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Abstract
Electronic health record (EHR) systems improve health care services by allowing the combination of health data with clinical
decision support features and clinical image analyses. This study presents a modular and distributed platform that is able to
integrate and accommodate heterogeneous, multidimensional (omics, histological images and clinical) data for the multi-angled
portrayal and management of skin cancer patients. The proposed design offers a layered analytical framework as an expansion of
current EHR systems, which can integrate high-volume molecular -omics data, imaging data, as well as relevant clinical
observations. We present a case study in the field of dermatology, where we attempt to combine the multilayered information
for the early detection and characterization of melanoma. The specific architecture aspires to lower the barrier for the introduction
of personalized therapeutic approaches, towards precision medicine. The paper describes the technical issues of implementation,
along with an initial evaluation of the system and discussion.

Keywords Clinical decision support tools . Composite biomarkers . Dermoscopy .Melanoma . Next generation sequencing

Introduction

Modern Holistic Electronic Healthcare systems aim to im-
prove the provided health care services by offering services
that combine health data with other features such as clinical
decision support and data analytics to medical professionals.
This combination may lead to major health care savings, re-
duce medical errors, upgrade the quality health services and
affect several health Key Performance Indicators (KPIs). Such
sophisticated Clinical Decision Support tools (CDS) provide

for instance patient-specific advice on medication intakes
based on previous treatments, they calculate distance from
therapeutic goals, and offer other clinical recommendations.
Promising next generation developments will include priori-
tizing clinical actions that have maximum benefit to a given
patient at the point of care and developing effective methods
to communicate CDS information to patients to better incor-
porate patient preferences in care decisions [1].

Skin cancer is considered one of the most frequent types of
cancer. One in every three cancers diagnosed is a skin cancer,
and according to the Skin Cancer Foundation Statistics, three
out of ten Caucasians will develop skin cancer during their
lifetime. Amongst the most common skin cancers is basal cell
carcinoma that causes significant inconvenience to a person’s
life due to high recurrence but is rarely deadly since it gener-
ally does not metastasize. In contrast, although melanoma is
an infrequent type of skin cancer, it is considered among the
most lethal forms of cancer. Other types of skin cancer rarely
spread to other parts of the body, but melanomas are consid-
ered an aggressive type of cancer, with high metastatic poten-
tial. Skin cancer incidence has increased the past few decades
and specifically in the case of cutaneous melanoma, incidence
rates in Caucasian populations have risen faster than any other
malignant entity over the last 30 years. Melanoma incidence
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has been increasing since the mid-60s and is predicted to keep
increasing in most fair skinned populations [2, 3].

As far as melanoma phenotypic classification is concerned,
experts divide the disease into several subgroups [4]. The four
most common clinical subtypes include superficial spreading
melanoma, lentigo malignant melanoma, nodular melanoma
and acral lentiginous melanoma. Other rare variants include
desmoplastic melanoma and nevoid melanoma. Towards the
molecular characterization of melanoma, next generation se-
quencing (NGS) technologies are a valuable tool and have
been exploited in a number of studies [5–8], comparing se-
quencing data from melanoma tissue and a matched normal
control in order to identify somatic mutations, radically
reshaping our understanding regarding the high complexity
of the genomic landscape of this disease. Towards this end,
the largest genomic analysis of cutaneous melanoma from the
Cancer Genome Atlas (TCGA) Network proposed four major
subtypes: BRAF-mutated, RAS-mutated, NF1-mutated and
triple-wild-type [9]. Characterizing a patient’s mutation pro-
file can lead to the administration of tailored drugs, aiding in
the attainment of personalized precision medicine [10]. Goal
of this study is to design and implement a layered analytical
framework as an expansion of current EHR systems, which
will be able to integrate EHR data, high-volume molecular -
omics data, dermoscopic data of skin lesions, and other rele-
vant clinical observations. The motivation of our research is to
integrate all levels of melanoma related health data and to
incorporate all this information in a Knowledge Base and a
Clinical Decision Support System for Dermatology. The over-
all concept of the platform is illustrated in Fig. 1.

In this paper, we describe the related work and background
information in Section II, while in Section III details about the
technical issues of design and implementation are provided.

Section IV includes an initial evaluation of the implemented
system and finally, Section V concludes the paper.

Related work and background information

Integrated electronic health record (EHR) systems and
clinical decision support systems

Improved clinical decision making via the meaningful use of
EHRs is of paramount importance. Consistent use of an EHR
does not always ensure successful exploitation for improving
quality of care. Ongoing efforts to encourage meaningful use
and adoption should focus on advance tools that will upgrade
the functionalities of an EHR system in the direction of clin-
ical decision support. In the context of this work, we have
incorporated wider (concerning diversity) data sources includ-
ing clinical examination, image dermoscopy and molecular
data in conjunction with state-of-the-art analysis techniques.
The followed approach relies on early adopters that had begun
to integrate clinical decision support systems (CDSS) [10, 11].
These types of systems are supporting a variety of topics and
they are designed to assist the medical personnel in all stages
starting from initial consultation to diagnosis and follow up.

Our main focus was data integration at EHR level, which is
about how to combine data from a large variety of heteroge-
neous sources into meaningful and valuable information. Data
from different systems need to be integrated technically as
well as semantically. In order to achieve semantic interopera-
bility in the healthcare domain numerous standardization ef-
forts are in place in order to define common information
models (or data elements) such that all systems can operate
with data on the same level. In our case this was done either in

Fig. 1 The concept of the
integrated platform for Melanoma
data Management
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the primary data level or the secondary data and indicators
level. Collecting data directly from the subjects interested in,
is called primary data. Data gathered by someone else is called
secondary. Semantic interoperability can be defined as the
ability of two or more computer systems to exchange infor-
mation in such a way that the “meaning” of that information
can be automatically interpreted by the receiving system ac-
curately enough to produce useful results to the end
users of both systems [12]. Many standardization efforts
focus on EHRs in order to facilitate integration of elec-
tronic health data accumulating in healthcare facilities
and the most important are:

& openEHR – an open standard for health data based on a
complete separation between software and clinical
models, thus ensuring universal interoperability.

& Health Level Seven (HL7) – a set of standards for transfer
of clinical and administrative data between software
applications.

& Integrating the Healthcare Enterprise (IHE) – an initiative
by healthcare professionals and industry to improve the
way computer systems in healthcare share information.
IHE promotes the coordinated use of established standards
such as DICOM and HL7 to address specific clinical
needs in support of optimal patient care.

There are two main paradigms for the semantic interoper-
ability between EHR-systems: Messaging Paradigm and the
Two-Level-Modelling Paradigm. The SemanticHealthNet
EU-project addressed this problem quite deeply by involving
the major stakeholders to solve this problem, such as the
EN13606 Association, International Health Terminology
Standards Development Organization (IHTSDO) and the
WHO. In our work data exchange, is performed using the
CDA (Clinical Document Architecture) format, which is one
of the most widely used standards of HL7. The CDAs ex-
changed is formatted in XML format and the structure is
modeled following the EPSOS standard, so as to ensure max-
imum interoperability with other future information health
systems. Additionally, a Service oriented architecture (SOA)
has been adopted to solve the interoperability of the involved
heterogeneous subsystems, something which is widely
adopted for distributed EHR systems [13]. This architecture
plays a key role in the integration of heterogeneous systems by
means of services that represent different system functionality,
independent of the underlying platforms or programing lan-
guages, and interacts via message exchanges. Web services
also play a critical role in systems’ interoperability. Web ser-
vices technology is defined as a systematic and extensible
framework for application’s interactions that is built on top
of existing web protocols. These protocols are based on
XML [14] and include: Web Services Description Language
(WSDL) to describe the service interfaces, Simple Object

Access Protocol (SOAP) for communication between web
services and client applications, and Universal Description,
Discovery, and Integration (UDDI), to facilitate locating and
using web services on a network [15].

Harness the power of health data with the use of Big Data
technologies is a rather new technology for the e-Health do-
main. There are still a lot of issues that need to be resolved
before efficient health data analytics can be performed. One of
the most important issues is the binding of data (to patients,
situations, sensor devices). Since data are coming from differ-
ent sources, this metadata must be bound to patient IDs. The
wide variation of data models and data warehouses with their
own data binding is also a current problem. A new approach,
called late-binding architectures, delays data binding until the
proper time and context, and retains the collected data its
original, undiluted value. In these new Big Data architectures,
the repository for structured, unstructured and semi-structured
data in its original format is generally called “Data Lake”.
Having healthcare as one of the popular use cases for Big
Data and analytics, we are recently observing several
implementations of these architectures and concepts in
healthcare [16, 17]. We recognize as a challenge that process-
ing EHR data only for data exchange is not enough for
exploiting the power of existing data. The semantics of EHR
data should be linked with the data coming from other sources
also. Our solution for EHR integration does not incorporate
the Big Data architecture, since it was not needed up to now,
but it is something that we are planning for the near future.
Accumulating data in data warehouses and steaming data
from different sources challenge the existing architectures
and existing approaches fall short to meet the requirements
in this Big Data world. For example, the challenges now are
linking a diagnosis from a patient’s EHRwith the data coming
from wearables on that patient and performing data analytics
to help physicians for predictive medicine or even to help the
patient take actions against bad conditions.

Analytics is to make sense of your data and uncover mean-
ingful trends [18]. Analytics is defined as the method of “log-
ical analysis”. A method of logical analysis is commonly per-
formed using algorithms. This applied logic produces a model
in which the parts are related with statistical relevance. Often,
analytics is future-oriented, predicting relations, whereas anal-
ysis is associated with what is or has been. Integrating Data
Analytics in operational Healthcare Information systems re-
quires [19] the use of full range and huge amount of hetero-
geneous information including electronic medical records, im-
ages and sensors that we refer as big data. The extraordinary
potential to the exploitation of these amounts of valuable in-
formation by using a combination of machine learning and
data mining tools will improve patient care process and patient
life quality [20, 21]. According to [22], current health care
systems under development or in production are lacking the
potential benefits of big data analytics [23].
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When it comes to the exchange and analysis of skin spe-
cific or general healthcare data, there are several challenges.
Interoperability of healthcare data exists to some extent, but
the proliferation of common data element models does not
help to solve the interoperability problem. Current solutions
are not capable of processing data from different sources in
different formats. The challenge is to achieve a form of auto-
matic data format harmonization such that data from new ap-
plications and devices can easily be added independent of the
origin of the data. With respect to data analytics, we must
solve important limitations related to the trustworthiness and
heterogeneity of the sources. It is highly desirable to clean data
in advance of analyzing it and using it to make life-or-death
decisions. Moreover, it is important to develop optimized
methods for dealing with data quality issues before
implementing classification, regression or clustering algo-
rithms. Medical image analytics is in its infancy. There is great
need for developing a platform and new algorithms that allow
to use (big) data from other sources in the analysis and inter-
pretation of images. When it comes to using the collected and
analyzed data, current decision support systems lack the flex-
ibility required to accept massive amounts of data from het-
erogeneous sources on the one hand and to use these data for
personalized decision support on the other. Related to this is
the need to enable medical professionals to define and tune the
decision support rules themselves in human language without
the intervention of programmers or an information specialist.
The above principles are adopted during the implementation
of the integrated system as described in Section III.

Digital image analysis in dermoscopy

As already mentioned, modern electronic healthcare systems
are being upgraded to efficiently manage large medical image
databases. Furthermore, image analysis tools are being incor-
porated, so as to automate the extraction of meaningful fea-
tures from medical images and assist diagnosis [24].
Specifically, in the field of digital dermoscopy, there is a
plethora of image features that are found in the literature,
which provide useful information for image assisted diagnosis
of skin cancer lesions. The most prominent are the ones based
on the ABCD rule, and the ABCDE rule (Asymmetry, Border,
Color, Diameter, Evolution), theMenzies scale and the Seven-
point scale [25–27]. Themajor advantage of computer extract-
ed features is reproducibility, making dermoscopy image eval-
uation more objective, while human interpretation of image
characteristics can be subjective [28–30]. Therefore, computer
based expert systems have been introduced as alternatives and
adjuncts to the naked-eye expert assessment. Very detailed
and comprehensive reviews of such systems and the corre-
sponding technologies may be found in [31, 32]. Most of the
proposed systems aim at the detection of malignant melanoma
at early stages versus dysplastic or common nevus using

images in the visible spectrum [34–37]. Infrared or ultraviolet
illumination (in situ or in vivo) using appropriate multispectral
cameras are also used in [36–38]. Microscopy (or
epiluminence microscopy) setups are found in the works of
[39, 40] and digital videomicroscopy in [41].

The features that are used for computer based skin lesion
analysis are mostly those associated with color in various col-
or representation spaces (RGB, HIS, CIELab), e.g., color
values in [33, 35, 42] and Colorbin (i.e., the percentage of
the lesion colored in foreground pixels) [42]. Some of the
approaches used feature combination in more than one color
spaces for achieving better results, e.g., both RGB and IHS in
[34, 39, 43, 44], or RBG and colors peculiar to malignant
melanomas in [45]. The light intensity features are also used
in works like [38]. Asymmetry and border based features are
also used extensively e.g., [40–42], while features based on
specific differential structures are rare. Some papers [46, 47]
rely also on the whole ABCD rule for lesion characterization,
while in some cases shape and color features, like Area and
Elevation, are calculated manually by dermatologists [42].

Common classification methods are the rule-based ones,
e.g., [34, 37–39, 41, 46, 48]. Advanced machine learning
techniques such as neural networks [49] and support vector
machines are also presented in works like [33, 35, 42, 47,
50–52], while the k-nearest neighborhood classification
scheme is applied in [40]. Evidence Theory (upper and lower
probabilities induced by multivalued mapping) based on the
concept of lower and upper bounds for a set of compatible
probability distributions is used in [53]. The reported accura-
cies and results concerning the works presented in the litera-
ture prove that image based automated classification of lesions
and melanoma in particular may work. More detailed descrip-
tions and additional results regarding the various methods
used in existing dermoscopy analysis systems are presented
in [41]. The most popular of them are adopted for the imple-
mentation of Dermoscopy Imaging Analysis Service, which is
an important part of the integrated system, as described in
Section III.

Integration of molecular analysis and composite
biomarkers

In addition to medical imaging, the onset and constant ad-
vancement of molecular technologies has enabled the parallel,
high-throughput process of millions of sequence reads, thus
ushering a new era with numerous, novel applications in ba-
sic, applied and clinical research. An important class of mo-
lecular technologies encompasses gene expression technolo-
gies (microarrays analysis or RNA sequencing). The meticu-
lous monitoring of the haplome, namely the universe of vari-
ations concerning the genome of a species, if related to the
pathology under investigation, allows the exploration of the
impact of those variations in the gene expression between
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different phenotypic groups. More importantly it allows the
extrapolation of profiling patterns of genomic sequences
(whole genome, whole exome (WES), or targeted sequencing
of a gene panel) with classification ability for the different
phenotypic classes of a disease/pathology. In the context of
this work, we aimed to integrate the different levels of molec-
ular data, so as to produce a robust diagnostic signature for the
classification of melanoma.

Coalescing diverse levels of information improves the total
knowledge on a problem and promotes its resolution [54].
Based on this, diagnosis should be based on the correct inte-
gration of molecular, histological and clinical features, so as to
becomemore accurate. Previous analyses were able to achieve
better performance on given tasks, through combination of
heterogeneous data [54, 55], or by building multi-marker
models for accurate classification of melanoma [56–58].

Better understanding of the etiological aspects and mecha-
nisms of cancer development are vital to improve survival rate
and prevention. Given this perspective, recent studies have
shown an improved performance, when combining tran-
scriptomics with gene regulatory data in ovarian cancer [59].
Efficient predictive biomarkers from multiple approaches or
different levels of analyses support optimal characterization of
the tumor under investigation. Gene signature strategies are
tested extensively for their potential to transform clinical prac-
tice i.e. to support immunotherapy-based, management of
cancer-patients [60].

Our previous work [61, 62] has led to the discovery of 32
critical genes, whose expression offers key information on
melanoma manifestation. Here, we intend to extend this
knowledge to mutational data. Ultimate aim is to produce a
robust diagnostic gene signature that will allow the classifica-
tion of the patients and at the same time aid in the context of
personalized medicine.

Platform architecture and integration

Overall architecture

A distributed, architecture for the EHR system implementa-
tion, was chosen as illustrated in Fig. 2. The architecture will
work well in distributed environments in which health facili-
ties has each own local EHR it satisfies the interoperability
standards of the EHR. The system also has a set of distributed
prediction services (knowledge bases, external classifiers)
handling the various levels of data. Each external service is
specialized in a specific domain (i.e. prediction based on im-
age metadata, prediction based on the integration of molecular
and image data) and the framework achieves cooperation and
integration of these services and the central system in order the
final user to face a unified experience.

The data layer in addition to traditional EHRs, includes
dermatological specific data as shown in Fig. 3 and the related
image and molecular metadata. Internationally standards for
the exchange of medical data were followed such as the CDA
(Clinical Document Architecture) format, which is one of the
most widely used standards of HL7. The CDAs exchanged is
formatted in XML format and the structure is following
EPSOS standard [63], so as to ensure maximum interopera-
bility with other information health systems. Coding
Standards also included ICD-10 for diagnosis, ICPC2 for di-
agnosis on primary care and ATC5 for Medicines-Drugs). In
the business layer in order to support prediction based on the
classifier built with the molecular and image data, a web ser-
vice exists to link to the external classifiers. The user level
refers to all the public and private Healthcare units
(Hospitals, Health Centers, Doctors and others healthcare
providers/ professionals), which are interconnected with the
Central Agency Management System of the patients’ derma-
tological electronic health records (EHR). Through these in-
terfaces the need for access to the Dermatological EHR of the
patient is served.

The user via the web portal is able to input relevant data on
the EHR’s database and on demand the system will acquire
predictions based on the classifiers built and trained constant-
ly. Based on the electronic prediction information, EHR could
relate various heterogeneous data with the actual clinical and
other patient data usually stored in EHR systems. Moreover,
the integration of EHRwith the Dermatology decision support
system, by making individual treatment information available
regardless of time and location, can increase patient’s right to
know, improve the ability to manage diseases, and alleviate
the asymmetry between the medical staff and the patient. Our
primary goal was to enhance the EHR with the ability to
maintain relevant to the skin cancer cases information and to
provide prediction based on historical data.

Dermoscopy imaging analysis service

As already mentioned in dermoscopy image analysis, feature
design is based on the so-called ABCD-rule of dermatology.
ABCD rule, which constitutes the basis for a diagnosis by a
dermatologist represents the Asymmetry, Border structure,
variegated Color, and the Differential Structures of the skin
lesion. The feature extraction is performed by measurements
on the pixels that represent a segmented object allowing non-
visible features to be computed. In this context, the imple-
mented image analysis web service includes three (3) types
of imaging features, which were calculated as follows: Border
Features covering the A and B parts of the ABCD-rule of
dermatology, Color Features which correspond to the A and
C rules, and Textural Features which are corresponding to D
rules [64]. The feature extraction procedure resulted in a total
of thirty-one (31) features. The feature extraction
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methodology and the feature assessment are presented in pre-
vious works [62, 65] correspondingly. The relevant pre-
processing for all features is described in [62]. The specific
image analysis functionality has been integrated as a service in
the integrated platform. The input of the service is the

dermoscopy image stored in the database and the output is
the 31 calculated ABCD image features.

Molecular data analysis service

Molecular Data Analysis concerns raw next generation se-
quencing (NGS) data derived from exome sequencing of mel-
anoma tissue and matched healthy control. The framework of
analysis of NGS data has been previously presented by our
team [66]. A pilot analysis was performed including eight
patients [67]. The outcome of this analysis is a list of signifi-
cantly mutated genes for melanoma. As it was previously
stated this list is constantly updated, as new patients are added
in our database.

Next, we sought to build a classifier exploiting the muta-
tional data that were produced. Since the number of patients
analyzed in this work was limited, we added samples from
TCGA database through cBioPortal [68, 69]. As healthy state
(non-melanoma) we usedmutational data from dysplastic nevi
that were acquired through similar experimental procedure
[70]. On the molecular level, this state holds a considerably
lower mutational load compared to melanoma, and few mu-
tated genes in total, 232 genes, as opposed to the 1586 genes,
found in our case [67]. For feature selection, we reduced the
list of mutated genes, to a total of 51 genes (molecular
signature, see Supplementary Table 1), by distinguishing the
‘driver’ mutations, i.e. mutations with high impact on the
product, using PolyPhen2 [71], and then prioritizing them
according to their centrality (genes taking part in numerous
distinct mechanisms are ranked higher), using BioInfoMiner

Fig. 2 System architecture of the integrated platform for Melanoma data Management

Fig. 3 PROMISE expanded EHR includes features especially for the skin
cancer prediction case
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[72]. Through BioInfoMiner, we aimed to distinguish puta-
tively causative genes, assuming that genes with implication
in diverse cross-talking biological processes -reflecting genes
with a central role in cellular physiology- could be promising
candidates and have a great impact in the manifestation of the
disease. BioInfoMiner exploits semantic information to detect
and rank genes based on their centrality, as described in dif-
ferent databases (e.g. Gene Ontology [73, 74],
Reactome [75], etc.). The entropy-based information
gain ratio, a metric that expresses the amount of infor-
mation contained in a given attribute, was used to as-
sess the list of molecular features. The top genes with
the highest information gain ratio and their correspond-
ing ranking by BioInfoMiner are presented in Table 1.

The samples (samples of dysplastic nevi and melanomas)
were separated under two labels, dysplastic nevus (represent-
ed by DNS) and melanoma (represented by MEL) and each
sample is attributed a 51-dimensional binary vector showing

whether the corresponding gene contains a mutation or
not. To deal with unbalanced classes, the SMOTE [76]
algorithm was utilized to generate synthetic data for the
DNS label. This data assortment is presented in Fig. 4.
Due to the binary type of the classification problem, the
Random Forests (RF) algorithm [77] was selected, as an
appropriate and effective methodology. Additional clas-
sification algorithms were examined, generally showing
equivalent outcome, due to the evident discrepancy of
the two classes (see Fig. 5). RF implementations are
often more parametrizable than similar tree-based algo-
rithms (like Decision Trees) and this permitted an ex-
haustive grid search for fine-tuning of classification pa-
rameters. Also, RF is a recursive algorithm, an asset
that prevents being trapped in a subset of solutions
and so all contingencies are included, with the appro-
priate statistical weight. Here, the R programming lan-
guage was used [78], and packages caret [79], DMwR
[80] and pROC [81].

The best performance was reported for the RF classifier
with the following parameters:

& 122 samples for training, 120 for testing
& 51 predictors
& 2 classes: ‘DNS’, ‘MEL’
& No pre-processing
& Resampling: Cross-Validated (10 fold, repeated 3 times)
& mtry = 26

As a criterion for the cross validation performance,
the receiver operating characteristic (ROC) curve was
used, which controls the sensitivity with respect to the
specificity [82]. The area under the curve (AUC) of the
plot gives an unbiased estimation of the classifier’s per-
formance at each round. The classifier performed very
well, reaching a mean accuracy of 0.93. This result

Table 1 List of important mutated genes sorted in descending order
according to their information gain ratio from the 51 gene signature
used as input for the molecular classifier, together with their
corresponding topological centrality score calculated by BioInfoMiner,
describing the association of each gene with the given number of distinct
biological modules

Genes Information gain ratio Topological centrality score

ANK3 0.334544 36

RELN 0.284221 2

GRIN2A 0.280225 46

SCN5A 0.268364 32

FLT1 0.252773 22

COL3A1 0.23731 4

KALRN 0.23731 8

CFTR 0.233444 48

ROBO2 0.229572 44

LAMA2 0.22569 37

NRXN1 0.22569 45

DMD 0.221794 13

EPHA7 0.221794 20

CELSR1 0.221794 40

ANGPT1 0.21788 7

CACNA1C 0.213943 35

PTPRO 0.193696 47

KDR 0.189475 11

PPP1R9A 0.185172 25

NR1H4 0.185172 42

CARMIL1 0.185172 51

LRRK2 0.180769 6

PKP2 0.180769 14

POSTN 0.176247 28
Fig. 4 Data assortment for classification
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justifies the utilization of this classifier as a model for
class prediction (melanoma vs. dysplastic nevus) of un-
known samples of mutation data. The final model was
stored in order to be used for the implementation of the
web service, which will accept the data and perform the
predictions.

The system in practice case study evaluation
and results

The integrated platform for skin cancer related
healthcare data management in practice

The implemented system is capable of integrating seamlessly
multiple sources of heterogenous and bulky data, concerning
the results of either high-throughput molecular analysis (DNA
microarrays or NGS) or dermoscopic (epiluminescence
dermoscopy) examination. The system’s font-end is a Web
based SPA (Single Page Application) as depicted in Fig. 6.
Our goal was to extend the patient’s EHR by integrating per-
tinent clinical, molecular and imaging data in order to support
clinical decision-making and prediction. This is accomplished
through the integration of multi-layered dermatological data
and its interoperability with the Expert System for Melanoma
Recognition, which correlates molecular and imaging data to
obtain a prediction. The comprehensive analysis of clinical,
NGS and imaging data, as well as other available high effi-
ciency data, enables the construction of a network model for
the melanoma disease including different phenotypic catego-
ries as well as different organization levels. The EHR expan-
sion is called PROMISE as it was funded by the project:
“Personalization of melanoma therapeutic management
through the fusion of systems biology and intelligent data
mining methodologies”.

The medical record in each tab contains a different category
of medical information. In dermatological view tab there are
two basic options. In model user marks the area in human
body that appears to have a problem. Color and size of this

Fig. 5 Results for the Molecular Classifier. ROC curve for rf-Random
Forests, glmnet-Guassian linear model, gbm-Stochastic Gradient
Boosting, c50-Decision Trees C5.0, lda-Linear Discriminant Analysis,
svm-Support Vector Machines, knn-k Nearest Neighbours, glm-
Logistic Regression

Fig. 6 Main tabs of Melanoma Information Management Tool
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circle are configurable by user. In “Photos” option, user is able
to upload a dermoscopy image of the concerning case. The
Dermoscopy Image Analysis Service is then called, and image
is analyzed in its features as shown as output (see Fig. 7).

In Histological Data tab user fills out patient’s histological
data. All data are shown in different dropdown menus with
predefined values. In clinical examination tab user fills out
patient’s clinical examination data. In Patient Molecular
Profile tab, the genes of the molecular signature are selected
by checkboxes. User crosses those genes of the patient that
bear a mutation. By choosing “Process and save” molecular
analysis classifier is called. A pop-up message is shown with
classifier’s decision. Result shows two percentages for normal
and tumor (see Fig. 8).

Qualitative and quantitative results

In order to validate the proof of concept of the pro-
posed design we created a fused dataset containing mo-
lecular and clinical data for the melanoma case. More

specifically, a synthetic dataset was constructed to in-
corporate images from different nevi (dysplastic or mel-
anomas) together with molecular measurements which
are encountered in the same stages, using the imaging
and WES data that were available, described in sections
III.B and III.C. The nature of the molecular features
allows for this ‘random’ integration, due to the small
number of mutations, especially in the dysplastic nevus
class. In total, tests were performed on three (3) differ-
ent datasets i) the molecular dataset of 51 features (sec-
tion III.C), ii) the imaging dataset of 31 features and iii)
the integrated dataset of 51 + 31 features. The parame-
ters used for each RF classifier are similar (section
III.C), apart from the number of predictors used, that
equals the number of features. Performance metrics ob-
tained by classification modules (DNS vs. MEL) sup-
port that integrated features perform best, regarding the
discrimination between malignant and benign sample
classes, and constitute to an improved classifier, com-
pared to the molecular and imaging classifiers. From the

Fig. 7 Tab category on dermatological view and image analysis view

Fig. 8 Molecular Profile view, a typical snapshot
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statistical perspective, the use of synthetic data is more conser-
vative when the number of replicates is large. Essentially, it is the
closest andmore plausible approach to be adopted for simulation
purposes. The corresponding results in the form of ROC curves
are illustrated in Fig. 9.

The entropy-based information gain (IG) and the in-
formation gain ratio (GR) were measured for the set of
features from the integrated dataset. Four extra datasets
were created containing the top 10 and top 20 features
per measurement, to evaluate the classification accuracy.
Performance metrics obtained by classification modules
(DNS vs. MEL) support that all integrated feature
datasets perform equally good, as shown in Fig. 10.

Success of classification depends mainly on feature se-
lection. Based on this, the total list of features (82)
achieves high accuracy, improved only by the top fea-
tures taken through gain ratio. Still, cutting the number
of features does not necessarily improve this system,
since the performance was equal to begin with, plus
extra information is considered for the therapeutic ap-
proach, when required.

User friendliness and acceptance evaluation

A number of 10 physicians (equal representation of men
and women) was recruited for assessing the implemented
tool. A questionnaire was built on the criteria of the Core
Objectives for Eligible Professionals - Stage 2 of the EHR
Incentive Programs (2018) and on SUS questionnaire,
which was proposed by John Brook in 1986 and can pro-
vide a high-level subjective view of usability [83, 84]. At
first stage we presented the platform and its features to
each respondent, who were then given time to use the
system, before the evaluation. In addition, we conducted
interviews with the physicians in order to qualitative as-
sess the platform. The outcome of this analysis was that
the platform has been designed according to well-known
requirements for physicians’ usability. Usability testing
with the SUS method has provided an overall positive
evaluation of the system’s design. Qualitative research
gave more insights on the needs and preferences of phy-
sicians and has proposed some improvements in regard to
user interface design, functionalities that appeal to users
and some ways to make the users’ interaction with the
system more convenient for them. Our findings have il-
lustrated the importance of incorporating prediction fea-
tures in EHR, as well as features that can make the system
more attractive, in order to motivate physicians to use
them on a regular basis.

Fig. 9 ROC curves for the 3 RandomForests classifiers, immo-integrated
features (82) classifier, mo-molecular features (51) classifier, im-imaging
features (31) classifier. The integrated feature classifier performs best,
with a mean AUC of 0.9432

Fig. 10 Results for the Integrated RF Classifiers, ROC, Sensitivity and Specificity for immo-82 features, gr10-gain ratio top-10, gr20-gain ratio top-20,
ig10-information gain top-10 and ig20- information gain top-20 features
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Conclusions

Concluding, in this work we propose an advanced EHR sys-
tem, which is specially designed for the field of dermatology and
aims to integrate various levels and sources of heterogenous data
linked with skin diseases and particularly skin cancer. The de-
scribed system is based on a Web based distributed EHR archi-
tecture utilizing web services, while it adopts established best
practices, regarding data collection and management, integration
and integrity, from operationally tested clinical decision systems.
Our goal is to provide a proof of concept system that expands the
analytical, administrative and interpretive capabilities of existing
EHR systems, adopting machine leaning and decision support
functionalities. More specifically, the presented system proposes
a paradigm, which through the massive integration of multi-lay-
ered, heterogeneous data, depicting phenotypic aspects of the
disease manifestation and the parallel processing of those
streams, independently but also in relation with each other, will
produce appropriate sets of composite biomarkers that ultimately
assist and accelerate medical diagnosis and patient therapeutic
management. In this context, such a system could enable the
introduction of personalized approaches in the therapeutic
course. The distributed and modular architecture allows the ac-
commodation of additional experimental protocols, either in the
area of molecular analysis (i.e. single cell genomics, tissue het-
erogeneity studies, time-course analysis) or in supporting more
dermoscopy imaging modalities (i.e. confocal or multispectral
dermoscopy). Each new module can be integrated in the system
in the form of a new web service. It remains now as future work
to include additional sources of skin cancer related data and to
perform more experiments in order to prove the diagnostic value
of the presented integration schemes and further validate the
design of the implemented system.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10916-020-01679-3.
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