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We construct and solve semianalytically a pump-probe problem which is defined by an excitation-

coupling scheme that engages superpositions of resonance states. The scheme is |0〉 weak−−−−−−−−→
attosec pulse ω1

(superposition of resonances)
moderately strong←−−−−−−−−−→
f emtosec pulse ω2

(superposition of resonances) where |0〉 is a discrete state. The

resonance wave functions are treated rigorously as stationary states in the continuous spectrum. They are
energy-normalized and are expressed as linear combinations of localized and scattering components, using
the formalism of Fano. The attosecond and femtosecond pulses have central frequencies ω1 and ω2, with
ω1 � ω2. They are applied with positive (the short XUV pulse peaks after the second pulse) or negative (the
short XUV pulse peaks before the second pulse) time delay, tD. The theory is time-dependent and involves
many-electron wave functions and matrix elements. Its computational implementation is extremely economic.
The application which is reported here treats the excitation of a core-excited superposition of valence-Rydberg
autoionizing states of carbon near the K-absorption edge by a weak 100 as Gaussian pulse, and their coupling
to a higher-lying core-excited autoionizing Rydberg state by an 80 fs Gaussian pulse of intensities of order
1012 W/cm2. State-specific N-electron correlated wave functions are used. A number of concrete findings
are obtained, demonstrating a variety of channel-dependent photoelectron spectra as functions of the pulse
parameters and of the time delay, tD.
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I. INTRODUCTION

A. Resonance-state superpositions in time-resolved
attosecond spectroscopy

In the challenging new field of the study of electron dy-
namics that is time-resolved on ultrafast timescales, from a
few femtoseconds (fs) down to a few attoseconds (as), it is
possible to explore new types of phenomena and to obtain
quantitatively physically relevant information via the applica-
tion of novel experiments and theory. The initial fundamental
ideas and methods were first tested on spectroscopic aspects of
atomic systems, where the scrutiny of the results is facilitated
by the fact that the information can be analyzed in terms of
known or calculable energy states and processes. For certain
representative reviews on the progress of attosecond physics
and for a gleaning of original experimental and theoretical
articles on time-resolved electron dynamics in atoms, the
reader is referred to Refs. [1–15] and their references.

If the spectroscopic information of interest is to be ob-
tained and understood in terms of solutions of many-electron
problems involving real atomic states, rather than in terms
of the often used, but hardly realistic, simple one-electron
models, two fundamental issues must be dealt with: One is
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the construction of the formalism for the description and cal-
culation of time-dependent quantities with physical relevance,
and the other has to do with the requirement of calculating
the time-dependent solution of many-electron time-dependent
Schrödinger equation (METDSE) the appropriate for each
problem in terms of methods that can take into account those
effects of electronic structures, electron correlations, and open
channels, which are expected to play the dominant role in the
physics of interest, as a function of the pulse parameters.

Characteristic early examples of experimental-theoretical
successful results in this direction of research are the measure-
ments and the theoretical results from many-electron calcula-
tions which revealed a difference on the order of 10 as in the
photoemission of electrons initially occupying the 2s and 2p
(sub)shells in neon [7,9,10,13] and the quantitative prediction
and experimental observation of the time-resolved build-up of
the doubly excited 2s2p 1Po resonance state of helium, whose
completion takes about 180 fs [11,12].

The year 2001 saw the first report of the generation in
the laboratory of single attosecond pulses [4] and of trains
of attosecond pulses [5]. The announcement of those ex-
perimental breakthroughs inevitably gave birth to a crucial
question: What type of systems and of novel phenomena could
be investigated spectroscopically and reliably on attosecond
timescales?

In response to this rhetorical question, in 2002 [6] and
in subsequent publications, we presented our theory and
showed quantitatively how the preparation of the transient
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superpositions of doubly excited and of inner-hole autoion-
izing states, both types belonging to the continuous electronic
spectrum, can create conditions for the study of multielectron
dynamics of excitation and decay that occur on such ultrashort
scales.

The superpositions of electronic resonances in Ref. [6]
were initiated by the simultaneous application of two fem-
tosecond pulses of different frequencies. On the other hand,
the normal way for achieving preparation of superposition of
states is the application of a single pulse that is sufficiently
broad in energy so as to excite more than one state that are
relatively in proximity. Traditionally, such preparations have
involved discrete states, using pulses which are not spectrally
very broad (e.g., excitation of superpositions of Rydberg
levels).

In the context of experimental attosecond physics, an ex-
ample of the preparation of superposition of electronic states
and of its use for probing aspects of electron dynamics is the
experiment by Goulielmakis et al. [8], where the method of at-
tosecond transient absorption spectroscopy was demonstrated.
Specifically, the scheme was based on the preparation of a
superposition in the Kr ion of the J = 3/2 and 1/2 discrete
levels by quick ionization of Kr from the 4p shell by a single
pulse which covers energetically both levels, and the probing
of this superposition by an attosecond pulse around 150 as
involving the 3d → 4p excitation [8].

In this paper, we present a formalism and its computational
implementation on another type of time-resolved pump-probe
scheme, where the initial excitation reaches directly the con-
tinuous spectrum and excites a superposition of resonance
states, which is coupled by a second pulse to another su-
perposition of resonance states. The two-pulse, two-color,
many-electron problem is time-dependent in terms of both
the excitation amplitudes and the mixing coefficients of the
resonances and involves directly the continuous spectrum.

As is well known, the quantum mechanics of resonance
states is significantly more complex than that describing the
discrete states. Since the late 1920s, it has been recognized
that their wave functions have an energy dependence and
consist of two components: one which is localized, and one
which is unbound, with scattering boundary conditions in the
asymptotic region. For N-electron systems, it is crucial that the
localized component is represented by a reliably calculated
square-integrable N-electron wave packet including the dom-
inant electron correlations that contribute to its localization
[16] and subsequent publications.

The problem has to do with a scheme—see A below—
whereby time-dependent probabilities of emission of photo-
electrons into different open channels can be computed as
a function of pulse duration, of frequency on- and off-exact

resonance, and of intensity and of the time delay, tD, in the
application of the two pulses. The distinction of different
channels is achievable via the measurement of the energies
and the angular distributions of the photoelectrons.

The theory and methodology which are discussed in the
following sections constitute a very economic, yet reliable, ap-
proach for dealing computationally with such problems. Cen-
tral to this approach is the expansion in terms of eigenfunc-
tions, for each angular momentum and parity subspace which
are coupled by the presence of electromagnetic fields. This
feature provides serious advantages, since, when the continu-
ous spectrum is directly involved in any phenomenon whose
understanding requires the solution from first principles of the
METDSE, the theoretical task becomes computationally over-
whelming, even if the formalism is in place. This fact has been
emphasized in a series of papers where the METDSE pertinent
to each problem has been solved numerically using the state-
specific expansion approach (SSEA). The SSEA solution de-
termines how the time-dependent nonstationary state evolves
over the stationary states of the discrete and of the continuous
spectrum. However, in order for convergence to be achieved,
one has to construct and solve many thousands of coupled
integrodifferential equations containing, in addition to bound-
bound and bound-free dipole matrix elements, the huge num-
ber of free-free matrix elements (on- and off-resonance), with
energy-normalized, numerically calculated scattering func-
tions [6,12,17]. The free-free matrix elements have singu-
larities on the energy axis, whose accurate calculation has
required special mathematical and numerical treatment [17].

The present problem is solved in terms of a semianalytic
multistate formalism, whose implementation is carried out
using many-electron discrete and resonance wave functions.
We solve a time-dependent n-level (TDnL) system with n =
N1 + N2 + 1, where the N1 resonance levels are contained in
the first ionization channel and the N2 resonance levels in the
second one. This is achieved mainly in terms of analytic for-
malism. Numerical procedures are followed for the diagonal-
ization of the resulting matrices. The formalism contains basic
elements of the recently published theory for the solution of
the time-dependent three-level (TD3L) system of discrete-
resonance-resonance excitation and coupling scheme [18],
which yields analytic expressions for photoelectron emission
probabilities, Pi(E , t ), i = 1, 2, in the energy region of the
two resonance states. The extension to the general case of
excitation and field-coupling of superposition of resonance
states is necessary when the pulses are spectrally broad, as
is normally the case with attosecond pulses.

The physical scheme of interest involves the excitation and
coupling of superpositions of resonance states by two ultrafast
pulses:

|0〉 weak−−−−−−−−→
attosec pulse ω1

(sup erposition of resonances)
moderately strong←−−−−−−−−−→
f emtosec pulse ω2

(superposition of resonances) (A)

where |0〉 is a discrete state. The resonance wave functions
are treated rigorously. They are energy-normalized (Dirac
normalization) and are expressed as linear combinations of
localized and scattering components. The attosecond and

femtosecond pulses have central frequencies ω1 and ω2, with
ω1 � ω2. They are applied with positive (the short XUV pulse
peaks after the second pulse) or negative (the short XUV pulse
peaks before the second pulse) time delay, tD.
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The choice of the scheme A is related to a variety of pos-
sible many-electron systems, when a high-energy, spectrally
broad attosecond pulse is used for the first step of excita-
tion into the continuous spectrum where electronic resonance
states exist. However, the formalism and the overall approach
are not restricted only to such situations.

The structure of the theory is such that it is not lim-
ited to two-electron states. It is applicable to DESs as well
as to inner-hole excited states of many-electron atoms and
molecules lying deep inside the continuum. Although the
basic features of the formal theory for these two classes of
states are essentially the same (they are unstable states in
the continuum), when it comes to the calculation of their
wave functions and energies, and of phenomena which depend
on transition matrix elements, the treatments have certain
critical differences that depend on electronic structures, on the
nature of electron correlations, on spectra, on the degree of
contribution of each open channel, etc. This holds for non-
relativistic as well as for relativistic Hamiltonians. In practice,
the calculation employs N-electron transition matrix elements,
where nonorthonormality (NON) between the state-specific
basis functions is taken into account explicitly.

As a prototypical application, we constructed and solved
a many-electron problem involving the photoexcitation or
ionization of the 1s electron of carbon. This is the K-shell
attosecond-pulse excitation of the C 1s22s22p2 3P ground state
to a superposition of two autoionizing states of carbon of
3So symmetry, one valence and one Rydberg state, which are
coupled by a second ultrashort pulse, with time delay tD, to
a higher-lying autoionizing state (Rydberg) of 3P symmetry.
Both pulses have Gaussian temporal shapes. The half width at
half maximum of the attosecond pulse is assumed to be 100 as.

B. Attosecond-resolved processes involving two-color-excited
Auger states: Application to the carbon K-absorption edge

The excitation of inner-hole states normally requires pho-
ton energies that are much larger than those needed for double
excitations of valence electrons. This means that, if the theory
corresponding to scheme A is to be applied to such cases,
the frequency ω1 of the attosecond pulse responsible for
the creation of the inner-shell hole must be relatively large.
Fortunately, the continuing progress in attosecond technology
now allows the approach of regimes where well-controlled
attosecond pulses with high energy can be produced [19].

For example, Li et al. [20] reported the generation and use
of soft x-ray pulses having the duration of only 53 as. They
“demonstrated single pulse streaking reaching the carbon
K-absorption edge (284 eV) by utilizing intense two-cycle
driving pulses near 1.8-μm center wavelength” (abstract of
Ref. [20]). In their discussion, they pointed to the exper-
iment on light-induced chemical reactions by Pertot et al.
[21] who developed and applied a table-top arrangement of
time-resolved x-ray absorption spectroscopy with temporal
resolution limited to 40 fs and argued that “The x-ray source
demonstrated in this work makes it practical to observe [with
attosecond resolution] charge migration by exploiting tran-
sition from the carbon core level to the unoccupied valence
orbitals at the carbon K-edge.” Their application to CO2 pro-
duced an absorption spectrum with a main peak at 290.77 eV

FIG. 1. The carbon excitation scheme interacting with a soft
x-ray (ω1) pulse plus a near-infrared one (ω2) of Gaussian temporal
shapes. As shown above, the carbon ground state is connected, via
the (ω1) pulse, with the resonance states E1 (1s2s22p3 3So) and
E2 (1s2s22p23p 3So), contained in the 1s22s2p2εp 3So zero-order
channel. With an ultrashort positive or negative time delay, tD,
the (ω2) pulse connects them to the state E3 [1s2s22p2(4P)3d 3P],
which is embedded in the 1s22s22pεp 3P zero-order channel. The
energies above the ground state are given on the graph. The re-
sults given in this paper were obtained for the case of resonant
two-photon coupling of the carbon ground state with the state E3

[1s2s22p2(4P)3d 3P], which is equivalent to the condition ω1 +
ω2 = E3. The calculations whose results are reported here were
obtained for pulse durations 100 as for the (ω1) pulse and 80 fs for the
(ω2) one. The black and gray curves surrounding the discrete levels
represent “realistically” the energy profiles of the Gaussian pulses,
with central frequencies ω1 and ω2.

and a satellite peak at 292.74 eV. Using the data and the
analysis reported in 1979 by Tronc et al. [22], they assigned
these peaks to excitations from the carbon 1s orbital to the
unoccupied molecular orbital 2π∗

u (290.77 eV) and to the 3s
Rydberg orbital (292.74 eV).

It should be noted that Li et al. [20] give the energy 284
eV for the K-absorption edge. This value, which corresponds
to carbon in a chemical environment, is shifted considerably
from the accurate, term-dependent free-atom value, known
since the 1970s, which is about 296 eV [23,24]. For the many-
electron approach to the advanced calculation of state-specific
wave functions and of one-electron binding and Auger en-
ergies, and of widths and fluorescence yields of inner-shell
states in atomic, metallic, and chemisorbed phases, the reader
should consult Refs. [25–27] and related work.

The demonstration herein of the time-dependent theory
involves the 1s-shell excitation of the C 1s22s22p2 3P ground
state to autoionizing states labeled by 1s-hole configurations
whose outer subshells, the valence 2p and the Rydberg 3p and
3d , are initially either incompletely occupied (in the n = 2
shell) or unoccupied (in the n = 3 shell). These orbitals are
engaged in the bonding of carbon inside chemical compounds,
contributing to their properties in different ways. For exam-
ple, even though the 3d spin orbitals are not occupied in
the ground state configuration of carbon, they can play an
important role as virtual orbitals in calculations that pursue
the accurate description of wave functions by accounting for
electron correlation.

Figure 1 displays the excitation-coupling scheme for this
study. The main goal was to determine the dominant features
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of the photoelectron emission probability density for the
resonance states in both the open channels, as a function of
tD in the order of a few femtoseconds, for various realistic
values of the intensity and duration of the laser (second)
pulse. In addition, the study examined the degree of sensitivity
of the results to small detunings of the central frequencies.
The quantitative implementation of the formalism is done in
terms of N-electron wave functions with selected components
of electron correlation, for which the theoretical justification
and methods of calculation have been reported in our earlier
publications since the 1970s; e.g., see Refs. [16,23] and the
book [25].

II. PHOTOELECTRON EMISSION PROBABILITIES IN
THE TDnL SYSTEM WITH TWO ULTRASHORT PULSES

AND RESONANCE-RESONANCE COUPLING

The mathematical development which follows is divided
into six subsections, A–F. In subsection A, the problem is
formulated in terms of a time-dependent superposition that
includes the localized and the asymptotically scattering com-
ponents of the two states. The sought after amplitude of pho-
toelectron emission probability for each channel, AiE (t ), i =
1, 2, is defined in terms of the time-dependent mixing coeffi-
cients, which satisfy a system of integrodifferential equations.
Subsection B presents certain physically important functions
of transition matrix elements entering the calculation and the
justifiable approximations which are made in order to render
the system of equations solvable analytically. In subsection
C, a simple transformation of the mixing coefficients allows
the energy integrals to be evaluated by contour integration,
and the system of integrodifferential equations is transformed
into a system of ordinary differential ones. In subsection
D, the latter system is solved semianalytically, assuming a
rectangular temporal shape for the second pulse, while the
case where this pulse has an arbitrary shape is solved by
fitting it to a sum of rectangular pulses. The formal results
are presented in subsection E. Finally, in subsection F an
extension is made that allows many angular momenta for each
parity to be included in the calculation.

A. Formal expression for the photoelectron emission probability

We consider the case where there are two open channels
in which photoelectrons can be emitted. The resonance states
are embedded in them. The first open channel is reached by ω1

[the first (attosecond) pulse] and the second by ω2 [the second
(laser) pulse].

The time-dependent wave function of the system is ex-
panded in terms of the eigenstates as (h̄ = 1)

|�(t )〉 = |�g〉e−iEgt cg(t ) +
2∑

i=1

∫
dE |�iE 〉e−iEt ciE (t ),

(1)

where �g is the ground state (or initial discrete state) of
angular momentum L, i = 1 denotes an L or L ± 1 state of
the continuous spectrum, and i = 2 denotes an L, L ± 1, or
L ± 2 state of the continuous spectrum. These are acting as
ionization channels and have opposite parities. The electronic

Hamiltonian is thus diagonal in the continuous part of the
spectrum for each angular momentum and parity.

In the subsequent development of the formalism, we shall
take into account one angular momentum of the first parity
and one of the second, as indicated in Eq. (1), in order to keep
the treatment as simple as possible. In a final subsection (F)
we shall sketch the straightforward extension of the formalism
that is required in the general case of many angular momenta
for each parity.

We follow Fano’s formalism [28] in order to represent the
stationary superposition of localized and scattering compo-
nents, for each total angular momentum, of the resonance
wave functions on the real energy axis. The localized com-
ponents are denoted by φn and the scattering ones by |uiE 〉.

Let N1 and N2 be the number of the localized parts con-
tained in each ionization channel, the total number being
N = N1 + N2. In order to avoid double indices in numbering
them, we adopt the following convention: The index n runs
from 1 to N , where the values n � N1 belong to the group
of the localized parts of the first channel while those with
N1 < n � N belong to the group of the localized parts of the
second one.

Generalizing his result of a single localized part to that
holding for a number of them, Fano [28] derived the expres-
sion

|�iE 〉 = cos �i(E )

[∑
n

(
|φn〉 + P

∫
dE ′|uiE ′ 〉 1

E − E ′ViE ′n

)

× tan �in(E )/πVniE + |uiE 〉]. (2)

The symbol P stands for principal-value integration and
VniE = 〈φn|Hatom|uiE 〉 [see Eq. (65) of Ref. [28]]. In Fano’s
notation,

tan �i(E ) =
∑

n

tan �in(E ), (3a)

tan �in(E ) = π |ViEn|2
E − En

, (3b)

and

En = 〈φn|Hatom|φn〉 + P
∫

dE ′VniE ′
1

E − E ′ ViE ′n. (3c)

For reasons of simplicity, terms P
∫

dE ′VmiE ′ 1
E−E ′ ViE ′n for

m 	= n, have been neglected. In other words, we take into
account the energy shift due to the interaction of the localized
components with the continuum, but we neglect the second-
order effect of their recoupling due to this interaction.

Note that the function cos �i(E ) is zero at the energies En.
Again following Fano, we put

αn(E ) ≡ cos �i(E ) tan �in(E )/πVniE . (4)

Then

|�iE 〉 =
∑

n

αn(E )

[
|φn〉 + P

∫
dE ′|uiE ′ 〉 1

E − E ′ ViE ′n

+ |uiE 〉E − En

ViEn

]
. (5)
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Thus, we have brought the total wave function to a form which
is a sum of expressions that correspond to the case of a single
localized component [18].

We now consider the normal case of isolated resonances,
i.e., the case where |En − Em| � 1

2 (	in + 	im), where 	n =
πV 2

iEn are the half-widths. Then for E ≈ En one obtains
tan �i(E ) ≈ tan �in(E ), and, therefore,

αn(E ) ≈ ViEn√
(E − En)2 + 	2

n

. (6)

The function α2
n (E ) has poles zn = En ± i	n above and be-

low the real axis. They play a crucial role in the development
of the present formalism [18].

The quantity of interest is the probability Pi(E , t ) ≡
|AiE (t )|2 for i = 1, 2, to observe a photoelectron in one of
the ionization channels with a certain angular momentum and
parity. AiE (t ) is defined below in Eq. (7). In order for it to
be accurate for times when the autoionizing states have not
been depleted, we subtract the survival amplitude from the
total one:

AiE = 〈�iE |�(t )〉 −
∑

n

αn(E )〈φn|�(t )〉. (7)

�(t ) satisfies the METDSE,

i
∂

∂t
�(t ) =

⎡
⎣Hatom +

2∑
j=1

V ( j) (ω j, t )

⎤
⎦�(t ), (8a)

where

V ( j)(ω j, t ) = zFjg j (t ) sin(ω jt − ϕ j ) (8b)

represents the perturbation by two (ultra)short laser pulses
with frequencies ωi and envelopes gi(t ). The pulses are as-
sumed to be linearly polarized, acting with a time delay, tD.

For the symmetries of the problem, the only nonzero dipole
matrix elements are

Dg,1E = 〈�g|z|�1E 〉 and D1E ,2Ē = 〈�1E |z|�2Ē 〉. (9)

B. Spectral-asymmetry functions: The emergence of Fano-type
complex generalized quantities (parameters)

Substituting the wave function (5) into the matrix elements
(9), one has

D1E ,g =
N1∑

n=1

αn(E )bnE , (10a)

where

bnE ≡ dng(E ) + E − En

Vn1E
d1Eg. (10b)

Also,

D1E ,2Ē ≈
N1∑

n=1

αn(E )
N∑

m=N1+1

αm(Ē )bnE ,mĒ , (11a)

where

bnE ,mĒ ≡ dnm(E , Ē ) + E − En

Vn1E
d1Em + Ē − Em

Vm2Ē
d2Ēn. (11b)

Here we have ignored the contribution of the extremely
small dipole matrix elements d1E ,2E ′ = 〈u1E |z|u2E ′ 〉 involving
the unperturbed continua. The matrix elements dng(E ) and
dnm(E , Ē ) depend on the energy because they include the
contributions from the integral of the second term in Eq. (2).

The above expressions define the quantities bnE and bmE ,nĒ ,
which we have named the spectral-asymmetry functions [18].
Of special interest are their values at the complex poles zn =
En − i	n :

bnzn = dng − iπVn1zn d1zng (11c)

and

bnzn,mzm ≡ dnm − iπ (Vn1zn d1znm + Vm2zm d2zmn) (11d)

which result as a consequence of contour integration em-
ployed in the calculation of the energy integrals of the con-
tinuous spectrum.

There are N1 Fano discrete-resonance transition asymme-
try parameters, qn = dng/πVn1En d1Eng, and N1N2 generalized
asymmetry parameters involving resonance-resonance transi-
tions, which we have named Q parameters:

Qmn = dmn/(πVm1Em d1Emn + πVn2En d2Enm). (12)

Each Qmn is associated with two branching ratios, γ (i)
mn =

VmiE diEn/(Vm1E d1En + Vn2E d2Em), i = 1, 2, so that γ (1)
mn +

γ (2)
mn = 1. The significance of the Q parameter for the physics

of resonance-resonance dipole transitions is discussed in
Ref. [18].

C. The system of differential equations

The time-dependent coefficients obey the following system
of equations:

ie−iEgt ċg = F1g1(t ) sin(ω1t − ϕ1)
∫

dE ′ Dg,1E ′e−iE ′t c1E ′ ,

(13a)

ie−iEt ċ1E = F1g1(t ) sin(ω1t − ϕ1)D1E ,ge−iEgt cg

+ F2g2(t ) sin(ω2t − ϕ2)
∫

dE ′D1E ,2E ′e−iE ′t c2E ′ ,

(13b)

ie−iĒt ċ2Ē = F2g2(t ) sin(ω2t − ϕ2)
∫

dE ′D2Ē ,1E ′e−iE ′t c1E ′ .

(13c)

Using the previous definitions (11), Eqs. (13) are transformed
into

ċg = −iF1eiEgt g1(t ) sin(ω1t − ϕ1)

×
∫

dE ′
N1∑

n=1

αn(E ′) bnE ′e−iE ′t c1E ′ , (14a)
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ċ1E = −iF1e−i(Eg−E )t g1(t ) sin(ω1t − ϕ1)
N1∑

n=1

αn(E ) bnE cg

− iF2eiEt g2(t ) sin(ω2t − ϕ2)
N1∑

n=1

αn(E )
∫

dE ′

×
N∑

m=N1+1

bnE ,mE ′αm(E ′)e−iE ′t c2E ′ , (14b)

ċ2Ē = −iF2eiĒt g2(t ) sin(ω2t − ϕ2)
N∑

m=N1+1

αm(Ē )

×
∫

dE ′
N1∑

n=1

bmĒ ,nE ′αn(E ′)e−iE ′t c1E ′ . (14c)

In terms of the coefficients, Eq. (7) becomes

AiE = e−iEt ciE (t ) −
∑

n

αn(E )
∫

dE ′αn(E ′)e−iE ′t ciE ′ (t ),

(7)′

where the sum is over the localized components of the ith
channel.

From inspection of Eqs. (14), it follows that the coefficients
ciE (t ) are proportional to the sum of the quantities αn(E ).
Accordingly, we transform into the more convenient variables
CmE ,

c1E =
N1∑

n=1

αn(E )CnE , c2E =
N∑

n=N1+1

αn(E )CnE , (14d)

which satisfy the equations

ċg = −iF1eiEgt g1(t ) sin(ω1t − ϕ1)
∫

dE ′
N1∑

n=1

bnE ′αn(E ′) e−iE ′t
N1∑

k=1

αk (E ′)CkE ′ , (15a)

N1∑
n=1

αn(E ) ĊnE = −iF1e−i(Eg−E )t g1(t ) sin(ω1t − ϕ1)
N1∑

n=1

αn(E ) bnE cg(t ) − iF2eiEt g2(t ) sin(ω2t − ϕ2)
N1∑

n=1

αn(E )
∫

dE ′

×
N∑

n=N1+1

bnE ,kE ′αk (E ′)e−iE ′t
N∑

m=N1+1

αm(E ′)CmE ′ , (15b)

N∑
m=N1+1

αm(Ē )ĊmĒ = −iF2eiĒt g2(t ) sin(ω2t − ϕ2)
N∑

m=N1+1

αm(Ē )
∫

dE ′
N1∑

n=1

bmĒ ,nE ′αn(E ′)e−iE ′t
N1∑

k=1

αk (E ′)CkE ′ . (15c)

Equation (15b) gives rise to N1 equations,

ĊnE = −iF1e−i(Eg−E )t g1(t ) sin(ω1t − ϕ1) bnE cg(t ) − iF2eiEt g2(t ) sin(ω2t − ϕ2)
∫

dE ′
N∑

k=N1+1

bnE ,kE ′αk (E ′)e−iE ′t

×
N∑

m=N1+1

αm(E ′)CmE ′ , (15b)′

while (15c) gives rise to N2 equations (N1 + N2 = N ),

ĊmĒ (t ) = −iF2eiĒt g2(t ) sin(ω2t − ϕ2)
∫

dE ′
N1∑

n=1

bmĒ ,nE ′αn(E ′)e−iE ′t
N1∑

k=1

αk (E ′)CkE ′ . (15c)′

We now perform a contour integration in the lower half-plane. Only the poles contribute to the result. Therefore,∫
dE ′αm(E ′) e−iE ′tαn(E ′) ≈ δmne−iznt , (16)

where zn are the complex poles of α2
n (E ). Thus, assuming the rotating wave approximation (RWA) for every n � N1 and

N1 < m � N we obtain

ċg = −1

2
e−iϕ1 F1g1(t )

N1∑
n=1

bnzn ei(Eg+ω1−zn )tCnzn , (17a)

ĊnE = 1

2
eiϕ1 F1g1(t )ei(E−Eg−ω1 )t bnE cg − 1

2
e−iϕ2 F2g2(t )

N∑
k=N1+1

bnE ,kzk ei(E+ω2−zk )tCkzk , (17b)

ĊmĒ = 1

2
eiϕ2 F2g2(t )

N1∑
k=1

bmĒ ,kzn
ei(Ē−ω2−zk )tCkzk . (17c)
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The same procedure, applied to Eq. (7)′, results in the form

AiE (t ) =
∑

n

αn(E )[e−iEtCnE (t ) − e−izntCnzn (t )], (18)

where the sum is over the localized components of the ith
channel. Note that the sign of ω2 in Eqs. (17) can be positive
or negative, depending on the requirement of the RWA. Here
we shall assume that the localized parts of the second channel
lie either all above or all below the group of localized parts
of the first channel. The solution of Eqs. (17) determines the
photoelectron emission amplitudes (18).

In order to perform the time integration in Eqs. (17), the
functional dependence on time of the coefficients Cnzn (t ) is
needed. This implies that their values at the poles zn are
needed. Making the substitution E → zn, one obtains a set of
equations for Cnzn (t ) which are similar to the ones resulting in
the case of two groups of bound states, the first being popu-
lated from the ground state by the first pulse while the second
pulse connects the states of the two groups. In this case,
however, both the energies and the dipole matrix elements are
real, the latter lacking the part referring to transitions to the
continuum.

By inspecting Eqs. (17), we observe that a simpler set of
equations is satisfied by the quantities Bnzn (t ) = e−izntCnzn (t )
which, as in Ref. [18], are the amplitudes of the localized
components of the resonances. These equations are

ċg = −1

2
e−iϕ1 F1g1(t )

N1∑
n=1

bnzn ei(Eg+ω1 )t Bnzn ,

(19a)

Ḃnzn + iznBnzn = 1

2
eiϕ1 F1g1(t )e−i(Eg+ω1 )t bnzn cg

− 1

2
e−iϕ2 F2g2(t )

N∑
m=N1+1

bnzn,mzm eiω2t Bmzm ,

(19b)

Ḃmzm + izmBmzm = 1

2
eiϕ2 F2g2(t )

N1∑
n=1

bmzm,nzn e−iω2t Bnzn , (19c)

for every n � N1 and N1 < m � N .
The assumption of the problem is that the pulse acting on

the initial state is ultrashort and relatively weak. Therefore,
we take cg ≈ 1. (The pulse acting on the initial discrete state
is called “first,” although it is not necessarily the first in the
temporal order of application.)

Consequently, Eq. (19a) is decoupled from the system of
Eqs. (19), and each one of Eq. (19b) now has an inhomo-
geneous term. This term takes into account the action of
the first pulse. For its time envelope, a Gaussian function,

g1(t ) = e
− (t−ta )2

2σ2
a , centered at t = ta is chosen. The envelope

of the second pulse, g2(t ) = e
− (t−tb )2

2σ2
b , also a Gaussian, will

be approximated by a sum of rectangular functions, each one

composed of two step functions. The step function St(t ) is
unity if its argument is positive and zero otherwise. We write

g2(t ) ≈
Np∑
i=1

g2(i)[St(t − ti−1) − St(t − ti )], (20a)

the number of points Np being an odd number. For the central
rectangle, Nc = 1

2 (Np + 1), we put g2(Nc ) = 1, while for i 	=
Nc, g2(i) < 1. If we require the function to be symmetrical,
then g2(Nc+k) = g2(Nc−k). The values of g2(i) can be made to

fit any envelope function—a Gaussian e
− (t−tb )2

2σ2
b in our case—

centered at t = tb. This is done in a systematic way in Ap-
pendix C of Ref. [18].

We derive the formulas initially for the special case of a
single rectangular function:

g2(t ) ≈ St(t − t0) − St(t − t1). (20b)

The rectangle is centered at tb, where tb = (t1 + t0)/2.
For times t < t0, when g2(t ) is zero, Eqs. (19b) and (19c)

for cg ≈ 1 can be immediately integrated to give the coeffi-
cients CnE . Defining

G(E ; t0, t ) ≡
∫ t

t0

dt ′eiEt ′
g1(t ′) , (21)

we obtain for n � N1

CnE (t ) = 1
2 F1eiϕ1 bnE G(E − Eg − ω1; −∞ , t ), t � t0

(22)

for the coefficients referring to the first channel, while the
coefficients CmE for N1 + 1 � m � N , referring to the second
channel, are equal to zero.

For times t0 < t < t1, Eqs. (19b) and (19c) are solved in
Appendix A for the case of the rectangular pulse of Eq. (20b).
They are expressed in terms of the coupling parameters

�nm = g2F2bnzn,mzm . (23)

Although g2 is, for the time being, equal to unity, it is included
in the definition for later purposes.

D. Semianalytic solution for Cnzn when the second pulse is
rectangular and extension to the case of an arbitrary

temporal shape

The procedure described in Appendix A solves the system
of Eqs. (19b) and (19c) for cg ≈ 1 in the case of a rectangular
second pulse. The solution is written in terms of the integrals
G(Ej ; t0, t ) of Eq. (21) for t < t1, where the quantities Ej are
eigenvalues resulting from the solution of the homogeneous
part of the system (19b) and (19c) (see Appendix A). For
the chosen Gaussian envelope function g1(t ), the analytic
expression of the G integrals is given in terms of the error
function (see Appendix B).

In addition to the eigenvalues, one also obtains the matrix
of the eigenvectors T and its inverse T −1 through which the
solution of the system of Eqs. (19) is expressed as

e−izntCnzn (t ) = 1

2
eiϕ1 F1e−i(Eg+ω1 )t

N∑
j=1

Tn je
−iE jt

(
c( j) + G(Ej ; t0, t )

N1∑
l=1

T −1
jl blzl

)
, n � N1, (24a)
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e−izntCnzn (t ) = i

2
eiϕ1 F1eiϕ2 e−i(Eg+ω1+ω2 )t

N∑
j=1

Tn je
−iE jt

(
c( j) + G(Ej ; t0, t )

N1∑
l=1

T −1
jl blzl

)
, n > N1, (24b)

Note that the second summation in Eqs. (24) has N1 terms,
since Eqs. (19c) have no inhomogeneous term.

The values of the coefficients c( j) are computed by the
matching of the solutions Eqs. (22) and (24) at the time t = t0.
This is done below for the generalized form of g2, which
is a sum of rectangular functions of the type introduced in
Eq. (20a).

The coefficients Cnzn (i)(t ) are computed at each time inter-
val ti−1 � t � ti of Eq. (20a) in terms of the coupling parame-
ters �nm(i) = g2(i)F2bnzm,nzm . The eigenvalues and eigenvectors
are calculated at each time interval. Also, the integrals G
are calculated with ti−1 as the lower bound. The constants
c( j)

i at each interval are determined from those of the in-
terval at the left by the continuity conditions Cnzn(i)(ti−1) =
Cnzn (i−1)(ti−1), where we have set Cnzn (0)(t ) = 1

2 F1eiϕ1 G(zn −
Eg − ω1; −∞ , t )bnzn for n � N1, while Cnzn (0)(t ) = 0 n > N1

for values of time t < t0.

From Eqs. (24) we obtain, in the time interval ti−1 � t � ti,

c( j) = eiEjti−1

N∑
k=1

T −1
jk eiβkti−1 e−izkti−1C̄kzk (ti−1), (25)

where,

C̄nzn =
{

Cnzn/
1
2 eiϕ1 F1, n � N1

Cnzn/
ieiϕ2

2 eiϕ1 F1, n > N1

and

βn(t ) =
{

Eg + ω1, n � N1

Eg + ω1 + ω2, n > N1
. (26)

Combining Eqs. (24) and (25), one obtains for ti−1 � t � ti

e−izntC̄nzn (t ) = e−iβnt
N∑

k=1

⎡
⎣ N∑

j=1

Tn je
−iE j (t−ti−1 )T −1

jk

⎤
⎦ eiβkti−1 e−izkti−1C̄kzk (ti−1) + e−iβnt

N1∑
l=1

⎡
⎣ N∑

j=1

Tn je
−iE jt G(Ej, ti−1, t )T −1

jl

⎤
⎦ blzl .

(27)

The quantity in the first square brackets is the time evolution operator Unk (t − ti−1) while the second term describes the
population of the localized components due the first pulse g1(t ). Since the first pulse is ultrashort, the G integrals fall quickly to
zero.

Therefore, Eq. (27) describes the evolution of the amplitudes of the localized components of the resonances under the
influence of the second pulse.

E. Final results for the two ionization channels

With the form of the coefficients Cnzn known, Eqs. (17b) and (17c) are integrated in the region t0 � t ′ < t , with the restriction
t � tNp , and the expressions for the coefficients CnE (t ) are obtained as

CnE (t ) = 1

2
eiϕ1 F1bnE G(E − Eg − ω1, t0, t ) − i

4
eiϕ1 F1F2

N∑
m=N1+1

bnE ,mzm

∫ t

t0

dt ′g2(t )ei(E+ω2−zm )t ′
C̄mzm (t ′) (28a)

for n � N1, and

CmE (t ) = 1

4
eiϕ1 F1eiϕ2 F2

N1∑
n=1

bmE ,nzn

∫ t

t0

dt ′g2(t )ei(E−ω2−zn )t ′
C̄nzn (t ′) (28b)

for m > N1.
It is convenient to write the integrals in Eqs. (28) in a compact form, in terms of the parameter β. Thus, assuming the form

(20a), for g2(t ) one has, at a certain time t � tp,

p∑
i=1

g2(i)

∫ t

ti−1

dt ′ei(E−βn )t ′
e−i(zm−βm )t ′

C̄mzm (t ′), for p � Np

where n and m belong to different groups of localized components. Substituting the value of e−i(zm−βm )tC̄mzm (t ) from Eq. (27),
one obtains for the reduced coefficients C̄nE

C̄nE (t ) = bnE G(E − Eg − ω1, t0, t ) − F2

N∑
m=N1+1

bnE ,mzm Pn
mE (t ) (29a)
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for n � N1 and

C̄mE (t ) = −F2

N1∑
n=1

bmE ,nzn Pm
nE (t ) (29b)

for m > N1, where

Pn
mE (t ) = 1

2

p∑
i=1

g2(i)

N∑
k=1

⎡
⎣ N∑

j=1

Tm j
ei(E−βn )t e−iE j (t−ti−1 ) − ei(E−βn )ti−1

(E − βn − Ej )
T −1

jk

⎤
⎦ eiβkti−1 e−izkti−1C̄kzk (ti−1)

+ 1

2

p∑
i=1

g2(i)

N1∑
l=1

⎡
⎣ N∑

j=1

Tm j
ei(E−βn−Ej )t G(Ej, ti−1, t ) − G(E − βn, ti−1, t )

(E − βn − Ej )
T −1

jl

⎤
⎦ blzl (30)

for t � tp.
Equations (29) express the generalization of the corre-

sponding result obtained in Ref. [18] for the simple case N1 =
N2 = 1. For t > tNp , i.e., after the end of the last time segment
at t = tNp , the integrals reach a constant value. The spectral
asymmetry functions bnE and bnE ,mzm can be expressed in
terms of q parameters, the former being the usual Fano q
parameter and the latter being a complex one, introduced in
Ref. [18]. It refers to a resonant to resonant transition, and it is
expressed in terms of the Q parameter and the branching ratios
γ (1) and γ (2) for that transition [see the discussion after Eqs.
(10) and (11)]. It is given by qnm = (Qnm − iγ (2)

nm )/γ (1)
nm for the

coefficients of the first channel and qmn = (Qnm − iγ (1)
nm )/γ (2)

nm
for those of the second channel. Note that the q parameter for
the transition m → n is different from the parameter for the
transition n → m.

It must be noted that the importance of Fano’s q parameter
is based on the fact that G(E − βn, t0, t ) is a simple function
of the energy. On the other hand, the functions Pn

mE (t ) have,
in general, a rich and often complicated structure, where the
importance of qnm is reduced drastically.

The reduced coefficients C̄nE , given by Eqs. (29), together
with their values C̄nzn at the poles zn, given by Eq. (27), are
now used to evaluate the ionization probability amplitudes
AiE (t ) of Eq. (18) for each channel.

As it can be seen from Eq. (30), the results are sensitive
to the exact position of the complex poles (i.e., energies and
half-widths), which determine the eigenvalues Ej appearing
in the denominators of the expression. The results are also
sensitive, in an indirect way, to the time delay, tD, which
determines the relative position of the peaks of the two pulses.
In the calculations, the peak tb of the second pulse g2(t ) was
set arbitrarily to zero. With this convention, the peak ta of the
first pulse g1(t ) is equal to the time delay tD. Notice that g1

is contained in the G integral, defined in Eq. (21), and whose
form, in the case of a Gaussian pulse, is given in Appendix B.
This integral appears in Eq. (30), as well as in Eq. (27), where
the quantities C̄nzn (t ) are calculated.

F. Extension to many angular momenta for each parity

Let there be I1 channels with parity opposite to that of
the ground, or initial discrete, state of angular momentum
L, and let I2 be channels with parity opposite to that of the
previous group. The dipole selection rules are assumed so that

I1 � 3 and I2 � 5. The summation in Eq. (1) now contains
two groups of channels, the members of each being coupled
to the members of the other by dipole transitions. Let there
be Ni resonance states at the ith ionization channel of a given
total angular momentum and parity.

As in the case of two channels, a numbering of the channels
and resonances taken into account is required in order to avoid
double indices. Conventionally, the numbering starts from
the lowest angular momentum of the first group of channels
having parity opposite to that of the ground state. Then, in the
same way, the channels and resonances of the second group
are numbered. Let us define the cumulative quantities

Mi =
i∑

j=1

Nj .

The resonances of the ith channel are then counted from
Mi−1 + 1 up to Mi ≡ Mi−1 + Ni with the convention M0 = 0.
The formulas of the previous sections are then modified ac-
cordingly. Thus, for example, the transformation of Eqs. (14)
becomes

ciE =
Mi∑

n=Mi−1+1

αn(E )CnE ,

while the summations in the Eqs. (17) are modified in the
same way. The number of Eqs. (17) is now greater, but the
extension is straightforward and Eq. (18) referring to the final
quantities AiE (t ) remains unaltered.

III. APPLICATION TO THE MANY-ELECTRON CASE
OF THE CARBON K-EDGE IONIZATION BY AN

ATTOSECOND PULSE

The formalism solves the problem of N1 resonances in
a scattering channel populated from the ground state by an
ultrashort, and consequently spectrally broad, initial pulse,
followed by a longer second pulse that transfers populations
to N2 resonances in a second scattering channel. The degree of
population transfer due to the second pulse between the two
sets of resonances (back and forth) depends mainly on the size
of the transition moment, on the intensity of the second pulse,
and on the amount of detuning from exact resonance.
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A. Essential elements of the calculation of wave functions

In the present first implementation of the multistate theory,
we have chosen the case N1 = 2, N2 = 1. It involves the
K-shell photoexcitation of carbon 1s22s22p2 3P interacting
with two ultrafast pulses, according to the general scheme A.
As explained in the Introduction, the possibility of acquiring
spectroscopic information about the excitation of carbon at
the K edge via scheme A is significant to both experiment and
theory.

Because of the extreme complexity that results when con-
sidering all possible excitations, states, and open channels,
judicious selections were made, allowing the reduction of
the size of the many-electron, many-channel problem while
obtaining semiquantitative information on observable spectral
features for realistic pulses. From a series of trial calculations,
we concluded that the results are sensitive to the values of the
transition moments as well as to the autoionization widths.
Therefore, the focus was on the prediction of observable
phenomena in a qualitative manner, rather than on the deter-
mination of detailed data that are numerically very accurate.

The chosen excitation-coupling scheme is as follows: The
first (attosecond) pulse prepares a superposition of 1s̄2s̄22 p̄3

and [1s̄2s̄2(2 p̄2 3P) 4P ] 3p̄ states of 3S0 symmetry. In other
words, we consider only the 3S0 excited symmetry, with
the superposition consisting of two resonance states, one
representing 1s-electron excitation reaching the vacant 2p
valence shell and the other representing 1s-electron excitation
reaching the vacant 3p Rydberg shell. These two core-hole
states of carbon are embedded in a number of open channels.
The Hartree-Fock (HF) orbitals of the zero-order configu-
rations are state-specific. They are calculated in their own
self-consistent potential, which is influenced by the presence
of the hole in the 1s shell.

As regards the mixing of symmetry-adapted configura-
tions representing electron correlation and the availability of
open channels, the 3So symmetry cannot be retained by the
substitutions 2 p̄2 → 1sεs or 2 p̄3p̄ → 1sεs. So, at the level
of pair correlations, the open-channel configurations possible
arise from the substitutions, 2s̄3p̄ → 1sεp, 2s̄2 p̄ → 1sεp or
2s̄2 → 1sεs. From these, the last one was neglected as it is
expected to have the least contribution to the total width. The
first two lead to the 1s22s̃(2 p̃2 3P)4Pε p̃ 3So ionization channel,
which contains the two resonances of 3So symmetry. Note
that the calculation of the coupling matrix elements must
account for nonorthonormality (NON), as the orbitals in the
presence of the core hole differ from those in its absence (i.e.,
〈1s|2s̄〉 	= 〈1s̄|2s〉 	= 0).

The second pulse, ω2, couples the superposition of the two
3So resonances to the [1s̄2s̄2(2 p̄2 3P) 4P ] 3d 3P autoionizing
state (Fig. 1). In zero order, the one-electron dipole transitions
are 2p → 3d and 3p → 3d , the latter having a much larger
transition amplitude.

The 3d 3P 1s-hole state autoionizes to a number of open
channels, of which the most important is the 1s22s22pεp
3P. This results from the interaction of the pair 2p3d →
1sεp. This channel is directly populated via electric dipole
transitions from the two 3So resonances. These transitions are
dominated by the matrix elements, 〈1s|r|2 p̄〉〈2 p̄|εp〉 for the
valence configuration 1s2s22p3 3So and 〈1s|r|2 p̄〉〈3p̄|εp〉 and

〈1s|r|3p̄〉〈2 p̄|εp〉 for the Rydberg configuration 1s2s22p23p
3So.

Also, the 1s22s̃(2 p̃2 3P)4Pε p̃ 3So channel, is populated via
dipole transitions from the 3P resonant state by the 3d → εp
transition as well as from the ground state by the 2s → εp
transition. The former is effected because of the nonzero
overlap 〈1s̄|2s〉. The contribution of the latter is small because
of the large energy of the outgoing electron.

Another open channel for autoionization of the 3d reso-
nance state is the 1s22s23dεd 3P, corresponding to the rear-
rangement 2p2 → 1sεd . However, in first order, it has zero
matrix element with the state [1s̄2s̄2(2 p̄2 3P) 4P ] 3d because
of the 3P internal coupling of the pair 2p2, even though,
due to NON, there is a small nonzero matrix element. The
autoionization coupling to the 1s22s23dεd 3P channel was
neglected.

The calculation of the bound wave functions was done
in the spirit of the state-and property-specific approach
to the solution of problems of many-electron physics (see
Refs. [13,17,25–27] and references therein). The zero-order
descriptions were obtained at the level of the HF or mul-
ticonfigurational HF (MCHF) approximations, for both the
discrete and the resonance states. The scattering orbitals were
obtained in the term-dependent frozen core of the correspond-
ing channel. Only selected portions of electron correlations
were considered. For example, for the carbon 3P ground state,
we started with a MCHF 1s22s22p2 + 1s22p4 wave function,
calculated numerically, and added electron correlation terms
corresponding to virtual excitations from the 2s and 2p shells
that were optimized variationally. For the excited 3S0 states,
we started with a 1s2s22p3 + 1s2s2p33s MCHF zero-order
wave function for the first resonance, and a 1s2s22p23p +
1s2p43p + 1s2s22p3 MCHF zero order wave function for the
second resonance. To these, the most significant double virtual
excitations from the 2p subshell were added. Finally, for the
excited 3P state, we started with a 1s2s22p23d + 1s2p43d
MCHF zero-order wave function and added the most sig-
nificant double virtual excitations from the 2p subshell. The
correlation between the Rydberg MCHF orbitals, 3p and 3d ,
and the core orbitals were neglected.

An important set of parameters for the qualitative under-
standing of the phenomena that result from scheme A is the
magnitude of the transition matrix elements. For the chosen
case of carbon, the matrix element pertaining to the dipole
transition from the ground state to the first localized part
of the first channel, dg1, is about five times greater than the
corresponding quantity from the ground state to the second
localized part of the same channel, dg2. This is a common
pattern, since at the lower end of Rydberg series often lies
a valence state which is as compact as the ground one and
the dipole coupling between them is higher than the coupling
between the ground state and the extended Rydberg ones.

On the other hand, the dipole transition matrix element
from the second localized part of the first channel to the
localized part of the second channel, d23, is about 40 times
greater than the corresponding quantity from the first localized
part, d13. This is not surprising since the two Rydberg levels
have the same principal quantum numbers, and, as is known
from the hydrogenic spectra, these have the largest dipole
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FIG. 2. The reduced ionization probability |A2E (t )/σαF1|2 (in
a.u.), as a function of energy E (in a.u.) above the carbon ground
state, 1s22s22p2 3P, for a time t where the two Gaussian pulses are
essentially zero. The pulses g1(t ) and g2(t ) have full widths at half
maximum of 100 as and 80 fs, and intensities I1 = 5 × 1011 W/cm2

and I2 = 5 × 1012 W/cm2, respectively. A2E (t ) corresponds to the
second channel 1s22s22pεp 3P, and the energy E is in the vicinity
of the E3 [1s2s22p2(4P)3d 3P] resonance state. The frequency of
the first pulse is chosen to be ω1 = 10.76 a.u., which excited reso-
nantly the E2 (1s2s22p23p 3So) resonance state. The curve with solid
line corresponds to tFW HM = 80 fs. The dotted line corresponds to
tFW HM = 2000 fs. The dashed line corresponds to tFW HM = 80 for a
weaker intensity, namely, 400 times smaller than the value of I2.

couplings. Consideration of such data is critical when analyz-
ing field-induced electron dynamics.

We define the reduced ionization probability densities
|AiE (t )/σaF1|2, derived from Eqs. (18) and (28), in order to
remove the common factors with the characteristics of the
first pulse. The remaining part has a slight dependence on
the standard deviation of the first Gaussian pulse, σa, which
is indicated by Eqs. (B2)–(B3) of the Appendix B (see also
Ref. [29]). This is the quantity plotted in Figs. 2–4.

We chose the energies of the two pulses such that their
sum equals the energy difference between the ground state
and the 3P Rydberg resonance of the second channel, i.e.,
ω1 + ω2 = E3 − Egs = 10.81 a.u. = 294.1 eV. The energies
of the two resonances of 3So symmetry were calculated
to be about 10.46 a.u. (284.6 eV) (the core-hole valence
1s2s22p3 3So) and 10.76 a.u. (292.8 eV) (the core-hole
Rydberg 1s2s22p23p 3So), above the ground state. In the cal-
culations we varied the energy of the first pulse so as to scan
the interval between the energies of these two resonances,
while satisfying the condition for the two-pulse excitation
stated above, ω1 + ω2 = E3 − Egs = 10.81 a.u. = 294.1 eV.
Since the resonance of the second channel lies slightly above
the second resonance of the first channel, by about 1.3 eV,
the energy of the second pulse lies in the range of the near-
infrared to visible.

Below we present the results that correspond to the
following two pulses. The first, high-frequency, attosec-
ond pulse has full width at half maximum (intensity)
tFW HM = 2

√
ln 2 σa 100 as (σa is the standard devia-

tion of the Gaussian, exp[−(t − ta)2/2σ 2
a ]), and intensity

I1 = 5 × 1011 W/cm2 (field strength, F1 = 1.7 × 10−2/
√

20
a.u.). The second, low-frequency, femtosecond pulse has in-
tensity I2 = 5 × 1012 W/cm2 (F2 = 1.7 × 10−2/

√
2 a.u.) and

tFW HM 80 fs. The values for the second pulse were chosen
after a number of test calculations for higher intensities (up to
1013 W/cm2) and lower widths (20 fs).

For the energy difference between the two Rydberg reso-
nances, 3p 3So −3d 3P, ω2 ∼ 1.3 eV, and the corresponding
number of field cycles is about 30. Notice that the correspond-
ing FWHM of the second pulse in the energy spectrum is
32 meV, much smaller than the distance to the next member
of the nd Rydberg series which lies 680 meV higher. This
narrow width justifies the inclusion of only one resonance in
the second ionization channel.

Figure 2 shows results that have to do with the well-
known Autler-Townes splitting of ac-field physics, due to the
coupling between the 3p 3So and 3d 3P resonances. We are
looking at the second channel, where the 3d 3P resonance is
found. The two frequencies are on resonance with the 3p 3So

and 3d 3P states. The dotted line curve corresponds to a weak
field, namely, 0.05 times smaller than the value of F2 stated
above, with the second pulse having tFW HM of 80 fs. In this
case, only one peak appears at 10.81 a.u.. When the field
strength increases to F2, with the pulse having again the tFW HM

of 80 fs, the reduced ionization probability density is divided
into three main peaks (plus small side bands of interference),
the two additional ones corresponding to the Autler-Townes
splitting which starts emerging (thick solid black line). This
deviation from the normal ac result is due to the fact that the
fields are short Gaussian pulses and not of the ac type. Indeed,
in order to explore this possibility, we did a calculation for
an extremely long pulse, having tFW HM of 2000 fs, in order to
simulate the situation of an ac field. The corresponding results
(dashed line curve) show only two peaks, as expected from
the theory with ac fields. In contradistinction, a single peak
appears when the pulse is chosen to have a small tFW HM , such
as 20 fs. (For reasons of economy we do not include this result
in the figure.)

Figure 3 is about the effects of interference in the first
channel as a function of the time delay. It displays the re-
sults of two types of calculation, with the pulses being on
resonance, for various values of time delay tD. The narrow
black line corresponds to the case where both pulses act
simultaneously. The wiggles result from the interference in the
coupling 3p 3So ↔ 3d 3P. Indeed, when the second pulse is
taken out, the curve changes to that depicted by the smooth
thick gray line. In Fig. 3 it is shown the trend of the gradual
disappearance of interference as time delay goes to large
negative values (the short XUV pulse peaks before the second
pulse) and to large positive ones (the short XUV pulse peaks
after the second pulse).

Figure 4 shows results that demonstrate the necessity of
dealing with superpositions of resonance states when using
spectrally broad pulses. In the lower plot of Fig. 4 the first
pulse is close (10.48 a.u.) to the first resonance, 2p3 3So. The
second pulse connects with the 3d 3P state resonantly. The
time delay is zero, and the second pulse has the duration of
80 fs. We focus on the second channel. Two types of results
are compared: one which includes the superposition of the 3So

resonances and one where the Rydberg state 1s2s22p23p 3So,
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FIG. 3. The reduced ionization probability |A1E (t )/σαF1|2 (in a.u.) as a function of energy E (in a.u.) above C 1s22s22p2 3P, for a time
t where the two Gaussian pulses are essentially zero. The pulses g1(t ) and g2(t ) have full widths at half maximum of 100 as and 80 fs,
and intensities I1 = 5 × 1011 W/cm2 and I2 = 5 × 1012 W/cm2, respectively. A1E (t ) corresponds to the first channel 1s22s2p2εp 3So, and the
energy E is in the vicinity of the E2 (1s2s22p23p 3So) resonance, which is strongly coupled to the E3 (1s2s22p2(4P)3d 3P resonance state by
the pulse of frequency ω2 and temporal shape g2(t ). In this case, the frequency of the first pulse is chosen to be ω1 = 10.76 a.u., which excites
resonantly the E2 (1s2s22p23p 3So) inner-hole state. Consequently, the frequency of the second pulse is ω2 = 0.045 a.u. (see Fig. 1). Results
are shown for time delays, tD, between −150 fs and +100 fs. The thick gray curves correspond to the quantity |A1E (t )/σαF1|2 that is calculated
in the absence of the second pulse (I2 = 0 W/cm2).

is excluded, implying, incorrectly, that the pulse is not broad
enough to cover both 3So resonances. In the former case
(thick black line), the theory produces, correctly, three lines, at
energies E1 + ω2, E2 + ω2, and E3. In the latter case (dotted
line), the result of the calculation is incorrect, since the line
E2 + ω2 is absent.

It is expected that the semiquantitative phenomenol-
ogy suggested by these results can be tested in appro-

priate measurements of photoelectron spectra at different
energies.

IV. CONCLUSION

We have solved formally as well as computationally, for the
case of the carbon K-edge excitation, the problem stated in the
Introduction and depicted by the pump-probe scheme A:

|0〉 weak−−−−−−−−→
attosec pulse ω1

(superposition of resonances)
moderately strong←−−−−−−−−−→
f emtosec pulse ω2

(superposition of resonances). (A)

This is a time-dependent many-electron problem, involving
the two-color excitation by spectrally broad ultrafast pulses
of superpositions of resonances in the continuous spectra of
atoms and molecules. In accordance with current research
on the theoretical and experimental study of time-resolved
electron dynamics, the chosen duration of the two pulses

ranges from a few decades of femtoseconds to a few decades
of attoseconds.

The theory is time-dependent, and its solution was
achieved mainly analytically. Its computational implemen-
tation is extremely economic. The numerical demonstration
involved the two-color excitation and coupling by Gaussian
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FIG. 4. The reduced ionization probability |A2E (t )/σαF1|2 (in a.u.) as a function of energy E (in a.u.) above C 1s22s22p2 3P, for a time
t where the two Gaussian pulses are essentially zero. A2E (t ) corresponds to the second channel, 1s22s22pεp 3P, and the energy E is in the
vicinity of the E3 (1s2s22p2(4P)3d 3P) resonance state. Results are shown (solid line curves), for three values of the frequency ω1, (given in
the figure), which bring the excitation just above the E1 (1s2s22p3 3So) resonance state. The dotted line curves correspond the same quantity
by omitting the E2 (1s2s22p23p 3So) resonance state from the calculations, i.e., by incorrectly ignoring the superposition prepared by the
attosecond pulse.

pulses of core-excited autoionizing states of carbon near the
K edge, as displayed in Fig. 1 and explained in Secs. I and III.

It was determined that the results, whose main features
are discussed in Sec. III, have a sensitive dependence on the
values of the autoionization widths and on the central frequen-
cies of the pulses. For a given set of intensity, frequency, and
duration of the second pulse, the system was also studied as
a function of the time delay, tD, in the application of the two
pulses, which is a practical control parameter. The results are
displayed in Figs. 2–4.

The multiresonance formalism has generalized the
discrete-resonance-resonance single-state time-dependent ex-
citation and coupling theory that was published recently [18].
Its implementation herein involved two open channels and
led to explicit formulas for the time-dependent probability
amplitude, AiE (t ), i = 1, 2, of photoionization into each of the
two channels [Eq. (18)].

The basis of our approach is the expansion of the total time-
dependent wave function in terms of the stationary discrete
and resonance states on the real energy axis, so that the field-
free Hamiltonian is diagonal within each angular momentum
subspace. Accordingly, suitable mathematical analysis leads
to the simplicity of Eqs. (17), where the time-dependent
coefficients, CnE (t ), of the eigenstates depend solely on their
values at the complex energies (zn) of the resonances, i.e.,
Cnzn (t ). At the core of the methodology is the derivation of an
analytic expression for the operator which describes the time
evolution of Cnzn (t ); see Eq. (27) and related discussion.

Consequently, the time integrals in Eqs. (28), which pro-
vide the CnE (t ), are also evaluated analytically. This fact

allows their extremely fast evaluation, even on small com-
puters, once the necessary many-electron wave functions and
matrix elements have been calculated. Running a sufficient
number of calculations for different values of the parame-
ters of the two pulses poses no problems in regard to the
required computer power and the time of computation. Once
the relevant N-electron matrix elements have been calculated,
complete calculations for a given set of pulse parameters can
be executed on a few-seconds timescales. Therefore, provided
reliable N-electron wave functions are computable, as is our
case, it becomes possible to acquire a good understanding of
the dynamics of scheme A for each system of interest and for
a wide range of pulse parameters.

APPENDIX A

Written in terms of the coupling parameters �mn, the
system of equations satisfied by the variables Bnzn (t ) =
e−iznCnzn (t ) is

Ḃnzn + izn Bnzn = 1

2
eiϕ1 F1g1(t )e−i(Eg+ω1 )t bnzn

− 1

2
e−iϕ2 eiω2t

N∑
m=N1+1

�nmBmzm , (A1a)

n � N1,

Ḃmzm + izm Bmzm = 1

2
eiϕ2 e−iω2t

N1∑
n=1

�mnBnzn , (A1b)

m > N1.
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This is an inhomogeneous system of linear differential
equations for the amplitudes of the localized components of
the resonances. The exponential factors e±iω2t are removed
from the second terms of (A1a) and (A1b) by the transfor-
mation

Bnzn (t ) = xn(t )e−i(Eg+ω1 )t n � N1, (A2a)

Bmzm (t ) = ieiϕ2 xm(t )e−i(Eg+ω2+ω2 )t . m > N1 (A2b)

The common factors e−i(Eg+ω1 )t can have any value. How-
ever, with this choice the formulas are expressed naturally in
terms of the appropriate energy differences. The new depen-
dent variables satisfy the equations

ẋn = −i(zn − Eg − ω1)xn − i

2

N∑
m=N1+1

�nmxm

+ 1

2
eiϕ1 F1g1(t ) bnzn , (A3a)

ẋm = −i(zm − Eg − ω1 − ω2) xm − i

2

N1∑
n=1

�mnxn. (A3b)

The system (A3) now has the general form ẋ = −iAx + f
where

A =
(

D(1) 1
2�

1
2 �̃ D(2)

)
. (A4)

This is a block matrix where D1 and D2 are diagonal square
matrices of dimensions N1xN1 and N2xN2, respectively, with
matrix elements D(1)

n = zn − Eg − ω1 and D(2)
m = zm − Eg −

ω1 − ω2. The quantity � is an N1 × N2 matrix containing the
coupling parameters defined in Eq. (21) with �̃ its transpose.
The inhomogeneous term has only N1 components.

Following the standard procedure, the solution is found by
putting x(t ) = x0e−iEt . Then, excluding the inhomogeneous
term, the system (A3) becomes a time-independent homoge-
neous system of N equations which is solved as a complex
eigenvalue problem Ax0 = Ex0.

The general solution of the homogenous system is, x(t ) =∑
j c jx

( j)
0 e−iE jt . A complex diagonalization subroutine is re-

quired to produce the complex eigenvalues Ej and eigenvec-
tors x( j)

0 of A. The general solution of the inhomogeneous
system consists of the general solution of the homogeneous
system plus a particular solution of the inhomogeneous one.
The latter is found by the following procedure.

The matrix A is diagonalized by the similarity transfor-
mation T −1AT = Ad , where the matrix T contains in its
columns the eigenvectors, and the diagonal matrix Ad contains
the eigenvalues. Thus, the inhomogeneous system can be
written as ẋ = −iT Ad T −1x + f , and, putting y = T −1x and
h = T −1 f , we obtain the equivalent system ẏ = −iAd y + h.
Since Ad is a diagonal matrix, the equations of the equivalent
system are decoupled and can be solved by standard methods.
The solution has the form

y j = c je
−iE jt + e−iE jt

∫ t

t0

dt ′eiEjt ′
h j (t

′). (A5)

Note that the last N2 components of f are zero, since Eqs.
(A3b) have no inhomogeneous term. Through the definition

of the integral G(E, t0, t ) [Eq. (21)] we may write

y j = c je
−iE jt + 1

2
eiϕ1 F1e−iE jt G(E j, t0, t )

N1∑
k=1

T −1
jk bkzk . (A6)

When multiplied by T , the first term produces the general
solution of the homogeneous system, while the second term
produces a particular solution of the inhomogeneous one.
Therefore,

xn = 1

2
eiϕ1 F1

N∑
j=1

Tn je
−iE jt

(
c( j) + G(E j, t0, t )

N1∑
k=1

T −1
jk bkzk

)
,

(A7)

where we have put c j ≡ 1
2 eiϕ1 F1c( j). The combination of

Eq. (A7) with the relations (A2) produces Eqs. (24).
One can take advantage of the special form of the matrix A

in (A4) to simplify the calculation of the eigenvalues. Because
the first pulse is ultrashort and thus energetically broader, it
may be assumed that N1 > N2. Then the formula

det

[
D(1) − E 1

2�
1
2 �̃ D(2) − E

]

= det

[
(D(2) − E ) − 1

4
�̃(D(1) − E )

−1
�

]
det[(D(1)−E )]

(A8)

produces a simpler determinant. For N2 = 1 (A8) gives

[
(Ej − zN1+1 + Eg + ω1 + ω2) −

N1∑
i=1

1
4�2

iN1+1

Ej − zi + Eg + ω1

]

×
N1∏

k=1

(Ej − zk + Eg + ω1) = 0, (A9)

where j = 1, ..., N1 + 1 and the eigenvalues are determined
from the factor in the square brackets. This is a well-known
form that describes a set of states in the presence of a per-
turber, which, in our case, is the localized part of the second
channel.

For the simple case N1 = N2 = 1, treated in Ref. [18],
Eq. (A9) gives

E1,2 = (z1 − Eg − ω1) + (a ± λ)/2, (A10)

where a = z2 − z1 − ω2 is the complex detuning and λ =√
a2 + �2

11 is the Rabi frequency.
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APPENDIX B

In the case where the envelope function is a Gaussian, i.e., g1(t ) = e
− (t−ta )2

2σ2
a , the integrals G(E , t ) of Eq. (29a) are expressed

in terms of the error function defined as ∫ t

0
dt ′e−c2t ′2 =

√
π

2c
erf (ct ). (B1)

From the basic integral (B1) one easily obtains

G(ε, t0, t ) ≡
∫ t

t0

dt ′e−c2(t ′−ta )2+iεt ′ =
√

π

2c
e− ε2

4c2 +iεta{erf[c(t − ta + tε )] − erf[c(t0 − ta + tε )]}, (B2)

where

tε = −iε/2c2. (B3)

In the above formulas, c = 1
σa

√
2
. Consequently, Retε = σ 2

a Imε, and the real part of the time tε, although expected to be
generally small, can have a significant value in the case of a broad Gaussian.
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