes. Not only it is important because of the often high cost of the
catalysts themselves, but it is also important to minimise contamination of the products. This becomes
particularly significant when scale-up of a reaction is being planned. For these reasons, a great deal of
effort has been made to develop heterogeneous analogues of homogeneous catalytic reactions in which,
the catalyst can be reclaimed by straightforward separation procedures although, attractive as it may
seem, this is not always without its disadvantages [147], and special consideration must be given to the
stability of the catalysts and to leaching phenomena [87]. In the case of thiosemicarbazone complexes,
there have been a number of attempts to develop such systems for coupling reactions. By reduction
of K2PdCl4 with hydrazine hydrate in the presence of pyridine-2-carbaldehyde thiosemicarbazone
as stabilizer of the nanoparticles, Kostas, Kovala-Demertzi, and co-workers were able to prepare
nanoparticles which were characterized by XRD and SEM [148]. They were active catalysts for
the Suzuki–Miyaura reaction of phenyl boronic acid with aryl bromides (Scheme 41). Best results
were obtained for p-bromonitrobenzene and p-bromobenzonitrile, which gave excellent conversions
in DMF/H2O at 100 ◦C with 0.1% w/w catalyst loading and with K2CO3 as base. Higher catalyst
loadings (1% w/w) were required for good yields from the coupling reactions with bromobenzene
and p-bromoanisole, as well as for reactions at room temperature, which only gave good yields with
p-BrC6H4NO2 and p-BrC6H4CN. These thiosemicarbazone-derivatized nanoparticles were found to be
more efficient catalysts than the homogeneous catalyst Pd(PPh3)4 under identical reaction conditions.
The catalyst could be recovered but was progressively less active in successive cycles.

Bakherad et al. have reported a polystyrene supported complex of palladium with a 1-phenyl-
1,2-propanedione-2-oxime thiosemicarbazone ligand [149]. By attaching the ligand to the polystyrene
and then reaction with PdCl2(PhCN)2 followed by reduction with hydrazine hydrate, a Pd(0) species
was obtained which was evaluated for its catalytic activity in the acylation of terminal alkynes.
Under optimized solvent-free conditions, namely using 1 mol% catalyst with Et3N as base, excellent
conversions (97–99%) were obtained after 30 min in air at room temperature for a range of aromatic acyl
chlorides as well as cyclohexyl carboxylic acid chloride with phenylacetylene, pent-1-yne, hex-1-yne,
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and Me3SiC≡CH (Scheme 42). The catalyst could be recovered by centrifugation and was reused
several times with only a slight decrease in activity.
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Scheme 42. Copper- and solvent-free Sonogashira reaction of acid chlorides with terminal alkynes
catalysed by 1-phenyl-1,2-propanedione-2-oxime thiosemicarbazone-functionalized polystyrene
resin-supported Pd(0) complex [PS-ppdot-Pd(0)].

Suzuki–Miyaura coupling of various aryl halides with alkenyl boronic acid has been achieved
using a Pd(II) thiosemicarbazone complex tethered to a silica support [150]. Aryl halides were coupled
with trans-2-phenylvinyl boronic acid in DMF/H2O in the presence of K2CO3 and catalyst (25 mg
per mmol of ArX), under microwave irradiation at 110 ◦C for 25 min. The reaction was selective for the
formation of E-stilbenes and the catalyst was readily recovered by filtration. The catalyst could be
used for at least six consecutive trials without loss of activity. Absence of palladium in the liquid phase
after filtration suggested that no leaching of the catalyst had occurred during the reaction.

Veisi et al. have used multi-walled carbon nanotubes to which thiosemicarbazide has been grafted
to form supported Cu(I) complexes that are able to catalyse the Ullmann coupling of indole, amines or
imidazoles with aryl halides [151]. The coupling reactions were optimally carried out in DMF/Et3N
at 80 ◦C using a substrate:Cu ratio of 50/1 and reaction times ranging from 1–3 h for ArI, 3–6 h for
ArBr and 12–24 h for ArCl (Scheme 43). Good to excellent yields (65–98%) were reported. The catalyst
could be recovered by centrifugation and, in studies of the coupling of PhI with indole, was found to
be reusable five times with marginal loss of activity. The filtrate from the reaction was found to be
inactive, indicating that no leaching of active complex from the supported complexes had occurred.
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Scheme 43. Ulmann coupling of indole, amines, or imidazoles with aryl halides catalysed by
thiosemicarbazide-multi-walled carbon nanotubes-CuI nanocatalyst.

Halloysite is a form of natural clay that can be modified by the attachment of a variety of
functionalities. Sadjadi has reported the conjugation of tosylated cyclodextrin to thiosemicarbazide
functionalized halloysite, which in turn was used to immobilize Pd nanoparticles [152].
This immobilized system was then examined for its activity in the Sonogashira and Mizoroki–Heck
reactions. In the former case, a range of aryl halides were coupled with phenylacetylene or propargyl

31



Catalysts 2020, 10, 1107

alcohol in water/EtOH at 60 ◦C, in the presence of K2CO3 using 6 mol% Pd catalyst loading (Scheme 44).
The activities followed the usual trend with iodides requiring the shortest reaction times (1.5–3.5 h)
and giving the best conversions (83–95%) and chlorides requiring the longest reaction times (ca. 5 h)
and giving moderate conversions (ca. 50%). In an examination of the recyclability of the catalyst, it was
recovered and reused thirteen times in a typical reaction. The first four runs showed comparable activity
but subsequent runs showed a gradual reduction such that from an original 95% conversion the final
run gave 69%. In order to obtain more insight into the nature of the catalyst, the authors examined the
recycled material by SEM, TEM and FT-IR. They found that there were no major observable differences
after four cycles but thereafter there were indications of morphological changes due to agglomeration
although the basic structure of the material was maintained. This agglomeration together with a limited
amount of leaching that was also detected was presumed to be the cause of the gradual decrease in
activity. The immobilised system was also demonstrated to be an active catalyst for the Mizoroki–Heck
coupling of iodobenzene with styrene but a systematic examination of the scope of the reaction was
not performed. Halloysite has also been functionalized with (3-chloropropyl) trimethoxysilane and
subsequently reacted with thiosemicarbazide and furfural and then with Cu(OAc)2 to provide an
immobilized copper species [153]. Using ultrasonic irradiation, this system was active in the A3 coupling
reactions of aldehydes, phenyl acetylene, and amines for synthesis of corresponding propargylamines.
Very good conversions were obtained at room temperature within 30 min. The catalyst was readily
recovered and after four runs showed little loss in activity. No leaching was detected and the catalyst
reclaimed after successive runs and examination by FTIR, TEM, XRD, SEM, and EDX indicated it to be
essentially unchanged.
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Scheme 44. Sonogashira reaction of aryl halides with terminal alkynes catalysed by Pd
nanoparticles immobilized on tosylated cyclodextrin-thiosemicarbazide-functionalized-halloysite
nanotubes (Pd@HNTs-T-CD).

Finally, there have recently been reports on the use of thiosemicarbazide modified mesoporous
silica materials in the immobilization of potential catalysts. Sadjadi et al. have prepared such a
system, which consists of furfural thiosemicarbazone tethered through the terminal nitrogen to the
mesoporous SBA-15 [154]. Reaction with copper acetate produced a system which, similar to that
described above, was an active A3 coupling catalyst at ambient temperatures. Using a catalyst loading
of 0.5 mol%, and under solvent-free conditions, very good yields of products, TONs of up to 190,
and TOFs of up to 13 min–1 were obtained within 40 min or less for the coupling of a variety of
aryl aldehydes, phenyl acetylene, and morpholine or piperidine (Scheme 45). The reusability of the
catalyst was also confirmed for four cycles. A similar copper system derived from the mesoporous
material SBA-16 was used for C–S arylation reactions as reported by Ghodsinia et al. [155]. Coupling of
aryl halides with elemental sulfur or thiourea provide symmetrical diaryl sulfides in generally very
good yields. A catalyst loading of 1.3 mol% was used under solvent-free conditions in the presence
of KOH. The yields in the reaction increased according to the aryl halide, ArX used, in the order
Cl < Br < I. A study of the reusability of the catalyst indicated only a gradual loss of activity after
seven runs. An array of techniques were employed to investigate the catalyst and it was found that the
structural integrity of the material was maintained after successive runs. In addition, no significant
leaching was detected. It was suggested that the loss of activity that had been observed was due to the
partial saturation during the reaction process of the mesochannels containing the catalytic active sites.
A very recent paper by Ahmadi et al. describes a magnetic mesoporous silica-Fe3O4 nanocomposite
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functionalised with a Pd thiosemicarbazone complex [156]. The material was investigated for its
catalytic activity in the Suzuki–Miyaura reaction. Optimal conditions were found to be DMF as solvent
and a temperature of 120 ◦C. The preferred base was K2CO3 (1.2 mmol) and a 0.18 mol% (based on
Pd) catalyst loading was used. A variety of aryl halides were examined in the reaction with phenyl
boronic acid. With the exception of the hindered ortho-bromotoluene, all the halides used gave very
good to excellent yields in short reaction times (60 min or less). After the catalytic run, the catalyst
could be extracted using an external magnet. After washing and drying, the catalyst was reused and it
was shown that it could be recycled for five times without significant decrease in the catalytic activity.
Leaching was negligible and FT-IR and XRD indicated the structure of the catalyst to be unchanged
after each cycle.
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5. Future Prospects

It is clear that thiosemicarbazone complexes are promising catalysts for a number of applications.
Phosphane-free thiosemicarbazone complexes as well as the analogous complexes with additional
P-ligands as catalysts for cross-coupling reactions have received much attention during the last fifteen
years. The fact that the ligands are relatively readily accessible and that the complexes formed show
good stability make them popular subjects for investigation. Up until now, there have been relatively
few reports concerning the nature of the species formed during the reactions using these complexes.
More research into aspects such as the formation of nanoparticles, aggregation and deaggregation
phenomena, leaching effects, the role of the ligands with different metals etc. is needed for the
development of systems with general applicability. Undoubtedly, there will be increasing attention
paid to areas such as catalyst immobilisation and to complexes that are active under mild, preferably
aerobic conditions. The potential for applying these complexes in solvent-free or aqueous systems is
also clear. An additional area where developments may be expected is that of asymmetric catalysis.
Up until now there appear to be no reports of thiosemicarbazone complexes having been investigated
for this purpose but chiral thiosemicarbazone ligands have certainly been prepared and it remains to
be seen whether their complexes can show the appropriate selectivity.
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Abstract: Boron chemistry has evolved to become one of the most diverse and applied
fields in organic synthesis and catalysis. Various valuable reactions such as hydroborylations
and Suzuki–Miyaura cross-couplings (SMCs) are now considered as indispensable methods in
the synthetic toolbox of researchers in academia and industry. The development of novel
sterically- and electronically-demanding C(sp3)–Boron reagents and their subsequent metal-catalyzed
cross-couplings attracts strong attention and serves in turn to expedite the wheel of innovative
applications of otherwise challenging organic adducts in different fields. This review describes
the significant progress in the utilization of classical and novel C(sp3)–B reagents (9-BBN and
9-MeO-9-BBN, trifluoroboronates, alkylboranes, alkylboronic acids, MIDA, etc.) as coupling partners
in challenging metal-catalyzed C(sp3)–C(sp2) cross-coupling reactions, such as B-alkyl SMCs after 2001.

Keywords: Suzuki–Miyaura cross-couplings; C(sp3) –C(sp2); alkylboron reagents; metal catalysis

1. Introduction

Boron is a peculiar metalloid with fascinating chemical complexity. The unusual properties of boron
stem from its three valence electrons, which can be easily torn away, favoring metallicity and making it
electron-deficient, yet sufficiently localized and tightly bound to the nucleus, consequently allowing
the insulating states to emerge [1]. Boron compounds have been intensively investigated for energy
storage applications, particularly due to the relatively low atomic mass of boron (10.811 ± 0.007 amu).
The energy-related uses of boron compounds range from high-energy fuels for advanced aircrafts
to boron–nitrogen–hydrogen compounds as hydrogen storage materials for fuel cells [2]. The rich
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pioneering research on boron resulted in the consecutive awarding of two Nobel Prizes in chemistry in
1976 and 1979 [3,4].

Organoboron compounds (e.g., boronic acids, boronic esters and boronamides) generally comprise
at least one carbon–boron (C–B) bond (Scheme 1A) [5–8]. Organoboron compounds were initially used
in organic synthesis 60 years ago [9,10]. Ever since, chemistries involving such compounds continued
to advance until these reagents have become one of the most diverse, widely studied and applied
families in catalysis and organic synthesis [10,11]. Currently, they are engaged in numerous classic
and important reactions such as hydroborations and Suzuki–Miyaura cross-couplings (SMCs), among
others [8]. The SMC reaction generally involves the conjoining of an organoboron reagent and an
organic halide or pseudohalide in the presence of palladium (or other relevant metal/ligand) as a catalyst
and a base for the activation of the boron compound (Scheme 1B) [5–7,12]. Organoboron compounds
have also found several applications in pharmaceuticals where boron-based drugs exemplify a novel
class of molecules for several biomedical applications as molecular imaging agents (optical/nuclear
imaging) and neutron capture therapy agents (BNCT), as well as therapeutic agents (anticancer,
antiviral, antibacterial, etc.) [13]. Likewise, the utility and ubiquity of boron-based compounds have
bolstered the development of agricultural and material sciences [14,15]. Organoborane polymers
have been investigated as electrolytes for batteries, electro-active materials, and supported Lewis acid
catalysts [16,17].
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Metal catalysis has had a major impact on numerous research fields from energy, biomass,
environmental and water purification to synthesis of otherwise challenging and even inaccessible
materials and medicinal adducts [18–30]. In line, the intensive research in metal catalysis has led
to significant progress in borylation of primary C(sp3)–H bonds of unfunctionalized hydrocarbons,
allowing access to a variety of C(sp3)–B reagents and consequent breakthroughs in C(sp3)–C(sp,sp2,sp3)
cross-couplings. Comprehensive work has been done on the development of an efficient sp2−sp2 SMC;
however, there have been far fewer reports on sp3−sp2 or sp3−sp3 variants [31–38]. Among the different
hybridized boron reagents employed in SMCs (e.g., aryl, heteroaryl, and vinylboronic acids and esters),
the use of organoboron compounds with alkyl groups (sp3 carbon) was severely limited in these coupling
reactions due to competitive side reactions [39,40]. Organometallic compounds that are metalated at sp3

carbon atoms and especially containing β-hydrogen atoms give rise to alkyl–palladium complexes that
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are susceptible to β-hydride elimination rather than reductive elimination [41]. Furthermore, although
boronic acids are relatively stable at ambient temperature and can be isolated by chromatography and
crystallization, they favor other side reactions such as protodeboronation under SMC conditions [42].
The undesired decomposition pathways in sp3–boron couplings are mostly circumvented by using
tetrahedral boronates (e.g., potassium trifluoroborates (RBF3K) and N-methyliminodiacetyl boronates
(RB–[MIDA]; Scheme 1A) or stoichiometric loadings of palladium catalysts. On the other hand, the use
of alkylborane (B-alkyl-9-borabicyclo [3.3.1]nonane: B-alkyl-9-BBN) in sp3 SMCs suffers from isolation
difficulties, lack of atom economy, air sensitivity and functional group tolerance (e.g., to ketones).
Trialkylboranes (R3B) have also been employed in SMCs [43,44].

The alkyl–alkyl SMCs (sp3–sp3) were recently reviewed in 2017 [45]. Hence, we will focus here on
the recent development in cross-coupling reactions using sp3–boron reagents and C(sp2)–reagents.
One class of the sp3–sp2 SMC is commonly known as B–alkyl Suzuki–Miyaura cross-coupling. It is
distinguished from the other SMCs in that this cross-coupling occurs between an alkyl borane and
an aryl or vinyl halide, triflate or enol phosphate. Generally, the most reactive partners for B–alkyl
SMC are unhindered electron-rich organoboranes and electron-deficient coupling partners (halides or
triflates). Notably, this type of coupling is highly affected by all the reaction parameters including the
type of organoborane, base, solvent and metal catalyst, and the nature of the halide partner. The effects
of these parameters were detailed in the review by Danishefsky et al. on B–alkyl SMC in 2001 [33].
This work will thus summarize the C(sp3)–C(sp2) cross-couplings covering the more recent progress
in this area after 2001. The advances in stereospecific sp3–sp2 SMCs will be out of the scope of this
highlight. However, it is worth noting that different versions that proceed with either retention or
inversion of configuration have been well established [46,47]. Acyl SMC (acid halides, anhydrides,
amides, esters), decarbonylative SMC and Liebeskind–Srogl cross-couplings are also not covered here
and were recently reviewed in the literature extensively [48–52].

2. Suzuki–Miyaura Cross-Coupling (SMC)

As mentioned in the introduction, SMC is the conjoining of an organoboron reagent and an
organic halide or pseudohalide in the presence of palladium (or other relevant metal) as a catalyst
and a base for the activation of the boron compound (Scheme 1B) [5–7]. The efficiency of palladium
has contributed to the ever-accelerating advances in catalysis, where coupling reactions, including
SMC ones, are nowadays performed at ppb (parts per billion) molar catalyst loadings [53]. Nickel has
also proved to have an efficient catalytic activity for SMC as the expensive palladium catalysts [54,55].
The high reactivity of nickel was revealed with difficult substrates such as aryl chlorides/mesylates,
whose coupling reactions do not proceed easily with conventional Pd catalysis. In addition to being
inexpensive, nickel catalysts can be more easily removed from the reaction mixtures while their
economic practicality eliminates the need to recycle them [56]. Other metal catalytic systems have
been investigated in SMC reactions such as Fe, Co, Ru, Cu, Ag, etc. However, their applications are by
far less than Pd and Ni catalysts [56–58].

Since its discovery in 1979 [59], the Suzuki–Miyaura reaction has arguably become one of the most
widely-applied, simple and versatile transition metal-catalyzed methods used for the construction of
C–C bonds [60]. The general catalytic cycle is similar to other metal-catalyzed cross-couplings starting
with an oxidative addition followed by a transmetalation and ending with a reductive elimination
(Scheme 2). Transmetalation or the activation of the boron reagent makes Suzuki–Miyaura coupling
different than other transition-metal cross-couplings processes. Mechanistic investigations were able
to illustrate the role of each reagent in the reaction medium in addition to the metal. Some insights are
now well established such as the necessity of sigma-rich electron-donor ligands, protic solvents and
the base [61,62]; other mechanistic insights are still active areas of research including the activation
way of boron in presence of the base. Two main analysis routes can be outlined as can be seen in
Scheme 2: A) Boronate pathway: tetracoordinate nucleophilic boronate species III is generated in situ
and substitutes the halide ligand of the Pd intermediate I issued from the oxidative addition, followed
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by the elimination of B(OH)2OR from the resulting intermediate IV to transfer the organic moiety to
palladium species V. B) Oxo-palladium pathway: the RO− substitute ligand X on the palladium center
leading to oxo-palladium II which acts as a nucleophile toward the boronic acid species, generating
the tetracoordinate species IV. Ambiguity occurs since inorganic bases in aqueous or alcohol solvents,
generating the required alkoxy or hydroxy ligands, are commonly employed in the SMC, to accelerate
either pathway A or B. However, all DFT (Density Functional Theory) studies and ES-MS (Electrospray
Ionization-Mass Spectrometry) investigations [63,64], where boronate species were observed and
not oxo-palladium ones [65–67], support pathway A. Studies defending the suggestion of pathway
B consist of kinetic analysis and experimental observations of the lack of activities in some cases
in the presence of organic Lewis bases or lithium salts of boronic species. The group of Maseras
claimed that while pathway A and pathway B are competitive, the first has lower energy barriers than
the second [68]. Therefore, the boronate pathway (A) is faster. Additionally, they stated that their
theoretical report is consistent with the experimental observations they reproduced [63].
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Scheme 2. General mechanism of Suzuki–Miyaura cross-coupling.

Further investigation is needed to conclude which pathway is the actual one, or whether both
exist in a competitive manner in each catalytic cycle. One point supporting pathway A can still be
considered here. The formation of oxo palladium II is less favored in the case where the palladium
center is electron-rich (bearing a good sigma donor and weak π acceptor ligands), which is more likely
to react with a weaker nucleophile like boronate [R–B(OH)3]− rather than with a strong nucleophile,
such as hydroxy or alkoxy groups.

The success of the SMC method originates from its high regio- and stereo-selectivity, extremely
low catalytic loadings, and the exceptionally mild reaction conditions. The employed conditions
are compatible with aqueous and heterogeneous media and tolerate steric hindrance and a wide
range of functional groups. In addition, the readily available organoboron reagents and the versatile
developed methods that permit access to challenging boron-functionalized adducts as well as the
easy incorporation of nontransferable boron ligands have contributed to the appeal of SMC reactions.
Most boron starting materials are thermally stable and inert to oxygen, water and related solvents.
In general, they are relatively non-toxic and environmentally benign, and so are their by-products.
Thus, they can be handled and separated easily from the reaction mixtures [69–72]. These unique
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features have allowed researchers to utilize SMC in a great variety of applications from development of
polymeric materials to total synthesis of complex natural products. SMCs also constitute an important
tool in medicinal chemistry, in production of fine chemicals and innovative materials as organic-light
emitting diodes and in large-scale syntheses of pharmaceuticals [73–75]. Several reviews and textbooks
have been dedicated to the applications of SMCs. Our review will only highlight a few examples of
target molecules in Section 9. The relevant reports of C(sp3)–C(sp2) cross-couplings are summarized in
Table 1 (reaction partners and conditions) in order of the respective sections where they are discussed.

Table 1. General summary of the relevant reports of C(sp3)–C(sp2) cross-couplings in this review.

Boron Reagent Substrate Reaction Conditions (General) Reference Section and Scheme

B-alkyl-9-BBN and
trialkylboranes Aryl iodides PdCl2(dppf), NaOH, THF, reflux,

16 h 76 3;3A

Alkylboranes Aryl bromides and
iodides PdCl2(dppf), NaOH, THF, 65 ◦C 77–79 3;3B

B-alkyl-9-BBN and boronic
acids Aryl halides Pd(OAc)2, SPhos, K3PO4.H2O,

THF or toluene 80 3;3C

B-benzyl-9-BBN Chloroenynes Pd(PPh3)4, Cs2CO3,
water, 60 ◦C, 12 h 81 3;4

B-alkyl-9-BBN CAr-O electrophiles Ni(COD)2, IPr.HCl, CssCO3,
iPr2O, 110 ◦C, 12 h 85 3;5A

B-alkyl-9-BBN Aromatic and alkenyl
ethers

Ni(COD)2, PCy3, base, iPr2O,
110 ◦C 86 3;5B,C

1,3-dienes and 9-BBN Aryl halides Pd(dppf)Cl2 or Pd(dppb)Cl2,
NaOH, THF, 40 or 65 ◦C 87 3;6

B-alkyl-9-BBN β-triflyl enones Pd(dppf)Cl2, Cs2CO3,
DMF:THF:H2O, 60 ◦C, 16 h 88 3;7A

9-BBN derivatives of
L-aspartic acid Halogenated pyridine Pd(PPh3)4, K3PO4 (aq.), THF,

50 ◦C, 2 h 89 3;7B

Alkyl organoboron reagents Aromatic esters Ni(COD)2, dcype, CsF, toluene,
150 ◦C 91 3; 8A

Alkyl organoboron reagents Aroyl fluorides Ni(COD)2, dppe, CsF,
toluene/hexane, 140 ◦C 92 3;8B

Potassium
alkyltrifluoroborates

Aryl halides/triflates
and vinyl triflates

PdCl2(dppf).CH2Cl,
Cs2CO3, THF:H2O, reflux, 6-72 h 44,94 4;9B

Tertiary trifluoroborate salts
Aryl and heteroaryl

chlorides and
bromides

CatacXium-A-Pd G3, Cs2CO3,
tol/water, 90 ◦C, 18 h 99 4;9C

Secondary alkyl
β-trifluoroboratoketones and

-esters
Aryl Bromides

Ir[dFCF3ppy]2(bpy)PF6,
NiCl2·dme, dtbbpy, Cs2CO3,
2,6-lutidine, 1,4-dioxane, hv

10 4;10A

α-alkoxyalkyl- and
α-acyloxyalkyltrifluoroborates Aryl bromides

Ir[dFCF3ppy]2(bpy)PF6,
Ni(COD)2, dtbbpy, K2HPO4,

dioxane, hv
101 4;10B

Tertiary
organotrifluoroborates

reagents
Aryl bromides

Ir[dFCF3ppy]2(bpy)PF6,
Ni(TMHD)2 or

Ni(dtbbpy)(H2O)4Cl2, K2HPO4 or
Na2CO3,

no additive or ZnBr2,
dioxane/DMA or DMA, hv,

12–72 h

102 4;10C

Trialkylboranes Aryl bromides PdCl2(dppf), THF, reflux, 2–6 h 105,106 5;11B

NHC-boranes complexes Aryl halides and
triflates

[Pd], Ligand, tol-H2O or
THF-H2O, heat or microwave 107 5;11C

Trialkyl- and triaryl-boranes
(generated in situ)

Alkenyl and aryl
halides

Pd(OAc)2, n-BuAd2P or RuPhos,
K3PO4, tol-H2O, 100 ◦C 108 5;11D

n-alkylboronic acids Alkenyl and aryl
halides or triflates

PdCl2(dppf), K2CO3, Ag2O, THF,
80 ◦C, 6–10 h 112 6;12A

n-alkylboronic acids Alkenyl halides PdCl(C3H5)dppb, Cs2CO3,
toluene or xylene, 100–130 ◦C, 20 h 113 6;12B

Primary and secondary
alkylboronic acids

2-bromoalken-3-ol
derivatives

Pd(OAc)2, LB-Phos.HBF4,
K2CO3, toluene, 110 ◦C, 3–27 h 114 6;12C
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Table 1. Cont.

Boron Reagent Substrate Reaction Conditions (General) Reference Section and Scheme

Cyclic secondary alkylboronic
acids

di-ortho-substituted
arylhalides

Pd(OAc)2, AntPhos, K3PO4,
toluene, 110 ◦C, 12–24 h 115 6;12D

Acyclic secondary
alkylboronic acids

Aryl and alkenyl
triflates

[Pd(cinnamyl)Cl]2, Ligand,
K3PO4.H2O,

toluene, 110 ◦C, 12 h
116 6;12E

Boronic esters
Aryl methyl ethers

bearing
ortho-carbonyls

RuH2(CO)(PPh3)3, toluene, 110 ◦C 117 7;13A

MIDA boronates Aryl and
heteroarylbromides

PdCl2(dppf).CH2Cl2, Cs2CO3,
THF:H2O, 80 ◦C, 24–48 h 43 7;14

Alkyl iodide and 9-MeO-9BBN
(tBuLi for in situ generation) Alkenyl bromide Pd(OAc)2, Aphos-Y 126 8;15B

OBBD derivatives Aryl Bromide
Pd(dtbpf)Cl2,

Et3N or K3PO4, TPGS-750-M/H2O
45 ◦C, Ar, 16–21 h

127 8;15D

3. First Reports of B-alkyl SMC and Methods Employing 9-BBN Derivatives

The alkylboron cross-coupling was disclosed in 1986 by Suzuki and Miyaura using B-alkyl-9-BBN
2 or trialkylboranes (R3B) in the presence of PdCl2(dppf) and a base (sodium hydroxide or methoxide)
(Scheme 3A). The reaction proceeded readily providing alkylated arenes 3 and alkenes in excellent
yields of 75%–98%. On the other hand, no coupling was observed when sec-butylboranes were
used [76]. In 1989, the same group revealed the reactivity of different alkyl boranes 5 in B-alkyl SMC
(Scheme 3B). Pinacolborane 10 was almost unreactive (1% yield), while 9-BBN derivatives 7 showed the
highest efficiencies (e.g., 99%). Thus, functionalized alkenes, arenes and cycloalkenes were synthesized
via a hydroboration-coupling sequence of 9-BBN derivatives with haloalkenes or haloarenes 4 (inter-
and intramolecular). Good yields of geometrically pure alkenes and arenes were afforded from the
performed reactions with a variety of functionalities on either coupling partner. The reaction could
also be carried out using K2CO3 instead of NaOH with base-sensitive compounds [77–79].

In 2004, the group of Buchwald reported the design of a new ligand with tuned steric and electronic
properties. The phosphane ligand incorporated two methoxy groups on one of phenyls (L2, Scheme 3C).
The oxygen lone pairs increase the electron density on the biaryl and participate in stabilizing the
Pd complex. Simultaneously, the MeO groups increase the steric bulk and prevent cyclometalaton.
This as-designed ligand aimed to serve as a universal catalyst for cross-coupling and C–H activation
reactions. It was later commercialized under the name of SPhos, and became a basic ligand in today’s
catalysis toolbox. The ligand demonstrated a wide scope and stability with aryl boronic acids. It was
also efficient for coupling of B-alkyl-9-BBN derivatives 14 (and boronic acids) using K3PO4·H2O as
an essential base (vs. lower conversions with anhydrous bases) (Scheme 3C). The scope involved
challenging aryl halides as 3-dimethylamino-2-bromoanisole and aryl chlorides [80].

In 2013, Wu et al. developed a SMC between B-benzyl-9-BBN 18 and chloroenynes 16 and
17 to synthesize a vast array of 1,5-diphenylpent-3-en-1-yne derivatives 19 and 20 in good yields
and full control on the E/Z selectivity using Pd(PPh3)4 and Cs2CO3 in pure water (Scheme 4) [81].
The conditions tolerated substrates bearing several electron-donating and withdrawing groups. It is
worth remarking that these derivatives are known for their anti-inflammatory activity and can be
isolated from plants, but only in minor quantities.
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Scheme 3. First reports of B–alkyl Suzuki–Miyaura cross-coupling (A–C) and the reactivity of
alkylboranes (C).
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Scheme 4. B–alkyl SMC of chloroenynes.

C–O electrophiles represent attractive alternatives to halides. However, research on cross-couplings
of aryl methyl ethers was delayed by the perception that they can be challenging coupling counterparts
in comparison to other protected phenol electrophiles such as aryl pivalates, sulfonates and carbamates.
Indeed, the activation energy for effecting C–OMe bond cleavage is significantly higher, with OMe being
more difficult to separate from the group and more reluctant to oxidative addition. It is noteworthy
that C–O electrophiles cross-couplings are predominantly conducted with nickel catalysis, as can be
seen in Scheme 5, which depicts the work of the Rueping group in this regard. This demonstrates the
higher activity of Ni with such challenging substrates [82–84].
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Scheme 5. Ni-catalyzed alkylation of CAr−O electrophiles (including aromatic methyl ethers) (A,B)
and methyl enol ethers (C).

In 2016, Rueping et al. utilized the B-alkyl-9-BBN 2 to report an efficient nickel-catalyzed alkylation
of CAr−O electrophiles 21 (pivalates, carbonates, carbamates, sulphamates and tosylates). The optimal
conditions involved Ni(COD)2, a IPr·HCl ligand and Cs2CO3 in diisopropyl ether (Scheme 5A). This
new protocol was tolerant to numerous synthetically important functional groups of phenol pivalates
and alkylboranes circumventing the restriction of β-hydride elimination [85]. Soon after, the same
group described the use of the first alkylation of polycyclic aromatic methyl ethers 23 and methyl
enol ethers 25 and 26 (Scheme 5B,C), which involves the cleavage of the highly inert C(sp2)–OMe
bonds, using alkylboron reagents with broad functional group tolerance. As expected, the choice of
the base and the ligand is critical in C–O bond-cleaving reactions. Thus, the conditions described for
CAr−O electrophiles were not successful, and the optimal conditions necessitated the replacement of
the IPr·HCl ligand with PCy3. Cs2CO3 was mostly used in couplings of alkenyl ethers, while both CsF
and Cs2CO3 could be used in the case of aromatic methyl ethers. The reaction performed better with
a Ni/L ratio of 1:4 instead of 1:2, and a prolonged reaction time of 60 h instead of 12 h. The optimal
conditions for these novel transformations are summarized in Scheme 5 [86].

In 2018, Zhang et al. reported a hydroboration/Pd-catalyzed migrative SMC of 1,3-dienes 30
with electron-deficient aryl halides 29 (Scheme 6) with a wide scope (>40 examples). This method
allows the use of primary homoallylic alkylboranes in the direct synthesis of branched allylarenes.
The selectivity of the branched versus linear coupling was found to be tuned by the choice of the ligand.
The branch-selective coupling was found to be favored by the more electron-rich bidentate ligand with a
larger ligand–metal–ligand (bite) angle (i.e., L5: dppb). Their report involved preliminary mechanistic
studies, showing a palladium migration in the formation of allyl palladium species. The migration
proceeded via a sequence of β-hydride elimination and an alkene reinsertion partially involving an
alkene dissociation/association process (Scheme 6) [87].
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Scheme 6. Hydroboration/Pd-catalyzed migrative SMC of 1,3-dienes aryl halides.

Very recently, Newhouse et al. described the use of β-triflyl enones 32 as efficient coupling
partners in a mild B–alkyl SMC (Pd(dppf)Cl2 (2.5 mol%), Cs2CO3 (2 eq.)), and tolerant of sensitive
functional groups (Scheme 7A). The more stable triflate to light and chromatography, in comparison to
halogenated analogs, were used to establish challenging cyclic α,β-disubstituted enones 33 with good
to excellent yields (10 examples) [88]. In parallel, Usuki et al. reported an SMC between halogenated
pyridines 34 and a borated L-aspartic acid derivative (9-BBN) 35 using Pd(PPh3)4 (5 mol%) and
K3PO4(aq.) in THF (Scheme 7B). The experimental yield gave insight on the reactivity order of halogen
substituents and position, which was found to be as follows: Br > I >> Cl and C3 > C2, C4 [89].
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Scheme 7. Latest reports of SMCs using 9BBN (A and B).

Although decarbonylative and acyl cross-coupling reactions are not covered in this
review [48–52,90], it is worth mentioning two very recent novel reports from the groups of Rueping
and Nishihara. Rueping et al. (Scheme 8A) described an elegant ligand-controlled and site-selective
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nickel catalyzed SMC with aromatic esters 37 and alkyl organoboron reagents (majorly 9-BBN 2 and 6
examples with triethylboron). Ester substrates 37 were transformed into alkylated arenes 38 and ketone
products 39 simply by switching the ligand from bidentate phosphine (L6: dcype) to monodentate
phosphine (P(nBu)3 or PCy3). The regioselectivity was rationalized by DFT studies and the reported
method has shown broad tolerance to functional groups and a wide substrate scope. The reaction was
tested successfully on a large scale (1 g) using a cheaper NiCl2 catalyst [91]. The group of Nishihara
reported an elegant nickel-catalyzed decarbonylative C−F bond alkylation of aroyl fluorides 40; the
conditions are depicted in Scheme 8B [92].

Catalysts 2020, 10, x FOR PEER REVIEW 10 of 24 

 

Although decarbonylative and acyl cross-coupling reactions are not covered in this review [48-
52,90], it is worth mentioning two very recent novel reports from the groups of Rueping and 
Nishihara. Rueping et al. (Scheme 8A) described an elegant ligand-controlled and site-selective nickel 
catalyzed SMC with aromatic esters 37 and alkyl organoboron reagents (majorly 9-BBN 2 and 6 
examples with triethylboron). Ester substrates 37 were transformed into alkylated arenes 38 and 
ketone products 39 simply by switching the ligand from bidentate phosphine (L6: dcype) to 
monodentate phosphine (P(nBu)3 or PCy3). The regioselectivity was rationalized by DFT studies and 
the reported method has shown broad tolerance to functional groups and a wide substrate scope. The 
reaction was tested successfully on a large scale (1 g) using a cheaper NiCl2 catalyst [91]. The group 
of Nishihara reported an elegant nickel-catalyzed decarbonylative C−F bond alkylation of aroyl 
fluorides 40; the conditions are depicted in Scheme 8B [92]. 

 
Scheme 8. Novel decarbonylative cross-coupling reactions with alkylboranes (A and B). 

4. Organotrifluoroborates in sp3–sp2 SMCs 

The tetracoordinate nature of the boron in organotrifluoroborates fortified by strong boron–
fluorine bonds has been found to inhibit the undesirable reactions typical of trivalent organoborons. 
All of these complexes are crystalline solids and stable in water and under air; thus they can be stored 
on the shelf indefinitely. Besides, the manipulation of remote functional groups within the 
organotrifluoroborates is feasible while retaining the valuable C–B bond. Borates (RBF3K) 45 can be 
easily prepared on a large scale by the addition of inexpensive fluoride source (KHF2) 44 to a variety 
of organoboron intermediates 43, such as boronic acids/esters, organodihaloboranes and 
organodiaminoboranes (Scheme 9A) [93]. 

B)

O

O
Ph

B-alky-9-BBN

Alkyl

Alkyl

O

bidentate phosphine

monodentate phosphine

Ni(COD)2 (10 mol%)
dcype (20 mol%), CsF (1.0 eq.)

toluene, 150 oC

Ni(COD)2 (10 mol%)
P(nBu)3 or PCy3 (20 mol%), CsCO3 (2.0 eq.)

toluene, 60-80 oC

A)

F

O
R1

R2 [B]
R2Ni(COD)2 (10 mol%)

dppe (10 mol%), CsF (1.0 eq.)
toluene/hexane, 140 oC

R1

P P
Cy

Cy
Cy

Cy

L6 : dcype

P P
Ph

Ph
Ph

Ph

L7 : dppe

37
2

38

39

40                                      41                                                                                                42

Scheme 8. Novel decarbonylative cross-coupling reactions with alkylboranes (A and B).

4. Organotrifluoroborates in sp3–sp2 SMCs

The tetracoordinate nature of the boron in organotrifluoroborates fortified by strong boron–fluorine
bonds has been found to inhibit the undesirable reactions typical of trivalent organoborons. All of these
complexes are crystalline solids and stable in water and under air; thus they can be stored on the shelf
indefinitely. Besides, the manipulation of remote functional groups within the organotrifluoroborates
is feasible while retaining the valuable C–B bond. Borates (RBF3K) 45 can be easily prepared on a large
scale by the addition of inexpensive fluoride source (KHF2) 44 to a variety of organoboron intermediates
43, such as boronic acids/esters, organodihaloboranes and organodiaminoboranes (Scheme 9A) [93].

Molander and coworkers were the first to use potassium alkyltrifluoroborates 45 as coupling
partners with aryl halides/triflates and vinyl triflates 46/47 using PdCl2(dppf)·CH2Cl2 as the catalyst in
THF-H2O and Cs2CO3 as the base (Scheme 9B). Two successive reports in 2001 and 2003 studied the
scope of this B–alkyl SMC, reporting more than 50 examples with acceptable to very good yields, hence
revealing a potential general method to a wide range of functionalities [44,94]. Later, the same group
used microscale parallel experimentation to describe the first comprehensive study of the coupling
of secondary alkylborons (organotrifluoroborates) and aryl chlorides (and bromides), elaborating
different catalytic systems for this purpose. Their results demonstrated a ligand-dependent β-hydride
elimination/reinsertion mechanism in the cross-couplings of hindered partners, which can result in
isomeric products of coupled products [34]. The use of trifluoroborates in SMC was validated by
numerous publications that appeared thereafter and was reviewed many times by different research
groups, as the one by Molander in 2015 [79,95–98].
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Harris et al. recently reported a Pd-catalyzed SMC reaction with tertiary trifluoroborate salts 49 to
synthesize 1-heteroaryl-3-azabicyclo[3.1.0]hexanes 51, an interesting scaffold in medicinal studies with
limited synthetic approaches. The SMC protocol was compatible with a range of aryl and heteroaryl
chlorides and bromides 50 (Scheme 9C) [99]. The optimized conditions involved CatacXium-A-Pd-G3,
Cs2CO3 in toluene/water and were applied in synthesis of 18 examples with good to excellent yields.

The group of Molander, after their review [98], has extended the scope of sp2–sp3 cross-couplings to
fluoroborates that show recalcitrance to Pd-catalyzed classical couplings via dual catalysis (Scheme 10).
The first comprised the coupling of aryl bromides 53 to secondary alkyl β-trifluoroboratoketones
and -esters 52 using Ir-based photoredox/nickel dual catalysis (Scheme 10A). This dual catalysis
relies on a single-electron transmetalation and provides a complementary toolbox to the classical
couplings that are based on two-electron processes. The oxidative fragmentation in the dual catalysis
activates the organometallic reagent into its corresponding alkyl radical, which is then readily
intercepted by the nickel catalyst mediating the formation of the C−C bond formation with the aryl
halide partner. Their optimized conditions consisted of a catalytic system of Ir[dFCF3ppy]2(bpy)PF6

photocatalyst (2.5 mol%), NiCl2·dme (2.5 mol%), dtbbpy (2.5 mol%), Cs2CO3 (0.5 eq.) and 2,6-lutidine
(0.5 eq.) in 1,4-dioxane, tolerating various functionalities in addition to sterically and electronically
diverse coupling partners (Scheme 10A) [100]. The second report described a photoredox/nickel dual
catalysis alternative approach to the protecting-group-independent cross-coupling of α-alkoxyalkyl-
and α-acyloxyalkyltrifluoroborates 55 with aryl (and heteroaryl) bromides 53, which can also be
achieved by palladium catalysis. This method was compatible with various functional groups
and N,N-diisopropylcarbamoyl, pivaloyl and benzyl protecting groups (Scheme 10B) [101]. Their
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third dual catalysis report (Scheme 10C) contributed to the construction of sterically demanding
quaternary centers 58, an area that is not yet comprehensive and suffers from the absence of general
methodologies and the copious limitations of the currently used metal-catalyzed methods. Various
tertiary organotrifluoroborates reagents 57 were coupled using different conditions and light intensities,
which were found to be crucial depending on the nature of the substituents (e.g., bridged versus
acyclic). The scope of the coupled aryl bromides 53 in this method was limited to electron-poor and
electron-neutral systems [102].
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5. Other Alkylboranes in sp3–sp2 SMCs

Tri-n-alkylboranes (R3B) can be easily prepared by the reaction of Grignard reagents with boron
trifluoride etherate (Scheme 11A) [103]. The use of this class of boranes in B–alkyl SMC was sporadically
reported in the literature, probably due to their flammable nature and sensitivity to oxygen, as well as
the inefficiency of the transfer of all three alkyl groups from the boron center [104]. In 2009, Wang et al.
published optimization studies that presented efficient and chemoselective Pd-catalyzed direct SMCs of
trialkylboranes 60 with bromoarenes 59 in the presence of unmasked acidic or basic functions using the
weak base Cs2CO3 under mild non-aqueous conditions (Scheme 11B). The conditions tolerated carbonyl
reagents, chlorinated derivatives, nitriles and unprotected and base-labile Piv- and TBS-protected
phenols with more than 30 examples incorporating primary alkyls, and especially lower n-alkyls such
as ethyl groups [105,106].
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Lacôte et al. developed the efficient transfer of all three groups of trialkyl- and triaryl-boranes
(0.3–1 eq. instead of 1–3 eq.) in SMC in good yields under base-free conditions, achieving the activation
by using N-heterocyclic carbenes (i.e., 63 in Scheme 11C). The C(sp2)-C(sp3) scope involved the
NHC–borane complexes 63 with aryl chlorides, bromides, iodides and triflates 62 in 11 examples
(65%–99%) using PdCl2(dppf) or Pd(OAc)2 with a ligand (XPhos or RuPhos) under microwave
irradiation or classical heating [107]. In 2015, Li et al. described a general, atom-economic methodology
that uses peralkyl and peraryl groups of unactivated symmetrical triaryl- and trialkyl-boranes 66 in SMC
(Scheme 11D). The hydroboration of terminal alkenes was carried out in situ, and the corresponding
trialkylboranes 66 were coupled with alkenyl and aryl halides 65 in a one-pot fashion. The method
was compatible with a variety of functional groups and heterocycles [108].

6. Alkylboronic Acids in sp3–sp2 SMCs

Alkylboronic acids (R(BOH)2), like their aryl analogs, exist in equilibrium with their trimeric
cyclic anhydrides—boroxines, which also proved to be efficient coupling partners in SMCs [109]. Thus,
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the determination of the concentration of boroxine vs. boronic acid in the catalytic reaction can be
difficult, requiring the employment of excess boronic acid to ensure the completion of the reaction [110].
Gibbs et al. were among the first to use alkylboronic acids as coupling partners with alkenyl triflates in
1995 [111]. The group of Falck widened the scope by reporting an efficient Ag(I)-promoted SMC of
n-alkylboronic acids 68 (Scheme 12A) [112].
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The progress of utilizing alkylboronic acids was reviewed in 2008 [110]. Next, the SMC of primary
alkylboronic acids 72 with alkenyl halides 73 was reported using air-stable catalyst PdCl(C3H5)(dppb)
and Cs2CO3, and toluene or xylene as solvents (Scheme 12B) [113]. In 2012, Ma et al. used Pd(OAc)2 with
K2CO3 and an air-stable monophosphine HBF4 salt (L9: LB-Phos.HBF4) as an efficient ligand to couple
primary and secondary alkylboronic acids 75 with 2-bromoalken-3-ol derivatives 76 (Scheme 12C) [114].
In 2014, Tang et al. revealed a sterically demanding aryl–alkyl SMC between di-ortho-substituted
arylhalides 79 and (secondary) cycloalkylboronic acids 78 using a highly reactive Pd-AntPhos catalyst
that allowed to reduce the β-hydride elimination (Scheme 12D). The method comprised a scope of
sterically hindered substituted aryl compounds, including highly substituted benzene, naphthalene
and anthracene derivatives [115]. The same group described the cross-coupling between aryl/alkenyl
triflates 82 and acyclic secondary alkylboronic acids 81 in good to excellent yields (Scheme 12E).
The employment of sterically bulky P,P=O ligands (L11/12) was found to be critical to achieve the
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chemoselectivity by inhibiting the isomerization of the secondary alkyl coupling partner (e.g., iPr vs.
nPr) and to obtain high yields [116].

7. Boronic Esters and MIDA Boronates in sp3–sp2 SMCs

Prior to the work of Rueping on more general cross-coupling methods of challenging C–O
electrophiles with organoboron reagents, a robust Ru-catalyzed SMC of aryl methyl ethers 84 with
boronic esters 85 was elegantly revealed by chelation assistance (Scheme 13A) [84,117]. Aromatic
ketones 84 where the carbonyl is located in an ortho position were reported to assist in the cleavage of
C–OMe bonds. Neopentyl boronates 85 were the most reactive among all the tested boronic esters.
The conditions were employed to couple aryl, alkenyl and even alkyl boronates with the same efficiency
by using a RuH2(CO)(PPh3)3 catalytic system. The C–OMe bond-cleavage was facilitated by the
coordination of the carbonyl group to the Ru center, in an analogous mechanistic scenario to C–H
activation (Scheme 13B). The suggested chelation-assisted mechanism was later supported by the
isolation of the oxidative addition complex of an aryl C–O bond using low-valent Ru complexes 91
(Scheme 13C) [84,118,119]. The C–O bond-cleavage occurred at high temperatures (thermodynamic
control) as compared to the C–H functionalization that rapidly took place at room temperature
(Scheme 13C). The Ru-catalyzed SMC of aryl methyl ethers remained restricted to the presence of
an ortho directing group to the reactive site [84,118,119]. The reported more general Ni-catalyzed
coupling version of aryl methyl ether without directing group involved aryl boranes, and did not
involve a scope of alkyl boranes [84,117–120].
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Scheme 13. Chelation-assisted Ru-catalyzed sp3–sp2 SMCs of C–OMe electrophiles (A) and mechanistic
insight (B,C).

Inspired by the pioneering work of Wrackmeyer on protected boronic acids by iminodiacetic
acids [121], the groups of Burke, Yudin and others developed the use of N-methyliminodiacetic acid
(MIDA) boronates 92 in direct and iterative SMC reactions [122–124]. In addition to stability and
compatibility with chromatography, the advantage of MIDA boronates is their mild hydrolysis to
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liberate the corresponding boronic acids compared to the harsh conditions needed in the case of
sterically bulky boronic esters. This class found various applications in synthesis, and the efficient
iterative assembly of the MIDA building blocks was recently reviewed in 2015 [122]. A direct SMC
between MIDA boronates 92 and aryl and heteroaryl bromides 93 is presented in Scheme 14 [43].
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8. B–Alkyl SMCs Using BBN Variants (9-MeO-9-BBN and OBBD Derivatives)

The basic set-up of the SMC has essentially stayed similar for decades. However, the ‘9-MeO-9-BBN
variant’ is one of the alternative formats for this transformation that has permitted advanced applications
of the sp3–sp2 coupling process (Scheme 15A,B). This method is distinguished by the absence of the
essential base that acts as a promoter in the classical SMC version. Rather, the R–M (sp3, sp2, or sp) is
first intercepted with 9-MeO-9-BBN, resulting in the corresponding borinate complex 97, which then
passes the R-group onto an organopalladium complex generated in situ as the electrophilic partner
(Scheme 15A). The 9-MeO-9-BBN variant was reviewed by Seidel and Fürstner in 2011 [125]. In 2013,
Dai et al. reported a 9-MeO-9-BBN variant methodology, depicted in Scheme 15B, using Pd(OAc)2

and a hemilabile P,O-ligand, Aphos-Y L13 under mild reaction conditions (K3PO4·3H2O, THF/H2O, rt)
coupling the alkyl iodide 99 and the alkenyl bromide 100. This new process serves as an improvement
of the Johnson protocol, which generally employs two ligands (dppf and Ph3As) and two organic
solvents (THF and DMF) in the SMC step in the total synthesis of structurally complex natural products,
by using one ligand (L13, Aphos-Y) and one organic solvent (THF) [126].

OBBD (B-alkyl-9-oxa-10-borabicyclo[3.3.2]decane) derivatives 104/105 represent another variant
of 9-BBN (Scheme 15C,D). OBBD reagents 104/105 were used successfully to perform B-Alkyl SMC
under mild aqueous micellar catalysis conditions. The straightforward preparation of OBBD 104/105 is
shown in Scheme 15C.

OBBD derivatives showed similar reactivity to 9-BBN reagents in SMCs, with the advantage
of increased stability and isolable nature. The optimized SMC conditions (Scheme 15D) comprised
dtbpf L14 as the supporting ligand, which allows the reaction to be run at a catalyst loading as
low as 0.25 mol% (i.e., 2500 ppm). The optimization was carried out in aqueous surfactant media,
with TPGS-750-M as the preferred amphiphile and Et3N or K3PO4 as the base. The substrate scope
108 was shown by more than 34 examples with good to excellent yields (56%–100%). Lower yields
were observed with steric hindrance next to the boronate group, and the conditions were limited on
secondary OBBD reagents (even upon using 9-BBN derivatives instead). The synthetic utility of this
methodology was demonstrated by a four-step one-pot synthesis and a successful recycling of the
reaction medium [127].

58



Catalysts 2020, 10, 296

Catalysts 2020, 10, x FOR PEER REVIEW 17 of 24 

 

 
Scheme 15. B–alkyl SMCs using BBN variants (9-MeO-9-BBN (A,B) and OBBD derivatives (C,D)). 

9. Selected Examples of Applications of SMCs and B–alkyl SMC in the Synthesis of Target 
Molecules 

It is rare nowadays to find a total synthesis that does not involve at least a cross-coupling 
reaction, and in particular, a Suzuki–Miyaura reagent [6]. The use of SMC in total synthesis has been 
extensively reviewed by Heravi et al. [128,129]. 

B–alkyl SMC, in particular, was likewise applied in the synthesis of beneficial products [130–
132]. Two examples are shown in Scheme 16: Cytochalasin Z8 and Ieodomycin D, which belong to 
the family of secondary fungal metabolite with a wide range of biological activities that target 

Scheme 15. B–alkyl SMCs using BBN variants (9-MeO-9-BBN (A,B) and OBBD derivatives (C,D)).

9. Selected Examples of Applications of SMCs and B–alkyl SMC in the Synthesis of Target
Molecules

It is rare nowadays to find a total synthesis that does not involve at least a cross-coupling reaction,
and in particular, a Suzuki–Miyaura reagent [6]. The use of SMC in total synthesis has been extensively
reviewed by Heravi et al. [128,129].
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B–alkyl SMC, in particular, was likewise applied in the synthesis of beneficial products [130–132].
Two examples are shown in Scheme 16: Cytochalasin Z8 and Ieodomycin D, which belong to the
family of secondary fungal metabolite with a wide range of biological activities that target cytoskeletal
processes [133–135]. Scheme 16 also includes examples of complex molecules that were achieved by
synthetic routes involving SMCs with C(sp2)–B reagents; namely Michellamine (an anti-HIV viral
replication receptor) and (-)-steganone (an antileukemic lignan precursor) [136,137].
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10. Conclusion

The present review focused on the use of C(sp3)–organoboranes as cross-coupling partners in
metal-catalyzed C(sp3)–C(sp2) cross-couplings, such as B–alkyl Suzuki–Miyaura reactions. Indeed,
metal-catalyzed cross-coupling reactions have become mature tools in organic synthesis. Nevertheless,
C(sp3)–C cross-couplings are far less reported than other C-C coupling reactions. Furthermore,
this field is largely dominated by using organic halides or pseudohalides as coupling partners.
C–O–Alkyl electrophiles remain an area of research that is attracting strong attention. Undoubtedly, the
progress made in the syntheses of stable and isolable sp3-boron reagents is impacting the development
of C(sp3)–C(sp2) cross-couplings of the Suzuki–Miyaura type. The attention given to dual and
photocatalysis is also strongly contributing to the furnishing of a toolbox that can achieve active
adducts, which impact all fields of research and industry and cannot be otherwise obtained.
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Abstract: Teraryl-based alpha-helix mimetics have resulted in efficient inhibitors of protein-protein
interactions (PPIs). Extending the concept to even longer oligoarene systems would allow for
the mimicking of even larger interaction sites. We present a highly efficient synthetic modular
access to quateraryl alpha-helix mimetics, in which, at first, two phenols undergo electrooxidative
dehydrogenative cross-coupling. The resulting 4,4′-biphenol is then activated by conversion to
nonaflates, which serve as leaving groups for iterative Pd-catalyzed Suzuki-cross-coupling reactions
with suitably substituted pyridine boronic acids. This work, for the first time, demonstrates the
synthetic efficiency of using both electroorganic as well as transition-metal catalyzed cross-coupling
in the assembly of oligoarene structures.

Keywords: alpha-helix; anode; CH-activation; cross-coupling; electrosynthesis; oligoarene;
peptidomimetics; phenol; protein-protein interactions; triflate

1. Introduction

Over the last two decades, the inhibition of protein-protein-interactions (PPI) with small molecules has
emerged as a challenging but rewarding new paradigm in Chemical Biology and Drug Discovery [1–4].
The challenge is associated with the fact that—in contrast to established drug targets such as enzymes,
G protein-coupled receptors (GPCRs), ion channels, etc.—protein-protein-interaction interfaces are
characterized by a large, rather flat surface, in which several amino acids distributed over a wide
surface area contribute synergistically to the binding of the protein partner. This requires new types
of compounds being able to mimic such interaction partners. Among them foldamers [5], stapled
peptides [6], and α-helix mimetics [7–13] have turned out to be of particular value. Hamilton and
co-workers have demonstrated that trisubstituted linear teraryls can function as α-helix mimetics,
displaying the i, i+4 and i+7 amino acid residues in angle and distance characteristic for the α-helix
motif within proteins [14]. These teraryl structures have resulted in efficient inhibitors of protein-protein
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interactions, with the advantages of lower molecular weight, better bioavailability, and hydrolytic
stability, when compared with peptide drugs. We could show that such teraryl peptide mimetics can
be assembled in a modular way using aryltriflates via Pd-catalyzed cross-coupling reactions [15–18].
In order to address an even larger part of the protein-protein interaction site, we are aiming to
synthesize α-helix mimetics in the form of quateraryls featuring four amino acid residues. Ideally,
these structures should be accessible from simple starting materials by an iterative cross-coupling
process [19]. We envisioned that electrooxidative dehydrogenative coupling of suitably substituted
phenols would produce 4,4′-biphenols as building blocks for core fragments [20]. Electroorganic
synthesis activates molecules by the simple addition or removal of electrons. Consequently, this method
requires no stoichiometric reagents. Currently, this methodology exhibits the lowest environmental
impact and is considered as inherently safe [21–24]. Upon conversion of the biphenols into sulfonate
esters, these structure motifs could be connected with pyridine boronic acids via Pd-catalyzed
cross-coupling reactions.

In this manuscript, we report about the implementation of such a strategy, which enabled
us to synthesize a quateraryl fragment, which could function as a mimic of the β-catenin/B-cell
CLL/lymphoma 9 protein (Bcl9) interaction site.

2. Results and Discussion

As a test case for our synthetic methodology (see Supplementary Materials), we choose the PPI
between β-catenin and Bcl9, which is an important regulatory factor in the development of cancer
via the Wnt signaling pathway [25]. The β-catenin/Bcl9 PPI has been well characterized, and the
group of Verdine has developed stapled peptides addressing this PPI [26]. By analyzing available
structural information from the β-catenin/Bcl9 interface [27], we identified Arg-359, Leu-363, Leu-366,
Ile-369, and Leu-373 as relevant amino acids of an α-helix structural element. This led us to propose
the following quateraryl structures as target molecules (Figure 1).
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2.1. Electrooxidative Cross-Coupling of Phenols

According to our retrosynthetic reasoning, the quateraryls will be assembled from 4,4′-biphenols.
In order to have maximum flexibility in the selection of side-chain substituents, the core fragments
should be synthesized from differently substituted phenols. In earlier work we could show that
symmetric or non-symmetric 4,4′-biphenols can be prepared from suitable ortho-blocked phenols
by direct anodic dehydrogenative coupling, using boron-doped diamond (BDD) electrodes and
1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) as suitable solvent in yields up to 77% [20]. We reasoned that
we could improve the selectivity in the electrochemical cross-coupling if we would offer one reaction
partner as a free phenol and the second one as a protected phenol [29–31]. For synthetic efficiency,
we considered a silyl-protecting group as a good choice. In the event, we tried tert-butyldimethylsilyl
(TBDMS)-protected phenols 2 and 6 and tert-butyldiphenylsilyl (TBDPS)-protected phenol 4 in the
coupling with 2,6-dimethoxyphenol (1). The yields for the cross-coupling reactions were with 23–27%
rather low (Scheme 1, left column). As a comparison, the yields for the unprotected building blocks are
displayed (Scheme 1, right column), which, except for 13, provided the 4,4′-biphenols in yields >60%.
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building blocks.

In addition to its poor coupling yields, the silyl-monoprotected building blocks could also not
be successfully used in the subsequent nonaflation/Pd-cross coupling steps. Therefore, we preferred
to use the unprotected 4,4′-biphenols as core fragments for the assembly of our target quateraryls,
which would make the synthetic route even more efficient and shorter.

2.2. Synthesis of Pyridine Boronic Acids

For the final assembly of our target structures we would need pyridine boronic acids featuring the
side chain of leucine (16), isoleucine (19), and arginine (Scheme 2). The leucine pyridine boronic acid
was produced in an efficient two-step synthesis starting from 3,5-dichloropyridine (14). Fe-catalyzed
Kochi-Fürstner cross-coupling [32] of 14 with isobutyl-Grignard delivered 15 in a 53% yield, which could
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be converted to leucine pyridine boronic acid 16 via Miyaura-borylation with Pd/XPhos in an excellent
yield of 93%. For the synthesis of the isoleucine pyridine boronic acid ester 19 a Negishi-coupling
strategy was chosen. Starting from 3,5-dibromopyridine (17) Negishi-coupling with the in-situ prepared
2-butyl zinc reagent furnished pyridine 18 in a 34% yield. Activation of 18 with a Knochel-Grignard [33]
and an electrophilic quench with (pin)BOiPr resulted in an isoleucine boronic acid ester 19 in a
50% yield. In previous work, we have realized that an arginine building block would be very
difficult to handle, not only in the synthesis of building blocks, but also in the assembly of the
oligoarenes. Therefore, we preferred to incorporate this building block in a latent alkylnitrile form
23, which, after oligoarene assembly, can be efficiently converted to the arginine side chain by nitrile
reduction, and converting the resulting primary amine with (Boc)2N-guanylation reagent 24. The Heck
reaction of 3,5-dibromopyridine (17) with acrylonitrile furnished 20 in a 58% yield. Chemoselective
alkene reduction with diimide in situ generated from tosylhydrazide produced 21 in an 86% yield.
Building on earlier experience, we chose to convert the bromopyridine 21 to the iodopyridine 22
using the Buchwald–Finkelstein reaction [34] in order to facilitate the planned metalation, with the
Knochel–Grignard forming a pyridinyl-Grignard intermediate. Indeed, this transformation and
subsequent electrophilic quench with (pin)BOiPr allowed the isolation of latent Arg-building block
(Arg*) 23 in a good yield of 62%.
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2.3. Quateraryl Assembly

In order to establish the conditions for the assembly of the quateraryls, we used commercial
3,3′,5,5′-tetramethyl-4,4′-biphenol (25) as a model core fragment (Scheme 3). With its two
ortho-substituents, it represents a sterically and electronically challenging pattern for subsequent
cross-coupling reactions. The methyl substituents are representative of Ala-side chains, giving rise to
test compounds, which could serve as control compounds in biological assays following the strategy
of an alanine scan widely used in the biochemistry of proteins [35]. Despite considerable effort
in optimization, we never succeeded in using the bistriflate of 25 in Pd-catalyzed cross-coupling
reactions. We faced considerable side reactions in the form of hydrolysis of the triflate by any type of
inorganic base used in the Suzuki-coupling reactions. Therefore, we chose nonaflates as leaving groups,
which have been described as a more stable and convenient substrate in Pd-catalyzed cross-coupling
reactions [36]. Nonaflation of 25 with nonafluorobutanesulfonylfluoride (NfF) in DCM delivered
bisnonaflate 26 in a 62% yield. Suzuki-coupling with 5-methyl-3-pyridine boronic acid ester (27) with
Pd(dppf)Cl2 as catalyst and K2CO3 as base produced the Ala-Ala-Ala-Ala-quateraryl 28 in a 63% yield.
For the synthesis of the asymmetrically substituted Arg-Ala-Ala-Ile quateraryl 30, Pd(OAc)2/SPhos
was chosen as the catalyst. Bisnonaflate 26 was coupled first with Ile-building block 16 and then—after
isolation of the teraryl—with the cyanoethyl-building block 23, using the same catalyst system. As the
selectivity of the reaction for the heterocoupling product was only moderate, desired product 29 could
only be isolated in a 16% yield. The cyanoethyl group could be converted into the arginine-side chain
by first reducing the nitrile to a primary amine with Raney-Ni, followed by reaction with guanylating
reagent 24, producing Arg-Ala-Ala-Ile-quateraryl 30 in a 16% yield over two steps.

Catalysts 2020, 10, x FOR PEER REVIEW 6 of 10 

 

 
Scheme 3. Synthesis of the quateraryls in the form of Ala-controls. 

2.4. Synthesis of Quateraryls as Bcl9-Mimetics 

With the productive nonaflate strategy for quateraryl assembly at hand, we could take on the 
challenge of preparing quateraryls with four different aryl building blocks. As a first target, we 
selected the Ile-Leu-Leu-Arg*-quateraryl 33 (Scheme 4). Starting from heterocoupling product 13 
nonaflation produced 31 in a 19% yield. From the two nonaflate groups in 31, we expected the 
nonaflate at the bottom ring for steric and electronic reasons to be more reactive than the one at the 
top ring, which is flanked by two ortho-substituents, among which one is a strongly electron-
donating methoxy group. As expected, the bottom ring nonaflate reacted first in a Suzuki-coupling 
with Ile-pyridine boronic acid ester 19, leaving the top ring nonaflate intact for a second Suzuki-
coupling with cyanoethyl building block 23, furnishing target Ile-Leu-Leu-Arg*-quateraryl 33 in 
decent yields. 

Scheme 3. Synthesis of the quateraryls in the form of Ala-controls.

2.4. Synthesis of Quateraryls as Bcl9-Mimetics

With the productive nonaflate strategy for quateraryl assembly at hand, we could take on the
challenge of preparing quateraryls with four different aryl building blocks. As a first target, we selected

73



Catalysts 2020, 10, 340

the Ile-Leu-Leu-Arg*-quateraryl 33 (Scheme 4). Starting from heterocoupling product 13 nonaflation
produced 31 in a 19% yield. From the two nonaflate groups in 31, we expected the nonaflate at the
bottom ring for steric and electronic reasons to be more reactive than the one at the top ring, which is
flanked by two ortho-substituents, among which one is a strongly electron-donating methoxy group.
As expected, the bottom ring nonaflate reacted first in a Suzuki-coupling with Ile-pyridine boronic acid
ester 19, leaving the top ring nonaflate intact for a second Suzuki-coupling with cyanoethyl building
block 23, furnishing target Ile-Leu-Leu-Arg*-quateraryl 33 in decent yields.
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Similarly, the Leu-Ile-“MeO”-Leu-quateraryl 36 could be assembled in an impressive 47% overall
yield from the bisphenol 11 (Scheme 5). For the coupling of the second nonaflate, again the SPhos Pd
G3 catalyst [37] turned out to be very efficient.
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The same precursor also served as the starting material for the synthesis of
Ile-Leu-“MeO”-Arg*-quateraryl 39, which could be synthesized in a 33% overall yield (Scheme 6).
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3. Materials and Methods

Electrochemical Anodic Dehydrogenative Cross-Coupling Reactions

Reaction parameter optimization of anodic cross-coupling reactions was carried out in undivided
5 mL Teflon cells (self-made by the mechanical workshop at JGU Mainz, Germany; or commercially
available from IKA, Staufen, Germany as the IKA Screening System), equipped with a Teflon cap for
precise alignment (electrode distance: 4.8 mm) of the electrodes. As the electrode material BDD was
used (0.3 × 1.0 × 7.0 cm, 15 µm boron-doped diamond layer on silica, commercially available from
CONDIAS GmbH, Itzehoe, Germany, DIACHEMTM). Preparative scale electrolysis reactions were
carried out in 25 mL undivided beaker-type glass cells with or without cooling jacket (self-made by
the mechanical workshop at JGU Mainz), capped with a Teflon plug for precise alignment (electrode
distance: 0.8 cm) of the BDD electrodes (0.3 × 2.0 × 6.0 cm, 15 µm boron-doped diamond layer on silica,
commercially available from CONDIAS GmbH, Itzehoe, Germany, DIACHEMTM).

4. Conclusions

With the examples shown above, we could for the first time demonstrate the synthetic potential
which can be harvested when combining the synthetic efficiency of electrooxidative dehydrogenative
cross-coupling of ortho-substituted phenols with the power of Pd-catalyzed cross-coupling reactions.
In our research it appeared necessary that the phenols are activated as nonaflates instead of triflates,
as the latter showed considerable liabilities in the subsequent Pd-catalyzed reactions due to their
hydrolytic lability against bases. In contrast, the nonaflates could be conveniently subjected to
Pd-catalyzed cross-coupling reactions. The selectivity could be controlled by electronic and steric
effects differentiating the reactivity of the two nonaflate groups. With the synthesis of a Bcl9 quateraryl
mimetic, we could highlight this synthetic strategy on a particularly challenging substrate. The overall
efficiency was shown in the highly convergent assembly of this quateraryl α-helix mimetic featuring
the side chains of Bcl9. We expect that the synthetic methodology reported here will find applications
in the synthesis of oligoarene structures, as required in Chemical Biology and Material Sciences.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/3/340/s1,
Experimental procedures and full spectroscopic characterization of all synthesized compounds.
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Abstract: Palladium catalysts deposited over silica gel bearing simple amine (≡Si(CH2)3NH2)
and composite functional amide pendants equipped with various donor groups in the terminal
position (≡Si(CH2)3NHC(O)CH2Y, Y = SMe, NMe2 and PPh2) were prepared and evaluated in
Sonogashira-type cross-coupling of acyl chlorides with terminal alkynes to give 1,3-disubstituted
prop-2-yn-1-ones. Generally, the catalysts showed good catalytic activity in the reactions of aroyl
chlorides with aryl alkynes under relatively mild reaction conditions even without adding a copper
co-catalyst. However, their repeated use was compromised by a significant loss of activity after the
first catalytic run.

Keywords: deposited catalysts; palladium; functional amides; Sonogashira reaction; alkynyl
ketone synthesis

1. Introduction

The first examples of Sonogashira-type cross-coupling of terminal alkynes with acyl chlorides to
give alkynyl ketones (Scheme 1) were reported by Crisp and O’Donoghue in 1989 [1], who reacted furoyl
chlorides with alkynes in the presence of [PdCl2(PhCN)2]/CuI and triethylamine to produce alkynyl
furanyl ketones. With [PdCl2(PPh3)2]/CuI and similar catalysts, this reaction subsequently made it
possible to synthesize a number of alkynyl ketones in organic solvents [2,3], in water (when adding
sodium dodecyl sulfate as a phase transfer reagent) [4–7] and even in a flow reactor (when using
unsupported Pd(OAc)2 as the catalyst) [8].
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Scheme 1. Sonogashira cross-coupling of alkynes and acyl chlorides resulting in alkynyl ketones. 
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chlorides and cinnamoyl chloride with ethynylbenzene mediated by [PdCl2(PPh3)2]/CuI deposited on 
KF-alumina under microwave irradiation. Subsequent reports described the use of conventional 
Pd/C [10], Pd nanoparticles supported by poly(1,4-phenylene sulfide) [11] or by functionalized 
polystyrene, PS-CH2NHC(S)NHN=C(Ph)C(Me)=N-OH (PS = polystyrene) (without a Cu co-catalyst) 
[12], and applications of Pd/BaSO4 with a ZnCl2 co-catalyst [13,14] in similar reactions. 

Scheme 1. Sonogashira cross-coupling of alkynes and acyl chlorides resulting in alkynyl ketones.

Alongside the development of homogenous catalysts, various heterogeneous catalytic systems
were devised for this cross-coupling reaction. Wang et al. [9] studied the coupling of aromatic chlorides
and cinnamoyl chloride with ethynylbenzene mediated by [PdCl2(PPh3)2]/CuI deposited on KF-alumina
under microwave irradiation. Subsequent reports described the use of conventional Pd/C [10],
Pd nanoparticles supported by poly(1,4-phenylene sulfide) [11] or by functionalized polystyrene,
PS-CH2NHC(S)NHN=C(Ph)C(Me)=N-OH (PS = polystyrene) (without a Cu co-catalyst) [12],
and applications of Pd/BaSO4 with a ZnCl2 co-catalyst [13,14] in similar reactions.

79



Catalysts 2020, 10, 1186

In 2009, Tsai et al. [15] reported the application of a Pd-bipyridyl complex grafted onto the
mesoporous molecular sieve MCM-41.Coupling reactions of various substrates mediated by this
catalyst in neat triethylamine, in the presence of CuI and triphenylphosphine, proceeded satisfactorily
at low Pd loading (0.002–0.1 mol.%). More recently, Cai et al. [16] used a related Pd catalyst prepared
by depositing Pd(OAc)2 over an MCM-41 surface, modified by ≡Si(CH2)3NHCH2CH2NH2 groups.
At 0.2 mol.% Pd loading, and with 0.2 mol.% CuI as a co-catalyst, this material could be reused ten times
with only a marginal loss of activity (reaction in triethylamine at 50 ◦C). Other authors evaluated the
related catalysts obtained from supports bearing phosphine-donor groups, e.g., periodic mesoporous
silica with ≡CH2CH2PPh2 substituents [17] and polystyrene modified by the –CH2P+Ph2CH2CH2PPh2

Cl− moieties at the surface [18].
Alkynyl ketones are valuable synthetic building blocks, opening an access to a range of useful

compounds, such as intermediates for the synthesis of various heterocycles [19–23], biologically active
compounds [24], naturally occurring compounds [25], liquid-crystalline materials [26], and ligands
for transition metal ions [27]. In particular, the promising results achieved with deposited catalysts
in the cross-coupling of acyl chlorides and alkynes and the wide range of applications of coupling
products led us to consider using palladium catalysts deposited over the conventional silica gel bearing
donor-substituted amide pendants [28] at the surface (Scheme 2) [29], which were already evaluated in
Suzuki-Miyaura biaryl coupling [30]. The results from our study of these catalysts are presented in
this contribution, with a particular focus on the reaction scope and a possible influence of the donor
moieties within the functional supports that were varied.
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Scheme 2. Deposited catalysts used in this study.

2. Results

2.1. Synthesis of the Catalysts

The deposited catalysts were prepared as reported previously (Scheme 3) [29]. In the first step,
freshly calcined, commercial chromatography-grade silica gel (size fraction 63–200 µm) was mixed
with (3-aminopropyl)trimethoxysilane in refluxing toluene to afford 3-aminopropylated support 1.
Material 1 was subsequently treated with α-functionalized acetic acids in the presence of peptide
coupling agents [31,32], yielding the corresponding amide-functionalized supports 2–4. In the final
step, the resulting materials were treated with palladium(II) acetate in dichloromethane to produce
the deposited Pd catalysts 5–7. As an extension of our previous work, the parent aminopropylated
material 1 was also palladated to give material 8 containing only amine functional groups.
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Materials 1–8 were characterized by elemental analysis and infrared (IR) spectroscopy, and the 
data on 1–7 were compared with those on the previously studied catalysts. While the IR spectra of 
the newly synthesized materials were virtually identical to those previously reported (see ref. [29]), 
elemental analysis revealed differences, most likely reflecting the amount of residual adsorbed matter 
(mostly water). Full characterization data are presented in the Experimental Section. 
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performed with 0.5 mol.% of catalyst 5 and 5 mol.% of CuI in neat amines and in mixtures of 
triethylamine with an organic solvent as well. When using neat morpholine and pyridine, the 
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with N-methylmorpholine and N,N-diisopropylethylamine (Figure 1), the yields determined by gas 
chromatography (GC yields) of the coupling product 11ad after 8 h at 50 °C were 2% and 10%, 
respectively. The best (albeit still rather low) yield of 21% after 8 h was achieved in neat triethylamine. 
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Scheme 3. Preparation of catalysts 5–8. Legend: i. (3-aminopropyl)trimethoxysilane in
toluene, refluxing; ii. amidation with YCH2CO2H in the presence of peptide coupling
agents (1-hydroxybenzotriazole and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (EDC) or the
corresponding hydrochloride (EDC·HCl)); iii. treatment with Pd(OAc)2 in dichloromethane.

Materials 1–8 were characterized by elemental analysis and infrared (IR) spectroscopy, and the
data on 1–7 were compared with those on the previously studied catalysts. While the IR spectra of
the newly synthesized materials were virtually identical to those previously reported (see ref. [29]),
elemental analysis revealed differences, most likely reflecting the amount of residual adsorbed matter
(mostly water). Full characterization data are presented in the Experimental Section.

2.2. Catalytic Assessment

Applications of deposited Pd catalysts to Sonogashira-type coupling of terminal alkynes with
acyl chlorides (see Introduction) has been studied considerably less than their use in conventional
Sonogashira cross-coupling between alkynes and organic halides [33]. Hence, our initial experiments
with catalysts 5–8 aimed to find the optimal reaction conditions for these catalysts and to compare their
performance with regard to influence of the varied functional groups modifying the support’s surface.
As a model reaction, we chose the coupling between equimolar amounts of ethynylbenzene (9a)
and 4-methylbenzoyl chloride (10d), producing 1-(4-methylphenyl)-3-phenyl-2-propyn-1-one (11ad,
see Scheme 4). The influence of the solvent and base, which are known to strongly affect these reactions
(see references in the Introduction), were evaluated first. The screening experiments were performed
with 0.5 mol.% of catalyst 5 and 5 mol.% of CuI in neat amines and in mixtures of triethylamine with
an organic solvent as well. When using neat morpholine and pyridine, the coupling reaction did not
proceed in any appreciable extent. However, when replacing these bases with N-methylmorpholine
and N,N-diisopropylethylamine (Figure 1), the yields determined by gas chromatography (GC yields)
of the coupling product 11ad after 8 h at 50 ◦C were 2% and 10%, respectively. The best (albeit still
rather low) yield of 21% after 8 h was achieved in neat triethylamine.
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Figure 1. Kinetic profiles for the model coupling reaction performed in neat amines (0.5 mol.% catalyst 
5, 5 mol.% CuI) at 50 °C. Solid lines are added as a visual guide. 

Reaction tests performed in organic solvents in the presence of 5 equiv. of triethylamine (Figure 
2) revealed a marked acceleration of the coupling reaction in acetonitrile (ca. 60% yield of 11ad within 
3 h at 50 °C). In contrast, reactions in other tested solvents, viz. toluene, 1,4-dioxane, acetone and N,N-
dimethylformamide, proceeded less efficiently, achieving lower yields than the aforementioned 
reaction in neat triethylamine (below 15% after 8 h; Figure 2); no reaction was observed in methanol. 
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triethylamine (5 equiv. NEt3, 0.5 mol.% catalyst 5, 5 mol.% CuI) at 50 °C. Legend: MeCN (), DMF 
(), acetone (), dioxane (), toluene (). The solid lines connecting the experimental points are a 
visual guide and do not represent any fit of the data. 

A subsequent series of experiments was designed to assess the effect of the CuI additive and 
relative amounts of the starting materials. Rather surprisingly, the reaction performed in neat 
triethylamine with 0.5 mol.% of catalyst 5 without adding CuI at 50 °C ensued in a higher yield of the 
coupling product than the similar reaction in the presence of the CuI co-catalyst (5 mol.%; 39% vs. 
21%). Consistently, when using acetonitrile as the solvent (with added NEt3, 5 equiv.), the reaction 
without CuI produced 11ad in a 78% yield after 8 h, which is a higher yield than that of the reaction 
performed in the absence of CuI (63%). Subsequently, we determined whether the coupling reaction 
is affected by the amount of acyl chloride when gradually increasing the amount of 4-toulyl chloride 
(10d) up to 1.5 equiv. As shown in Figure 3, the yield of 11ad significantly increased with the amount 

Figure 1. Kinetic profiles for the model coupling reaction performed in neat amines (0.5 mol.% catalyst
5, 5 mol.% CuI) at 50 ◦C. Solid lines are added as a visual guide.

Reaction tests performed in organic solvents in the presence of 5 equiv. of triethylamine (Figure 2)
revealed a marked acceleration of the coupling reaction in acetonitrile (ca. 60% yield of 11ad within
3 h at 50 ◦C). In contrast, reactions in other tested solvents, viz. toluene, 1,4-dioxane, acetone and
N,N-dimethylformamide, proceeded less efficiently, achieving lower yields than the aforementioned
reaction in neat triethylamine (below 15% after 8 h; Figure 2); no reaction was observed in methanol.
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Figure 2. Kinetic profiles for the model coupling reaction performed in organic solvents with added
triethylamine (5 equiv. NEt3, 0.5 mol.% catalyst 5, 5 mol.% CuI) at 50 ◦C. Legend: MeCN (#), DMF (�),
acetone (H), dioxane (•), toluene (4). The solid lines connecting the experimental points are a visual
guide and do not represent any fit of the data.

A subsequent series of experiments was designed to assess the effect of the CuI additive and relative
amounts of the starting materials. Rather surprisingly, the reaction performed in neat triethylamine
with 0.5 mol.% of catalyst 5 without adding CuI at 50 ◦C ensued in a higher yield of the coupling
product than the similar reaction in the presence of the CuI co-catalyst (5 mol.%; 39% vs. 21%).
Consistently, when using acetonitrile as the solvent (with added NEt3, 5 equiv.), the reaction without
CuI produced 11ad in a 78% yield after 8 h, which is a higher yield than that of the reaction performed
in the absence of CuI (63%). Subsequently, we determined whether the coupling reaction is affected
by the amount of acyl chloride when gradually increasing the amount of 4-toulyl chloride (10d) up
to 1.5 equiv. As shown in Figure 3, the yield of 11ad significantly increased with the amount of acyl
chloride. With only 1.3 equiv. of 10d, the GC yields of the coupling product were already virtually
quantitative within 1 h of the reaction time.
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Lastly, we compared all prepared catalysts and palladium(II) acetate under rather harsh reaction 
conditions (0.1 mol.% Pd, 30 °C reaction temperature). Regrettably, the kinetic profiles presented in 
Figure 5 clearly indicate that unsupported palladium(II) acetate outperforms all deposited catalysts. 
Among the deposited catalysts, the lowest efficiency exerted catalyst 7 bearing phosphine groups, 

Figure 3. Variation in the gas chromatography (GC) yields of 11ad observed when changing the
amount of acyl chloride in the reaction mixture. Conditions: catalyst 5 (0.5 mol.%), alkyne 9a (1 equiv.),
triethylamine (5 equiv.), dodecane (1 equiv.; internal standard) in acetonitrile solvent at 50 ◦C. Reaction
time: 1 h (white bars), 3 h (grey bars), and 8 h (black bars).

Using 1.5 equiv. of 10d, we subsequently tried to reduce the catalyst loading. Under these
conditions, the reaction proceeded satisfactorily, even in the presence of 0.1 and 0.2 mol.% of the
selected model catalyst 5 and at short reaction times, as shown in Figure 4, which compares the GC
yields of the coupling product 11ad achieved over different periods of time. When decreasing the
reaction temperature, however, the yield of the coupling product dramatically decreased (100% at
50 ◦C, 67% at 40 ◦C and ≈14% at 30 ◦C after 30 min of the reaction with catalyst 5 and 0.5 mol.% Pd in
the reaction mixture).
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Figure 4. Variation in the GC yields of 11ad observed upon changing the amount of catalyst 5. Catalyst
loading: 0.1 mol.% (white bars), 0.2 mol.% (grey bars), and 0.5 mol.% (black bars). Conditions: alkyne 9a
(1 equiv.), acyl chloride 10d (1.5 equiv.), triethylamine (5 equiv.), dodecane (1 equiv.; internal standard)
in acetonitrile solvent at 50 ◦C.

Lastly, we compared all prepared catalysts and palladium(II) acetate under rather harsh reaction
conditions (0.1 mol.% Pd, 30 ◦C reaction temperature). Regrettably, the kinetic profiles presented in
Figure 5 clearly indicate that unsupported palladium(II) acetate outperforms all deposited catalysts.
Among the deposited catalysts, the lowest efficiency exerted catalyst 7 bearing phosphine groups,
whereas the performance of catalysts bearing the S- and N-donor groups (5 and 6) was quite similar
and slightly better than that of catalyst 8 obtained from the amine-functionalized support.
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mixture increased the stability of the catalysts and even led to an activation of the phosphine-
functionalized catalyst 7, whereas the amount of leached-out Pd remained approximately the same 
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in Table 1. Initially, we focused on the reactions of ethynylbenzene (9a) with substituted benzoyl 
chlorides. In the case of methyl-substituted acyl chlorides, the yields of the coupling products 

Figure 5. Kinetic profiles for the model coupling reaction performed in the presence of different
catalysts: Pd(OAc)2 (N), catalyst 5 (•), catalyst 6 (5), catalyst 7 (�), and catalyst 8 (3). Conditions:
0.1 mol.% Pd, alkyne 9a (1 equiv.), acyl chloride 10d (1.5 equiv.), triethylamine (5 equiv.), dodecane (1
equiv.; internal standard) in acetonitrile solvent at 30 ◦C. The solid lines connecting the experimental
points serve as a visual guide and do not represent any fit of the data.

Recycled catalysts 5–8 significantly lost their activity (Figure 6), presumably due to leaching of
the deposited metal and to overall catalyst deactivation (the amount of Pd leached out during the first
run was only 1%–4% of the initial amount). Notably, CuI (5 mol.%) addition to the reaction mixture
increased the stability of the catalysts and even led to an activation of the phosphine-functionalized
catalyst 7, whereas the amount of leached-out Pd remained approximately the same (2–4% during
the first run; see the Supporting Information, Table S1). However, the yields of 11ad obtained with
recycled deposited catalysts 5–8/CuI were still considerably lower than the yields achieved during the
first runs and further decreased upon catalyst reuse.
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Figure 6. Results of catalytic experiments with fresh and reused catalysts without (left) and with
(right) added CuI (5 mol.%): catalyst 5 (white bars), catalyst 6 (grey bars), catalyst 7 (black bars),
and catalyst 8 (hatched bars). Conditions: 0.1 mol.% Pd, alkyne 9a (1 equiv.), acyl chloride 10d
(1.5 equiv.), triethylamine (5 equiv.), dodecane (1 equiv.; internal standard) in acetonitrile at 50 ◦C for
2 h.

Using catalyst 5 (0.5 mol.% Pd), we also performed reaction scope tests, which are summarized in
Table 1. Initially, we focused on the reactions of ethynylbenzene (9a) with substituted benzoyl chlorides.
In the case of methyl-substituted acyl chlorides, the yields of the coupling products increased with
the decrease in steric hindrance. Similar reactions with isomeric nitrobenzoyl chlorides proceeded
generally less efficiently and required longer reaction times to achieve isolated yields of the coupling
products higher than 50%; the reaction of 9a with 2-nitrobenzoyl chloride, the most sterically crowded
and deactivated acyl chloride, did not proceed. For the acyl chlorides, the substituents with a positive
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inductive (+I) or a mesomeric (+M) effect (4-Me, 4-Cl and 4-MeO) apparently facilitated the reaction
(isolated yields 85% or higher), whereas the nitro group, with a strong −M effect, hampered the
cross-coupling. Conversely, the outcome of the coupling reactions between benzoyl chloride (10a) and
substituted phenylacetylenes (4-Me, 4-MeO and 4-CF3) all proceeded with high isolated yields, in line
with the long distance between the substituents in position 4 of the benzene ring and the reaction site,
which inevitably minimizes their influence.

Table 1. Summary of the reaction scope tests a.

Alkyne Acyl Chloride Product Yield (%) b

PhC≡CH (9a) 2-MeC6H4COCl (10b) 11ab 66
PhC≡CH (9a) 3-MeC6H4COCl (10c) 11ac 75
PhC≡CH (9a) 4-MeC6H4COCl (10d) 11ad 85
PhC≡CH (9a) 2-NO2C6H4COCl (10e) 11ae n.d. d,e

PhC≡CH (9a) 3-NO2C6H4COCl (10f) 11af 75 d

PhC≡CH (9a) 4-NO2C6H4COCl (10g) 11ag 60 d

PhC≡CH (9a) 4-MeOC6H4COCl (10h) 11ah 87
PhC≡CH (9a) 4-ClC6H4COCl (10i) 11ai 93

4-MeC6H4C≡CH (9b) PhCOCl (10a) 11ba 95
4-MeOC6H4C≡CH (9e) PhCOCl (10a) 11ea 85
4-CF3C6H4C≡CH (9j) PhCOCl (10a) 11ja 85

PhC≡CH (9a) (E)-PhCH=CHCOCl (10k) 11ak 87
PhC≡CH (9a) PhCH2CH2COCl (10l) 11al n.d. e

PhC≡CH (9a) t-BuCOCl (10m) 11am 51
PhC≡CH (9a) (2-furanyl)COCl (10n) 11an 50
PhC≡CH (9a) (2-thienyl)COCl (10o) 11ao 25 d

FcC≡CH (9m) c PhCOCl (10p) 11pa 43 f

a Conditions: alkyne (1.0 mmol), acyl chloride (1.5 mmol) and triethylamine (5 mmol) were mixed in the presence
of catalyst 5 (0.5 mol.% Pd) in acetonitrile (5 mL) at 50 ◦C for 2 h. b Isolated yield after column chromatography.
An average of two independent runs is given. c Fc = ferrocenyl. d Reaction time was extended to 24 h. e n.d. = the
product was not detected. f The reaction was performed with 1.0 mmol of acyl chloride, and the reaction time was
extended to 4 h.

The coupling of 9a with cinnamoyl chloride also proceeded satisfactorily, producing 11ak in
an 87% isolated yield. In contrast, 3-phenylpropanoyl chloride (as a representative of aliphatic acyl
chlorides bearing an sp3 substituent at the acyl group) did not produce any coupling product under
analogous conditions. Conversely, pivaloyl chloride was converted into 11am with an acceptable
51% isolated yield. A similar yield was obtained with 2-furoyl chloride, whereas the reaction with
2-thiophenecarbonyl chloride had a lower yield. The ethynylferrocene/benzoyl chloride pair also
displayed a rather sluggish reaction, associated with side processes that were partly suppressed by
lowering the amount of the acyl chloride.

In addition to spectroscopic characterization, the structure of 11af was determined by single-crystal
X-ray diffraction analysis. Figure 7 shows the corresponding molecular structure along with selected
interatomic distances and angles.
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displacement ellipsoids at 50% probability level. Selected distances and angles (in Å and deg): N1=O1
1.224(4), N1=O2 1.229(3), C3-N1 1.468(4), C7=O3 1.223(4), C1-C7 1.492(4), C7-C8 1.447(4), C8-C9 1.205(4),
C9-C10 1.433(4); O1=N1=O2 123.4(2), C1-C7-C8 116.7(3), O3=C7-C1/C8 121.6(2)/121.7(2), C7-C8-C9
177.0(3), C8-C9C-10 175.5(3).

The compound crystallizes with the symmetry of the triclinic space group P–1 and
with one molecule in the asymmetric unit. Parameters describing the molecular geometry
of 11af are unexceptional and in line with the corresponding parameters reported for
1-(4-nitrophenyl)- 3-phenylprop-2-yn-1-one (4-O2NC6H4C(O)C≡CPh) [2,35] and 3-(4-methoxyphenyl)-
1-phenylprop-2-yn-1-one (PhC(O)C≡CC6H4OMe-4) [36]. The planes of the benzene rings C(1-6) and
C(10-15) in 11af are essentially coplanar (dihedral angle: 0.4(1)◦), and even the nitro group is twisted by
only 4.1(3)◦ with respect to its bonding benzene ring. In the crystal, the individual molecules assemble
into columnar stacks of inversion-related molecules (Figure 8) via offset π···π stacking interactions
of their parallel aromatic rings. These stacks, oriented along the crystallographic b axis, are further
interconnected in the direction of the crystallographic a axis by the C11-H11···O3 soft hydrogen bonds
(C11···O3 = 3.327(3) Å, angle at H11 = 158◦).
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3. Experimental

3.1. Methods and Materials

Infrared spectra were recorded in diffuse reflectance mode using a Fourier-transform infrared
spectrometer FTIR Nicolet 6700 (Thermo Fisher Scientific, Waltham, MA, USA; (scan range
400–4000 cm−1, 64 scans, 4 cm−1 resolution). The samples analyzed in this study were diluted
with KBr (grade for spectroscopy) before the measurement. Nuclear magnetic resonance (NMR)
spectra were recorded at 25 ◦C on a Varian UNITY Inova 400 spectrometer (Palo Alto, CA, USA)
operating at 399.95, 100.58 and 376.29 MHz for 1H, 13C and 19F, respectively. Chemical shifts (δ in
ppm) are expressed relative to internal tetramethylsilane (1H and 13C) and to external neat CFCl3
(19F). GC analyses were performed with an Agilent 6850 gas chromatograph (Santa Clara, CA, USA)
equipped with a DB-5 column (0.18 mm diameter, 50 m length).

Elemental composition of the deposited catalysts was determined using the standard combustion
method and a PerkinElmer PE 2400 CHN analyzer (Waltham, MA, USA). The content of palladium in
solid samples and in the reaction mixtures was determined by inductively coupled plasma optical
emission spectroscopy (ICP-OES) on an IRIS Interpid II instrument (Thermo Electron, Waltham, MA,
USA) with axial plasma and ultrasonic CETAC nebulizer U-5000AT+. The samples were dissolved in a
mixture of HF with HNO3 (3:2, suprapure from Merck; Kenilworth, NJ, USA) at 50 ◦C for 15 min and
evaporated. The residue was diluted with redistilled water for 105Pd (the wavelength used for the
spectrophotometric analysis was 324.270 nm).

Dichloromethane was dried over potassium carbonate and distilled under argon. Other solvents
were dried over activated 3 Å molecular sieves. Triethylamine was dried over sodium metal and distilled.
Other chemicals were used as obtained from commercial sources (Sigma-Aldrich, St. Louis, MO, USA).
Materials 2–7 were prepared as previously described [29]. The analytical data determined for the
newly prepared samples are as follows. The IR spectra were identical to those of the authentic samples.

Elemental analysis for 2: C 6.3, N 1.1, S 0.95 mmol·g−1. Elemental analysis for 3: C 7.0,
N 1.9 mmol·g−1. Elemental analysis for 4: C 11.3, N 1.1, P 0.77 mmol·g−1. Elemental analysis for
5: C 7.0, N 0.97, S 0.52, Pd 0.64 mmol·g−1. Elemental analysis for 6: C 7.6, N 1.7, Pd 0.62 mmol·g−1.
Elemental analysis for 7: C 11.3, N 1.1, P 0.21, Pd 0.43 mmol·g−1.

Catalyst 8 was prepared similarly by direct palladation of material 1. Thus, palladium(II) acetate
(0.449 g, 2.0 mmol) dissolved in dry dichloromethane (10 mL) was added to a suspension of support 1
(2.0 g) [29] in the same solvent (50 mL). After stirring the resulting mixture at room temperature for 1 h,
the solid was filtered off and washed with dichloromethane until the washings were colorless. Then,
the filter cake was washed a few more times (2-3×) and left to dry in the air.

Characterization data for 8. IR (DRIFTS): 3648 w, 3243 br w, 1567 m, 1430 w, 1388 w, 1330 vw,
1080 s (Si-O-Si asymetric stretch), 944 vw, 794 m (Si-O-Si symetric stretch), 688 w, 462 (Si-O-Si bending)
cm−1. Elemental analysis: C 6.1, N 1.1, Pd 0.58 mmol·g−1.

3.2. Description of the Screening Experiments

A Schlenk tube was successively charged with the catalyst (typically 0.1–0.5 mol.% Pd), CuI (9.5 mg,
5 mol.%; if appropriate), phenylacetylene (102 mg, 1.0 mmol), 4-toluoyl chloride (230 mg, 1.5 mmol)
and dodecane (internal standard; 170 mg, 1.0 mmol). The reaction vessel was flushed with nitrogen and
sealed. The solvent was introduced (5 mL of pure solvent or 5 mL of a solvent with 697 µL (5 mmol)
of triethylamine), and the reaction flask was transferred to a Heidolph Synthesis I parallel reactor
pre-heated to the required temperature. Aliquots of the reaction mixture were periodically collected,
diluted with saturated aqueous NaHCO3 and centrifuged at 4000 rpm for 5 min. The organic phase
was analyzed by gas chromatography.

During recyclation experiments, the reaction mixture obtained after 2 h at 50 ◦C was diluted
with acetone (5 mL) and cooled on ice. A small amount of the liquid phase was separated and
used to determine the conversion. The solids were filtered off, washed successively with acetone,
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methanol (removal of triethylammonium chloride) and acetone again. The filtrate and washings were
combined and used to quantify the amount of leached-out metal. The recovered solid was used in the
next catalytic experiments.

3.3. Preparative Experiments

A Schlenk tube was charged with the respective alkyne (1.0 mmol) and acyl chloride (1.5 mmol;
only 1.0 mmol of the acyl chloride was used in the reaction of ethynylferrocene with benzoyl chloride
to avoid decomposition). After flushing the reaction vessel with argon, catalyst 5 (0.5 mol.% Pd) was
introduced, followed by dry acetonitrile (5 mL) and anhydrous triethylamine (0.7 mL, ca. 5 mmol).
The reaction mixture was stirred at 50 ◦C for 2 h, diluted with ethyl acetate (10 mL) and cooled on
ice. The cold reaction mixture was filtered, and the solid residue was washed with ethyl acetate.
The combined organic washings were evaporated under vacuum, leaving a crude reaction product,
which was taken up with 1,4-dioxane. Solid NaHCO3 was added (≈0.1 g), and the resulting mixture
was stirred at room temperature for 1–7 days to hydrolyze unreacted acyl chloride. The hydrolyzed
reaction mixture was evaporated, and the residue was extracted with ethyl acetate. Organic washings
were dried over anhydrous MgSO4 and evaporated. Analytically pure coupling products were isolated
by column chromatography over silica gel using ethyl acetate-hexane (1:10 or 1:20) as the eluent
(dichloromethane was used in the case of 11ag).

3.4. Analytical Data of the Cross-Coupling Products

1-(2-Tolyl)-3-phenylprop-2-yn-1-one (11ab) [37]. 1H NMR (CDCl3): δ 2.68 (s, 3 H, CH3), 7.26–7.29
(m, 1 H, aromatics), 7.33–7.49 (m, 5 H, aromatics), 7.64–7.67 (m, 2 H, aromatics), 8.28–8.32 (m, 1 H,
aromatics). 13C{1H} NMR (CDCl3): δ 21.9 (CH3), 88.4 and 91.8 (C≡C), 120.4, 125.9, 128.6, 130.6, 132.2,
132.90, 132.93, 133.2, 135.8, 140.5 (aromatics), 179.8 (C=O).

1-(3-Tolyl)-3-phenylprop-2-yn-1-one (11ac) [37]. 1H NMR (CDCl3): δ 2.45 (bq, 3 H, JHH = 0.7 Hz,
CH3), 7.41-7.51 (m, 5 H, aromatics), 7.67–7.71 (m, 2 H, aromatics), 8.01–8.06 (m, 2 H, aromatics). 13C{1H}
NMR (CDCl3): δ 21.3 (CH3), 87.0 and 92.9 (C≡C), 120.2, 127.1, 128.5, 128.7, 129.8, 130.7, 133.1, 135.0,
136.9 and 138.5 (aromatics), 178.2 (C=O).

1-(4-Tolyl)-3-phenylprop-2-yn-1-one (11ad) [37]. 1H NMR (CDCl3): δ 2.45 (s, 3 H, CH3), 7.29–7.33
(m, 2 H, aromatics), 7.40–7.45 (m, 2 H, aromatics), 7.46–7.51 (m, 1 H, aromatics), 7.67–7.71 (m, 2 H,
aromatics), 8.10–8.14 (m, 2 H, aromatics). 13C{1H} NMR (CDCl3): δ 21.9 (CH3), 87.0 and 92.6 (C≡C),
120.3, 128.7, 129.4, 129.7, 130.7, 133.0, 134.6 and 145.2 (aromatics), 177.3 (C=O).

1-(3-Nitrophenyl)-3-phenylprop-2-yn-1-one (11af) [8]. 1H NMR (CDCl3): δ 7.46 (m, 2 H, aromatics),
7.54 (m, 1 H, aromatics), 7.74 (m, 3 H, aromatics), 8.49 (ddd, JHH = 8.2, 2.3, 1.1 Hz, 1 H, aromatics),
8.53 (dt, JHH = 7.8, 1.4 Hz, 1 H, aromatics), 9.06 (t, JHH = 1.9 Hz, 1 H, aromatics). 13C{1H} NMR (CDCl3):
δ 86.2 and 95.3 (C≡C), 119.4, 124.6, 128.2, 128.9, 129.9, 131.5, 133.4, 134.6, 138.1, 148.5 (aromatics),
175.4 (s, C=O). Crystal used for structure determination was grown from chloroform/hexane.

1-(4-Nitrophenyl)-3-phenylprop-2-yn-1-one (11ag) [38]. 1H NMR (CDCl3): δ 7.43 and 7.49 (m,
2 H, aromatics), 7.51–7.57 (m, 1 H, aromatics), 7.69–7.74 (m, 2 H, aromatics), 8.38 (m, 4 H, aromatics).
13C{1H} NMR (CDCl3): δ 86.5 and 95.4 (C≡C), 119.4, 123.9, 128.9, 130.5, 131.5, 133.3, 141.0 and 150.9
(aromatics), 175.9 (C=O).

1-(4-Anisyl)-3-phenylprop-2-yn-1-one (11ah) [37]. 1H NMR (CDCl3): δ 3.90 (s, 3 H, CH3O),
6.97–7.01 (m, 2 H, aromatics), 7.39–7.50 (m, 3 H, aromatics), 7.66–7.70 (m, 2 H, aromatics), 8.18–8.22 (m,
2 H, aromatics). 13C{1H} NMR (CDCl3): δ 55.6 (CH3), 86.9 and 92.3 (C≡C), 113.9, 120.4, 128.7, 130.3,
130.6, 132.0, 133.0 and 164.5 (aromatics), 176.7 (C=O).

1-(4-Chlorophenyl)-3-phenylprop-2-yn-1-one (11ai) [37]. 1H NMR (CDCl3): δ 7.40–7.46 (m, 2 H,
aromatics), 7.47-7.52 (m, 3 H, aromatics), 7.67–7.70 (m, 2 H, aromatics), 8.14-8.18 (m, 2 H, aromatics).
13C{1H} NMR (CDCl3): δ 86.6 and 93.6 (C≡C), 119.9, 128.8, 129.0, 130.9, 131.0, 133.1, 135.3 and 140,7
(aromatics), 176.7 (C=O).
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3-(4-Tolyl)-1-phenylprop-2-yn-1-one (11ba) [38]. 1H NMR (CDCl3): δ 2.41 (s, 3 H, CH3), 7.21–7.25
(m, 2 H, aromatics), 7.49-7.54 (m, 2 H, aromatics), 7.57–7.65 (m, 3 H, aromatics), 8.20–8.24 (m, 2 H,
aromatics). 13C{1H} NMR (CDCl3): δ 21.8 (CH3), 86.8 and 93.8 (C≡C), 117.0, 128.6, 129.5, 129.6, 133.1,
134.0, 137.0 and 141,6 (aromatics), 178.1 (C=O).

3-(4-Anisyl)-1-phenylprop-2-yn-1-one (11ea) [38]. 1H NMR (CDCl3): δ 3.86 (s, 3 H, CH3O),
6.91–6.96 (m, 2 H, aromatics), 7.49–7.54 (m, 2 H, aromatics), 7.60–7.67 (m, 3 H, aromatics), 8.20–8.24 (m,
2 H, aromatics). 13C{1H} NMR (CDCl3): δ 55.5 (CH3), 86.9 and 94.3 (C≡C), 111.9, 114.4, 128.6, 129.5,
133.9, 135.2, 137.1 and 161.8 (aromatics), 178.1 (C=O).

3-[4-(Trifluoromethyl)phenyl]-1-phenylprop-2-yn-1-one (11ja) [39]. 1H NMR (CDCl3): δ 7.51–7.56
(m, 2 H, aromatics), 7.64–7.71 (m, 3 H, aromatics), 7.78–7.81 (m, 2 H, aromatics), 8.20–8.23 (m, 2 H,
aromatics). 13C{1H} NMR (CDCl3): δ 88.1 and 90.5 (C≡C), 123.6 (q, 1JFC = 273 Hz, CF3), 124.0, 125.6 (q,
3JFC = 4 Hz), 128.8, 129.6, 132.3 (q, 2JFC = 33 Hz), 133.2, 134.5 and 136.6 (aromatics), 177.7 (C=O) 19F
NMR (CDCl3): δ − 63.4 (s).

1-(2-Phenylvinyl)-3-phenylprop-2-yn-1-one (11ak) [39]. 1H NMR (CDCl3): δ 6.88 (d, 3JHH = 16.1
Hz, 1 H, CH=), 7.39–7.50 (m, 5 H, aromatics), 7.58–7.68 (m, 4 H, aromatics), 7.91 (d, 3JHH = 16,1 Hz,
1 H, CH=). 13C{1H} NMR (CDCl3): δ 86.6 and 91.5 (C≡C), 120.2, 128.6, 128.7, 128.7, 129.1, 130.6, 131.2,
133.0, 134.1 and 148.3 (CH=CH and aromatics), 178.2 (C=O).

1-(t-Butyl)-3-phenylprop-2-yn-1-one (11am) [40]. 1H NMR (CDCl3): δ 1.28 (s, 9 H, CH3), 7.36–7.41
(m, 2 H, aromatics), 7.43–7.48 (m, 1 H, aromatics), 7.56–7.60 (m, 2 H, aromatics). 13C{1H} NMR (CDCl3):
δ 26.1 (CH3), 44.9 ((CH3)3C), 86.0 and 92.2 (C≡C), 120.3, 128.6, 130.6 and 133.0 (aromatics), 194.3 (C=O).

1-(2-Furanyl)-3-phenylprop-2-yn-1-one (11an) [41]. 1H NMR (CDCl3): δ 6.61 (dd, 3JHH = 3.6 Hz,
3JHH = 1.71 Hz, 1 H, furanyl), 7.39–7.51 (m, 4 H, furanyl and aromatics), 7.63–7.67 (m, 2 H, aromatics),
7.70 (dd, 3JHH = 1.7 Hz, 4JHH = 0.9 Hz, 1 H, furanyl). 13C{1H} NMR (CDCl3): δ 86.2 and 91.0 (C≡C),
112.7, 119.9, 120.9, 128.7, 130.9, 133.1, 148.1, 153.2 (aromatics and furanyl), 164.8 (C=O).

1-(2-Thienyl)-3-phenylprop-2-yn-1-one (11ao) [39]. 1H NMR (CDCl3): δ 7.19 (dd, 3JHH = 4.92 Hz,
3JHH = 3.8 Hz, 1 H, thienyl), 7.39–7.51 (m, 3 H, aromatics), 7.65–7.69 (m, 2 H, aromatics), 7.73 (dd, 3JHH

= 4.9 Hz, 4JHH = 1.2 Hz, 1 H, thienyl), 8.01 (dd, 3JHH = 3.8 Hz, 4JHH = 1.2 Hz, 1 H, thienyl). 13C{1H}
NMR (CDCl3): δ 86.5 and 91.7 (C≡C), 120.0, 128.4, 128.7, 130.9, 133.1, 135.1, 135.3 a 145.0 (thienyl and
aromatics), 169.8 (C=O).

3-Ferrocenyl-1-phenylprop-2-yn-1-one (11pa) [42]. 1H NMR (CDCl3): δ 4.29 (s, 5 H, C5H5),
4.43 (virtual t, 3JHH = 1.9 Hz, 2 H, C5H4), 4.69 (vt, 3JHH = 1.9 Hz, 2 H, C5H4), 7.49–7.55 (m, 2 H,
aromatics), 7.59–7.65 (m, 1 H, aromatics), 8.17–8,21 (m, 2 H, aromatics). 13C{1H} NMR (CDCl3): δ 60.3,
70.5, 70.8 and 73.2 (ferrocene), 85.5 and 96.6 (C≡C), 128.5, 129.4, 133.7, 137.2 (aromatics), 177.6 (C=O).

3.5. Structure Determination

Crystal data for 11af: C15H9NO3, M = 251.23 g·mol−1, light yellow plate, 0.10 × 0.32 × 0.55 mm3,
triclinic, space group p − 1 (no. 2), a = 6.8003(6) Å, b = 7.1934(7) Å, c = 13.471(1) Å; α = 75.075(4)◦,
β = 79.161(3)◦, γ = 69.530(3)◦, V = 593.0(1) Å3, Z = 2, Dcalc = 1.407 g·mL−1.

Full-set diffraction data were collected with an Apex 2 (Bruker, Billerica, MA, USA) diffractometer
equipped with a Cryostream Cooler (Oxford Cryosystems, Oxford, UK) at 150(2) K using
graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). The data were corrected for absorption
(µ = 0.10 mm−1) using a multi-scan routine incorporated in the diffractometer software. A total of
5295 diffractions was recorded (θmax = 26◦, data completeness = 99.3%), of which 2309 were unique
(Rint = 2.50%) and 1652 were observed according to the I > 2σ(I) criterion.

The structure was solved using direct methods (SHELXS-97 [43]) and refined by a full-matrix
least-squares routine based on F2 (SHELXL-2017 [44]). The non-hydrogen atoms were refined with
anisotropic displacement parameters. All hydrogen atoms were included in their theoretical positions
and refined as riding atoms with Uiso(H) assigned to 1.2Ueq(C). The refinement converged (∆/σ = 0.000,
172 parameters) to R = 5.77% for the observed, and R = 8.42%, wR = 15.8% for all diffractions. The final
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difference map revealed no peaks of chemical significance (∆ρmax = 0.22, ∆ρmin = −0.23 e Å−3).
CCDC deposition no. 2015269.

4. Conclusions

In summary, we have described the catalytic applications of palladium catalysts deposited over
silica gel bearing composite amide-donor functional moieties at the surface in the Sonogashira-type
cross-coupling of acyl chlorides with terminal alkynes producing synthetically useful 1,3-disubstituted
prop-2-yn-1-ones. The collected data suggest a generally good catalytic performance of these
heterogeneous catalysts alone (i.e., without a co-catalyst) in the reactions of aromatic acyl chlorides
with aryl alkynes under relatively mild reaction conditions. Nevertheless, a careful optimization is
required for achieving good catalytic results, as the catalytic properties are significantly affected by
the reaction conditions (solvent and base) and depend on the nature of the functional pendant at
the support’s surface. Of the tested catalysts, the poorest performance surprisingly exerted catalyst
7 bearing the phosphine moieties, which contrasts with the general notion that phosphine ligands
give rise to active cross-coupling catalysts. When recycled, however, the studied catalysts lost their
catalytic activity and, therefore, could not be efficiently reused. Very likely, the catalysts serve as a
source of catalytically active Pd species that efficiently mediate the cross-coupling reaction but are not
redeposited without deactivation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/10/1186/s1,
Table S1: Yields of the coupling product 11ad and the amount of leached-out Pd in the recycling experiments.
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