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ABSTRACT In this work, we present a new approach to Extended Reality (XR), denoted as iCOPYWAVES,
which seeks to offer naturally low-latency operation and cost effectiveness, overcoming the critical scalability
issues faced by existing solutions. Specifically, iCOPYWAVES is enabled by emerging PWEs, a recently
proposed technology in wireless communications. Empowered by intelligent metasurfaces, PWEs transform
the wave propagation phenomenon into a software-defined process. To this end, we leverage PWEs to:
i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space
to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR
headset using PWE-driven, RF imaging principles (XR-RF). This makes an XR system whose operation
is bounded in the physical-layer and, hence, has the prospects for minimal end-to-end latency. For the
case of large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119841

https://orcid.org/0000-0003-2810-2781
https://orcid.org/0000-0001-9778-2536
https://orcid.org/0000-0002-7798-1711
https://orcid.org/0000-0003-4345-6246
https://orcid.org/0000-0001-8967-1203
https://orcid.org/0000-0001-7795-8311
https://orcid.org/0000-0001-5523-1621
https://orcid.org/0000-0003-0959-7838
https://orcid.org/0000-0001-8810-0345
https://orcid.org/0000-0003-4652-5470
https://orcid.org/0000-0003-4770-0955
https://orcid.org/0000-0002-8099-3529
https://orcid.org/0000-0001-5072-2851
https://orcid.org/0000-0002-8943-4598
https://orcid.org/0000-0002-0945-2674


C. Liaskos et al.: XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning

provides a tutorial on the iCOPYWAVES system architecture and workflow. Finally, a proof-of-concept
implementation via simulations is provided, demonstrating the reconstruction of challenging objects in
iCOPYWAVES-produced computer graphics.

INDEX TERMS Extended/virtual/augmented reality, software-defined networking, wireless, XR-RF imaging,
machine learning, propagation, generative adversarial networks, applications.

I. INTRODUCTION
Extended Reality (XR) is an emerging concept that includes
spatial computing technologies such as Augmented Real-
ity (AR), Mixed Reality (MR), and Virtual Reality (VR)
[1], [2]. Users with smart glasses, smartphones or
head-mounted displays can observe virtual content that does
not exist in reality. To this end, XR will profoundly change
our lives across many areas, e.g., entertainment, manufac-
turing, sports, and remote healthcare. For example, users
with MR smart glasses, e.g., Microsoft HoloLens, can share
their real-time view with experts and receive step-by-step
remote assistance, which can significantly improve worker
productivity.

A critical parameter in XR applications is motion-to-
photon latency. For example, when a VR gaming user presses
a button on a controller, the VR virtual content has to be
rendered based on this motion. The latency from motion to
display should be lower than 20 ms to avoid motion sick-
ness [3], [4]. Currently, the main contributor to latency in
XR systems is the need for frequent and successive cross-
ings of all the Open Systems Interconnection (OSI) model
layers [3], [4]. The information from a multitude of sensors
(cameras, lidars, sensors, actuators, microphones) needs to
be gathered in highly-confined timeslots to a local server
near a user. This information necessarily traverses a network,
is queued, and processed in very tight time windows, necessi-
tating high throughput wireless and wired networking infras-
tructure supporting state-of-the-art time-sensitive protocols,
and high throughput computing at the server side, commonly
utilizing multiple, expensive CPUs and GPUs. Depending
on the XR targeted scale, the infrastructure requirements are
such that only large companies with datacenter infrastructure
near the end user can uphold them. Even at such cases,
and apart from the commitment of technological resources
(capital expenses), the operational expenses, such as the asso-
ciated energy footprint, can be exorbitant [3], [4]. Therefore,
XR is in urgent need of innovative solutions which provide
low-latency operation and cost-effectiveness.

The present work seeks to explore this path and meet the
stringent performance requirements based on two technolog-
ical pillars, namely Radio Frequency (RF) imaging and Pro-
grammable Wireless Environments (PWEs). RF imaging is a
direction stemming from physics, where RF waves are used
for detecting the location and shape of an object, as opposed
to visible light imaging [5], [6], [7], [8]. Commonly, a single-
frequency RF wave source emits waves upon a 3D scene
(much like the sunlight illuminates the objects around us), and
the scattered waves are collected by an array of receivers.

The captured wavefront is then mapped to the visual repre-
sentation of the object through analytical insights or machine
learning approaches. The second pillar of our proposal are
PWEs, which constitute a recent direction in wireless com-
munications [9], [10], which is already expected to be mas-
sively deployed in multiple environments within 6G [11].
PWEs transform the wireless propagation phenomenon into
a software-defined resource. PWEs are created by coating all
major surfaces in a space, such as walls and ceilings in a
floorplan, with programmable metasurfaces, also known as
software-defined metasurfaces (SDMs). In the broad sense,
metasurfaces are thin arrays of electromagnetically small ele-
ments, the so-called meta-atoms, that are made tunable most
commonly by incorporating tunable impedance elements in
general [12], [13]. PIN diodes [14], [15], [16], [17], [18], [19],
[20], [21] (common), MicroElectroMechanical Switches [22]
and ASICs (more exotic) [23], [23] (and others [24], [25],
[26], [27], [28], [29], [30]) are some popular circuit com-
ponents employed to provide tunable impedance and even
more advanced capabilities. Metasurfaces are essentially
engineered surfaces that have customized and user-variable
interaction with impinging electromagnetic (EM) waves.
Anomalous steering, absorption, polarization control are
exemplary manipulations performed by a metasurface to
impinging waves. Metasurfaces are created with an abundant
array of alternative cost-effective processes ranging, e.g.,
from standard printed circuit boards (3D), to 3D printing
and computerized numerical control (CNC) milling [31],
[32], [33]. Moreover, PWEs abstract the underlying com-
plex physics and allow the tuning of a massive set of
metasurfaces, inspired by the Software-Defined Networking
(SDN) paradigm to achieve operational logic-physics separa-
tion [34], [35].

Based on these available components, the present study
contributes a new XR approach called iCOPYWAVES (intel-
ligent copying of RF wavefronts/wavevolumes), which sim-
plifies the XR architecture as shown in Fig. 1. Through
a physical layer-bounded operation, iCOPYWAVES favors
cost-effectiveness, and ideally allows for nearly-speed-of-
light end-to-end operation, favoring scalability through nat-
urally low-latency operation. The core-idea is to use PWEs
to intelligently copy an RF wavefront, or an RF wavevolume,
from one location to another within a space.The RFwavevol-
ume replication, i.e., copying a 3D EMfield to the location of
an RF imaging device, engulfing it within the replicated field,
is of particular interest. This would allow the RF imaging
device (envisioned to be embedded in a user’s XR headset
in the future), to operate without the need for gyroscopes
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FIGURE 1. High-level comparison between the existing full-stack
solutions for XR (top) and the proposed iCOPYWAVES approach (bottom),
whose operation remains bounded within the physical layer.

and location tracking sensors. In more detail, as the user,
e.g., rotates his/her head, an RF imaging device embedded
on his/her headset continuously reads the corresponding part
of the wavevolume, yielding the proper view of the 3D object,
even completely without assistance from sensory devices or
external computing elements: Machine learning-empowered
RF imaging reconstructs the 3D object using the copiedwave-
front as input, and inserts it into an XR application setting in
the proper format.

In summary, this work presents a tutorial on the architec-
ture and workflow of iCOPYWAVES which is well-aligned
with the forthcoming 6G infrastructure. Furthermore, the
paper identifies and discusses challenges involved in the end-
to-end system implementation, covering all aspects, from the
advanced manipulation of EM waves provided by metasur-
faces to the PWE control algorithms necessary for wavefront
copying, efficient RF imaging reconstruction and insertion
onto an XR setting. Moreover, the proposed system advances
the concept of RF imaging to producing precise computer
graphics for XR, i.e., XR-RF, as opposed to the coarse imag-
ing capabilities of RF imaging in the traditional use of the
term [36], [37], [38], [39], [40], [41]. Promising results in this
sense are also provided via a simulation-driven implemen-
tation of the iCOPYWAVES system, which includes precise
simulation of the wireless propagation aspect and a machine
learning component trained to produce computer graphics in
a challenging setup.

The remainder of this paper is organized as follows.
Section II surveys the background work on XR sys-
tems, RF Imaging and PWEs. Section III presents the
iCOPYWAVES system architecture. Evaluation via simula-
tions follows in Section IV. Research challenges are high-
lighted in SectionV, and the paper is concluded in SectionVI.

II. STATE-OF-THE-ART AND LIMITATIONS
The great barrier that stands between current technology and
remote XR presence is the extremely stringent motion-to-
photon latency, which should not exceed 20 msec in order to
avoid motion sickness and enable lifelike experiences [42],
[43]. Specifically, the motion-to-photon latency includes any
delay incurred by motion capture, encoding, communication,
sensor fusion, processing, actuator control, rendering and
decoding of each frame. In more detail, the different tasks
that lie on the critical path of the motion-to-photon latency,
and their associated timings include [44], [45]:

• Sensor sampling and synchronization: 1-5 msec (high-
end tracking).

• Scene rendering: 4-16 msec (for 60 Hz display).
• Display scanning: 2-16 msec (60 Hz, depending on the
employed technology).

• Photon emission: 1-2 msec (depends on employed
technology).

These factors on their own can already violate the 20 msec
total time frame. It should be mentioned, that the latency
of the network that interconnects multiple users is not con-
sidered in the aforementioned factors, and can introduce
additional latency in the range of 1 − 20 msec on its own.
Furthermore, it needs to be highlighted that a part of this
latency is unavoidable, as it stems from the finite speed of
EM wave propagation. (Thus, notice that this range can be
even overly optimistic for world-wide communication).

Other processes that already take considerable time are
AR processes such as object identification, registration,
or retrieval of data [1]; and VR tasks such as the sheer
processing throughput required by the video stream. On top
of them, the display scanning and photon launching also
contribute to the delay increase. Even by considering high-
end hardware and processing techniques, these tasks will take
5 to 8 msec. All in all, this leaves about 12 to 15 msec for
the transmission, processing, and reception of information,
which are the key enabling functionalities of remote XR
presence.

Finally, a significant barrier that completely prevents the
development of practical real-time remoteXR presence appli-
cations are the OSI layer crossing and network latency. This
constitutes an important shortcoming and reduces the XR
potential. Consequently, XR is currently a largely individual
experience, and at best allows the participation of multiple
locally connected users. Thus, bringingXR to the next level to
enable lifelike interactive and human-centric remote presence
will require significant scientific and technological advances.

In sharp contrast to existing approaches, iCOPYWAVES
is a new approach to the XR concept. In more detail, with
the combination of RF imaging and PWEs, the proposed
system requires no visual or gyroscopic sensory equipment,
especially in the wavevolume replication case. This means
that data serialization and communication via networking is
required only in the remote site case, and can be avoided even
within, e.g., a large building or a mall. Moreover, even in the
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networking case, the information that needs to be serialized
is simple waveforms that do not need to be understood or
logically processed. Instead, these wavefronts can be sampled
and send over the wire directly, or even undergo a physical-
to-physical signal conversion with µsec latency, such as
wireless-to-optical and optical-to-wireless.

Here we also make note of existing network standards
that also offer minimal latency. Third Generation Partner-
ship Project (3GPP) coined the term ultra-reliable low-
latency communications (URLLC) [46], which defines a
target latency of 1 msec at a packet loss ratio of 10−5 for
32-byte packets on the wireless radio access network (RAN)
segment [47]. Another enabler is deterministic networking
(DetNet) [48], coined by Internet Engineering Task Force
(IETF), guaranteeing specific latency and jitter bounds for
packets routed through the core network segment.

A. PROGRAMMABLE WIRELESS ENVIRONMENTS WITH
SOFTWARE-DEFINED METASURFACES
PWEs are end-to-end systems able to control a wide array of
metasurface types [49], [50], [51], [52], [53], [54], in order
to apply deterministic control over the wireless propaga-
tion process [9]. Specifically, a PWE is created by coat-
ing planar objects–such as walls and ceilings in an indoor
environment–with rectangular and individually addressable
metasurface panels with inter-networking capabilities [35],
[55]. The latter allows a central server to connect to any
metasurface unit, read its state and deploy a new EM function
in real-time and in a standards-compliant manner. There-
fore, PWEs seek to provide a full protocol stack, clarify-
ing the physical, network, control, and application layers
of the complete system [55]. Moreover, PWEs leverage an
SDN-inspired separation of concerns and [55]:

1) model the metasurface wave manipulation types
(e.g., steer, split, absorb, etc.) as software functions
invokable via an application programming interface.
This makes the metasurface capabilities accessible to
software developers at large, without requirements for
in-depth knowledge of the underlying physics.

2) Maintain an abstracted, graph-based view of the system
state, transforming the PWE configuration optimiza-
tion problem (i.e., how to tune each SDM to serve a
set of wireless devices), into a classic resource slicing
problem.

In addition, PWEs define the system workflow, from the
discovery of a PWE by a user device, to the statement of
objectives and to its service, in a generalized multi-tile, multi-
use setting [56]. Therefore, PWEs as a generic control system
goes beyond wireless communications, exerting determinis-
tic control over mechanical, acoustic and thermal propaga-
tion [35], [57]. Within the EM domain the PWE focus is to
craft EM vector field distributions, and not only reductions,
such as scalar power levels. To this end, PWEs treat metasur-
faces in their most generic way of operation, i.e., converters of
surface current distributions. To be more specific, impinging

waves create a surface distribution “A” upon an SDM, and
embedded control elements convert it to a state “B” that yields
the required EM field as a global response. Finally, PWEs
are created by massive deployments of SDMs in a space,
covering all major surfaces within it in a tiled sense, e.g.,
the ceiling and all the walls in an indoors setting. The overall
operation is typically in the near-field, in the sense that PWE
SDMs are not modeled as concentrated at a single point in
space [56].

Smart radio environments (SREs) constitute a concept that
focuses on the signal processing aspects of wireless com-
munications, and especially in conjunction with AI tech-
niques [58]. The channel control type is stochastic and
the enabling technology are phase shifter grids, which are
commonly denoted as reflectarrays or reconfigurable intel-
ligent surfaces (LIS, IRS or RIS) [10], [59]. SREs typically
assume sparsely deployed RISs within a space, and in the
far field in general. Based on these premises, the goal is
to iteratively optimize the phase shifter states (free vari-
ables) in order to maximize a scalar quantity representing
a wireless communication objective (fitness function) [59].
Additionally, given the theoretical signal processing focus
of smart radio environments, the required protocols, system
workflows and integration-to-infrastructure processes are
commonly left undefined in the literature, i.e., inherently
assuming that an underlying PWE or related system stack
or similar is in place. In a layered sense, PWE is a top-to-
bottom systemic approach, while the smart radio environment
is a layer-specific study (channel modeling with RIS and
applications).

PWEs and SREs are recent directions in long-standing
but disparate research efforts towards controlling the wire-
less propagation environment, as opposed to the device end-
points [60], [61], [62], [63]. Approaches have explored the
placement of passive reflectors to increase coverage in a
space [62], to employing reflectarrays as active alterna-
tives [60], [61], [63]. The SRE direction consolidated the
latter approach, and established the term RIS to denote
half-wavelength reflectarrays that are employed for com-
munication purposes [64]. PWEs constituted a distinct
approach towards deterministic propagation control, and
a departure from the stochastic principles of preceding
efforts. As such, the uses of PWE go beyond communi-
cations and electromagnetism, exemplary enabling deploy-
ments within high-precision imaging devices in order to
either increase their efficiency, or counter-balance manufac-
turing imperfections [57].

As such, PWEs and SREs have conceptual similari-
ties, but also vast differences regarding the capabilities
and intended uses of each technology. (Moreover, the ter-
minology about SDMs/PWEs and RIS/SREs is still in
convergence, which can give rise to inaccurate classifi-
cations in the literature). In this paper, we clarify that
iCOPYWAVES requires deterministic control over the EM
propagation, as well as a full-stack implementation in order to
operate:
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Specifically within the EM propagation control field, both
SREs and PWEs have been successful in mitigating path loss,
fading and Doppler effects at large [10], [12], [50], [58],
[65], [66], albeit at different settings, overall costs and vary-
ing degrees of efficiency. Moreover, the existing works treat
device-to-device communications only, which corresponds to
a point-to-point wave replication. In contrast, iCOPYWAVES
studies the complete wavefront and wavevolume replication,
i.e., in 2D and 3D respectively, and its applications to XR
imaging.

Therefore, the remainder of this paper employs the terms
PWE and SDMs.

B. FROM RF IMAGING TO XR-RF IMAGING
RF imaging is the general process of detecting attributes of
hidden, embedded or remote objects using RF waves (i.e.,
roughly within 300 MHz and 300 GHz). RF Imaging can
either strive for precision, attempting to detect geometrical
parameters such as shape, size and location of an object,
or for quantitative parameters, such as coarse composition
existence of features (such as cracks in a concrete slab),
etc. Synthetic aperture radars and ground-penetrating radars
constitute some well-known RF imaging approaches [5].

By leveraging metasurfaces, three-dimensional RF imag-
ing beyond the diffraction limit was made possible, with low-
profile apertures, without the need of lenses, moving parts
or phase shifters, reducing the cost, size, complexity and
power demands of conventional imaging technology [67],
[68], [69]. Tunable millimeter metasurfaces have been so far
implemented to produce spatially diverse patterns in the vast
microwave and low THz spectrum [70], [71], [72], [73].
Approaches have striven for task-specific and low latency RF
Imaging, i.e., employing metasurfaces to illuminate scenes in
a targeted effort to look for particular objects from a given set
of possible templates [36], [37], [38]. The low-latency aspect
has been studied without taking into account the presence of
a protocol stack, such as PWE, which is necessary to provide
standards-compliant interconnectivity. Task-specificity in RF
illumination can also be considered as the next step from
random illumination [40], [41]. The common denominator
of these state of the art approaches in RF-Imaging is the
coarse quality of the end-outcome. Crisp graphics required
for XR is not a possibility due to the inherent limitation of
the employed technological assumptions, essentially when
employed in conjunction with RIS/SREs for the reasons
detailed in Section II-A.

Moreover, it is a well-known fact that the resolution of
RF imaging in its simplest form, i.e., i) employing a sin-
gle RF source, ii) based on the amplitude of the received
signals only, and iii) using analytical formulas to perform
the image reconstruction, is defined by the employed wave-
length. Under such conditions, high-resolution RF imaging
would require high RF frequencies, e.g., at least 30 GHz.
Interferometric synthetic-aperture radar approaches can mit-
igate this limitation by employing phase and amplitude RF
processing techniques, operating within the 5 → 15 GHz

range [74]. For instance, it has been shown that the achievable
resolution in a reverberant environment as opposed to free
space is orders of magnitude better because the reverberation
provides a generalized interferometric sensitivity. This point
was also proved via experiments with a RIS/SRE targeted at
localization [75].

In differentiation, the PWEs employed in the
iCOPYWAVES are also used for accurately manipulating
the RF wavefront scattered by a 3D object (i.e., apart from
its replication), and essentially act as spatially distributed
synthetic-aperture radar system. In other words, via PWEs
the received wavefronts are optimized for imaging, while
unwanted effects (such as sidelobes) are canceled out or
driven away from the RF receiver. Moreover, the wavefront
replication approach means that a high-quality RF receiving
device can be potentially shared for XR imaging tasks.
Regarding the relation of iCOPYWAVES to task-specific
illumination, the proposed XR approach is intended to be
generic and objective towards the visualized scene, and not
task-specific, which could potentially lead to biased XR
visualization. However, task specificity can be attained by
programming the PWE accordingly (e.g., copying targeted
aspects of a wavefront), or by using machine learning mod-
ules specifically trained for the task in mind. Moreover, the
paper shows that machine learning approaches can learn to
perform a wavefront processing that is more complex than
analytical formulas, which are inherently limited by human
or physical intuition. As a result, the evaluation example
included in the present study operated efficiently at just
5 GHz.

Therefore, the proposed approach can promote a new
direction for precise computer graphics produced by RF
imaging, that can be used in XR systems, as opposed to the
existing coarse RF imaging solutions.We denote this research
goal as XR-RF imaging and employ it in the remainder of the
paper. (In addition, it is noted that the present study bears no
similarity to the field of holographic RIS/SRE [76], which
refers to metasurfaces targeting precise electromagnetic con-
trol in their near field, and is irrelevant to XR, despite the
similarity in their naming).

III. THE iCOPYWAVES APPROACH TO XR
iCOPYWAVES seeks to provide the necessary infrastructure
for: i) creating RF wavefront representations of 3D objects,
and ii) manipulating these RF wavefronts with the ease
of a “copy-paste”functionality, thereby virtually transferring
an RF representation of the original objects (their external
structure and, perhaps, their internal composition as well) to
remote locations.

We firstly describe the overall workflow of the
iCOPYWAVES system in its operation phase, assuming the
setup shown in Fig. 2. The setup uses a PWE comprising of
a set of SDMs, connected to an SDN controller for orches-
trating them towards achieving a software-defined electro-
magnetic wave propagation. We note that the SDM and the
SDN controller are considered to be parts of existing 5G/6G
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FIGURE 2. The iCOPYWAVES end-to-end system workflow, overviewing the steps from the creation of an RF scattered wavefront from a
remote object, to its visual representation at the user’s headset.

communications infrastructure. iCOPYWAVES simply adds
another use of the same infrastructure for XR.

We proceed to describe the general end-to-end workflow
of iCOPYWAVES. A new user enters the system, and asso-
ciates himself with the existing PWE. (The reader is redi-
rected to related studies for details on the user registration
to the PWE, and the PWE deployment and initializa-
tion [55]). The new user is equipped with an iCOPYWAVES-
compatible headset, which incorporates a MIMO antenna
array, and an FPGA (Field-Programmable Gate Array) host-
ing a pre-trained machine learning component.
Remark 1: In the scope of the present paper, Generative

Adversarial Networks (GAN) are being used exclusively, but
without loss in generality.
The GAN is trained to translate wavefronts impinging upon
the MIMO antenna array into a visual XR outcome, such
as a 3D cloud point, or Left/Right eye video streams
(cf. Section III-A).
Remark 2: The actual video format produced by the GAN

can be adapted freely, to facilitate its direct integration to the
underlying rendering workflow. For instance, setting the out-
put format to be a cloudpoint ensures the 3D coherence of the
reconstructed object. The choice of left/right video streams
can be simpler to integrate in the XR experience, but may

require extra processing to ensure coherence. In such cases,
the extra processing power is also assumed to be offloaded to
the FPGA.

In the meantime, a remote object receives impinging waves
emitted by an RF source. In the setup shown in Fig. 2, the
source is a cheap, single-frequency signal generator con-
nected to a horn antenna. The waves scatter upon the remote
3D object, and arrive at SDM units around it. Then, it is
the task of the PWE to copy the scattered wavefront around
the vicinity of the XR user’s headset, essentially engulf-
ing the headset within the replicated wavefront.
Remark 3: The headset operates in a closed local loop,

continuously translating the received RF wavefronts into
visual outcomes, and without further communication with
the SDN server. An additional benefit is that the user’s head
rotations are automatically translated to the corresponding
changes in the visual outcome.

The exact way of how the iCOPYWAVES operates to serve
the user XR objectives may be adapted to the availability of
a new user coarse localization system:
If a user localization system does not exist: The SDN

controller sets up viewpoints where remote users are repli-
cated. The new user must then walk and get closer to the
replicated wavefront, which is much like what he/she would
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FIGURE 3. Overview of the envisioned iCOPYWAVES GAN training phase (which occurs offline), showcasing the successful translation of RF readings
into visual representations of the corresponding 3D objects.

do for a real object. No information on the user’s location or
mobility is required. The PWE configuration is viewed as a
large optimization problem [59], [77], [78], [79], [80], and
ensures that the multi-user viewpoints do not interfere. This
can be accomplished with the wavefront routing logic shown
in Fig. 2. In other words, the SDN controller solves the PWE
configuration problem by finding air-routes that are disjoint
from one another.
If a user localization system exists, then the SDN controller

also knows the approximate location of the user device. This
enables the controller to perform a versatile and fast rerout-
ing of the EM wavefronts/wavevolumes [9], [56], [81], [82],
thus following the user’s mobility pattern. This can allow
for more immersive XR experiences, where, e.g., a remote
avatar follows the user around, much like a tag-along char-
acter in a video-game. Notice that knowledge of the user’s
position does not include the orientation of his/her head, but
rather only his/her position on the floorplan in a relatively
coarse X-Y basis, as shown in Fig. 2. The new user remains
immersed in the replicated RF wavevolume. Thus, his/her
head movements and minor X-Y dislocations are automati-
cally translated to corresponding wavefront readings, allow-
ing the machine learning module to produce the updated
object view automatically.

Note that:
• Fig. 2 illustrates an indoors operation. However, this
is not at all restrictive. Remote operation across
any distance is discussed later in two variations, in
Section III-C, including the transfer of other signal
types, such as audio and haptic.

• RF waves do not carry coloring information. (They
carry, however, material composition information which

opens interesting new applications discussed later,
in Section III-C). Smart coloring can be offloaded to
the GAN (i.e., by training the GNA to artificially color
objects, as demonstrated in Section IV), or be based on
extra rendering steps, employing a single color photo of
the 3D object. In both cases, the computational overhead
is assumed to be offloaded to the FPGA.

We proceed to detail the various operation phases of the
iCOPYWAVES system.

A. THE iCOPYWAVES GAN TRAINING PHASE
We consider the setup of Fig. 3, which consists of a test 3D
object, a positioner (i.e., a device that can programmatically
rotate an object in spherical coordinates), a set of standard
visible light cameras, an RF wavefront receiver, a single
frequency RF emitter, and a set of SDM units. All devices
are connected to a central SDN controller and they are–
optionally–located in a controlled electromagnetic environ-
ment, i.e., an anechoic chamber that mimics operation in free
space [82].

The RF emitter acts as the ‘‘RF light’’ that illuminates
the 3D object with EM waves. The 3D object scatters the
waves, which are collected by the RF wavefront receiver.
The SDM units assist by focusing more scattered waves on
the RF wavefront receiver. The SDN controller collects the
RF wavefront reading, as well as regular, visible light photos
of the 3D object from a set of cameras. The process repeats
as follows:
• The positioner rotates the 3D object to a random
rotation.

• A data structure of 〈RF reading, {photos}〉 is obtained
and is added to a data set.
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The process repeats until a sufficiently large number of data
set entries has been obtained, in order to train a GAN to
produce the photos from a given RF reading [83], [84]. The
photos can then be used to reconstruct the 3D object into an
XR setting.
Remark 4: The anechoic chamber shown in Fig. 3 and

onward is applicable to the GAN training phase, where
accurate EM propagation control via the PWE is desirable.
In real conditions, the GAN should be trained with artificial
noise and interference patterns in a controlled environment
first, before final deployment. We note that this is a mea-
sure of reducing the “free variables” at this stage of the
iCOPYWAVES presentation. However, this does not preclude
future GAN approaches that will be able to get trained in a
drop-in fashion in real and uncontrollable conditions.

B. THE iCOPYWAVES OPERATION PHASE I: COPYING
WAVEFRONTS/WAVEVOLUMES INDOORS
The first operation phase that we study, focuses on indoors
settings, considering the setup of Fig. 4. (We assume that
the outcomes of the training phase have been produced,
and a trained GAN exists, which is able to reproduce a
visual presentation of the 3D object from a corresponding RF
wavefront).

The studied phase intends to provide the facilities for copy-
ing a wavevolume from one location to another on in prox-
imity, without the need for over-the-wire data transmission.
Therefore, the scenario of this phase intends to demonstrate
a case where a virtual 3D object needs to be projected in
relatively close vicinity to the original object, e.g., within a
building.

In the studied phase we consider a space separated into two
compartments, namely ‘‘room 1’’ and ‘‘room 2’’, using SDM
placed on the walls. The test 3D object in located in room 1,
and is illuminated by the ‘‘RF light’’. The PWE is then
configured to replicate the scattered wavevolume from room
1 to room 2, where a receiving system exists. The receiving
system consists of an RFwavefront reader collocated with the
trained GAN, and an XR headset.

We note the following additional research tasks pertaining
to the studied phase:

1) The trained GAN outputs are assumed to be
pre-processed as needed for feed into the XR system.

2) The trained GAN/XR preprocessing system will be
ported to an FPGA in order to minimize the overall
processing time.

3) The SDM units comprising the PWE will be connected
to an SDN controller. The choice of the corresponding
networking architecture, physical means, protocols and
topology may be optimized for low-latency and low-
cost. However, this assumed infrastructure can be part
of the existing 5G/6G communications infrastructure,
and not be deployed for the iCOPYWAVES system.

4) The PWE control is exerted by a protocol stack
implemented within an open SDN controller, thereby

offering compatibility with the existing SDN ecosys-
tem. The stack comprises [35]:

a) A northbound API that models the macroscopic
behavior of the SDM units in the form of a
library of callbacks. Examples include the def-
inition of STEER(), SPLIT(), ABSORB(),
PHASE_ALTER() function etc., to describe the
interaction of an intelligent surface with an
impinging EM wave. It is noted that each SDM
comes with a configuration codebook, supplied
during its quality check right after manufacturing.
This codebook matches each possible callback to
the corresponding configuration, i.e., the collec-
tive states of the SDMembedded control elements
(e.g., PIN diodes).

b) A middleware in the form of a channel engineer-
ing model capturing the XR-RF imaging case.
Notably, macrscopic PWE callbacks come with
unintended microscopic side-effects. This can
include unintended sidelobes during EM wave
steering, as well as fading phenomena arising
from SDM location imprecision and imperfect
control over the EM waves in general. The mid-
dleware provides a channel engineering model
which will receive as inputs a set of activated
northbound API callbacks, and will return as out-
put the resulting, precise channel behavior.

c) A southbound API that provides connectivity
compatibility between the SDN controller and the
PWE control network.

d) A PWE abstraction layer, implemented on top
of the northbound API, that provides a macro-
scopic model of the complete PWE system in
the form of a graph. The objective is to provide
a framework for decomposing high-level wave-
copy commands into smaller, tractable problems,
such as finding sets of paths within a graph
that comply with a given set of criteria. Thus,
a wavefront/wavevolume copy command will be
treated as a set of point-to-point EMwave routing
decisions.

Moreover, we stress that the XR workflow remains bounded
within the physical layer, from the creating of a wavefront
scattered from a 3D object, to its FPGA-driven translation to
visual information.

C. THE iCOPYWAVES OPERATION PHASE II: COPYING
WAVEFRONTS/WAVEVOLUMES REMOTELY
OVER THE WIRE
We proceed to describe the remote operation of
iCOPYWAVES in Figures 5 and 6. This phase extends the
previous case with operation ‘‘over-the-wire’’, in order to
serve any remote location(s). As shown in Figures 5 and 6,
we consider two separate locations, each with its own PWE
controller. Location 1 contains the actual 3D object to be
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FIGURE 4. Overview of one envisioned iCOPYWAVES operational phase, showcasing the copying of a wavefront carrying XR visualization in an
indoors environment. While the left visualization illustrates the controlled environment of an anechoic chamber, the phase is intended to operate
as-is in regular environments.

remotely projected at another location (2) containing the XR
receiving system.

Interconnectivity is accomplished by taking advantage of
the same SDN controller employed in phase I. Essentially,
interconnecting the two controllers over the Internet estab-
lishes a pathway for altering the PWE of, e.g., location
2 based on input from location 1. Nonetheless, given that
there is no actual means for direct wave propagation between
the two locations, we require a means on converting the
wavevolume of location 1 into a format that can be transferred
over the wire interconnecting the two locations.

To this end, we consider two approaches for phase II:
Approach #1, shown in Fig. 5, remains cost-effective

whilemaintaining the low-latency operation prospects.More-
over, it focuses explicitly of wavefront replication by using
two extra antenna arrays. The first antenna array is placed
anywhere in location 1. The PWE of location 1 is tasked with
focusing the scattered waves from the 3D object over this
antenna array. The second antenna array is placed anywhere
within location 2, and it acts as a wavefront transmitter. The
PWE in location 2 is tasked with replicating the wave emis-
sion from this transmitting antenna array to the vicinity of the
user. Notice that, as shown in Fig. 2, the copied wavefront
can act as a viewport. It can remain anchored to a specific
place, and any user standing in front of it can see the remote
object.

The wavefront read from the antenna array of location 1
can then be sampled, serialized and send to the transmitting
antenna array of location 2. This can occur over the Internet,
subject to the (uncontrollable) latency that this alternative
entails. Another alternative is to employ direct RF-to-optical /
optical-to-RF converters, as allowed by the available infras-
tructure [85]. In this approach, every element of the receiving
antenna array is mapped directly to a optical light variations
over a dedicated wavelength and travels at the speed of light

along a fiber. The conversion itself is of direct, physical-to-
physical nature, and has trivial latency.
Remark 5: We note that this approach–as a general

concept–is employable across all phases to transfer sound
(and haptic per case) signals. Such signals can be generated
as wireless analog waveforms (e.g., FM in case of sound),
and undergo a similar wireless-to-optical/optical-to-wireless
workflow.

Approach #2 follows a different, more exploratory,
research-natured premise. It does not require the extra
antenna array pair of approach 1, but introduces SDMs with
impinging wavefront sensing capabilities at location 1. More-
over, it targets the remote wavevolume replication, albeit with
a latency trade-off. In overview, for the second approach:

• Location 1 is coated with intelligent surfaces that can
sense the impingingwavefronts upon them. (The coating
can be partial, and this decision is subject to research
considerations).

• The impinging wavefront over each surface, along with
the corresponding active callback, is sent directly to the
SDN controller at location 2. Either SDN controller 1 or
2 can use this information to deduce the wavefront that
departs from each intelligent surface at location 1.

• The SDN controller then calculates the SDM call-
backs for each surface at location 2 that create the
same departing wavefronts as in location 1. (If the two
rooms/locations are not identical, the creation can refer
to an appropriate distance away from each surface, rather
than over the surface itself).

The SDN controller calculations will be sped up via FPGAs
to minimize the overall latency.

iCOPYWAVES ideally replaces the commonXRworkflow
consisting of the discrete steps, i.e., 3D scanning→ sensory
data gathering → system synchronization → rendering →
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FIGURE 5. Overview of the first approach for remote operation. This scenario requires a receiving antenna array in location 1, and a transmitting antenna
array in the remote location 2. The goal is to transfer the wavefront impinging over the receiving antenna array in location 1 over direct fiber
(wireless-to-optical happens at the physical layer with practically zero latency). In lack of fiber availability, the Internet can be used as a common
alternative. Within location 2, the PWE handles the wavefront replication from the Tx to the Rx (collocated with the user’s XR headset). This approach
requires regular SDMs, without wavefront sensing capabilities. Additionally, we note that this approach is also the default way for carrying all
complementary information, such us sound and any sensor (e.g. haptic) feedback.

projection, with physical layer-bounded operation operating
as

RF Imaging&EMwave guiding (speed of light)

→ [FPGA-drivenGAN(µsec)]→ projection

Note that the wide time margin expected to be gained by the
iCOPYWAVES approach enables hybrid approaches as well,
where:
• Virtually any rendering process can precede projection.
This is particularly important, given that RF signals can-
not see colors. Therefore, the proposed system provides
the 3D geometry of the object, while the XR application
rendering can proceed to perform smart texturing and
coloring (e.g., from a simple photo taken by a local
camera once per few seconds, in a hybrid approach).
Moreover, as shown in Fig. 7, the GAN can also learn to
color 3D scenes quite effectively and in tandem with the
XR-RF imaging process, providing a good range of (even
complementary) options, without any camera involved
during operation.

• The internal material composition of the 3D object can
also be visualized in real-time, since RF signals can
penetrate objects. This is a unique capability of the pro-
posed approach, especially useful to medical imaging
and industrial material telemetry XR applications [4],
[86], compared to existing XR systems.

Finally, remote sites can be flexibly interconnected with over
the Internet with some simple, direct sampling-serialization-
deserialization of the EM waves. The same approach is

employed for carrying complementary data, such as sound
and haptic data collected by sensors, cost-effectively and at
near-light speed.

Regarding security, we note that the system outlined
in Fig. 2 offers capabilities for robust user access control
and privacy. Firstly, the outline user authorization process,
performed via the SDN controller, ensures the regular degree
of security that contemporary information systems can offer.
Secondly, the PWE control offers exquisite control over the
route taken by the replicated wavefronts (cf. Fig. 2), ensuring
that they avoid unauthorized users in real-time [9]. Finally,
PWEs have the capability to locally scramble and then
descramble a traveling wavefront around a user [87]. This
capability can also be used as follows. As shown in Fig. 7 a
receivedwavefront can be viewed as a coloredmap (using any
arbitrary representation process). Therefore, upon a new user
entering the system, i) the PWE can be instructed to scramble
his received wavefront(s), while ii) the user receives upon
entering the system unique descrambling instructions than
can restore the intended wavefront color map to its intended
form prior to the GAN processing. In contrast, unauthorized
users will receive the same wavefront as ‘‘white noise’’.

IV. PROOF-OF-CONCEPT EVALUATION
A proof-of-concept scenario, validating the PWE-enabled
XR operation, is simulated in realistic RF ray-tracing soft-
ware [88], and as shown in Fig. 7.

Here, we assume an XR-RF imaging process in a simple
room, where the 3D object is a set of randomly rotated
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FIGURE 6. Overview of the second approach for remote operation. (Top) Showcasing the copying of a wavefront carrying XR visualization in an indoors
environment. This approach does not require extra antenna arrays, while it is able to replicate wavevolumes as well as wavefronts. (Bottom) Workflow for
the “over-the-wire”reproduction of the intended wavefront/wavevolume. This approach requires advanced SDMs, with wavefront sensing capabilities.

rectangular reflectors placed on a wall. Three RF transmitters
(yellow horn antennas) emit 5GHz waves upon the 3D object
which scatter around it, and an antenna array with 100 ele-
ments gets a corresponding reading. Two standard cameras–
(L)eft and (R)ight–take visual snapshots of the 3D object.
The process is repeated 1000 times, each time rotating the
3D object randomly, thus, creating a dataset for training a
GAN [83], which then translates an RF reading to a visual
outcome. Once the training is complete, a second room is
added to the layout with all walls covered with metasurfaces
(top right). A PWE with two adjacent rooms attempts to
copy the wavefront scattered from a random 3D object (arbi-
trarily rotated rectangular metallic reflectors) from ROOM
1 to ROOM 2. A pre-trained Generative Adversarial Network
(GAN) recreates the image of the 3D object. The original
wavefront is copied from room 1 to another place in room 2,

using a PWE optimization engine [56], and the trained GAN
recreates the visual snapshot. We compare the real and
reconstructed images via image comparison techniques, and
particularly via the Peak SNR (PSNR) and the Structured
Similarity Indexing (SSIM) methods [89]. Boxplots of the
attained values are given in Fig. 8 per method. Moreover,
indicative graphics corresponding to the ranged of quantized
comparison outcomes are given in Fig. 9 and 10.

The outcome of this case study already implies that
the XR system can efficient provide copying wave-
fronts/wavevolumes. In particular we observe that:
• The simulated system yields an output close to the
ideal one, while also performing artificial coloring of
the generated image, also in good agreement with the
expectation. Notice that a similar GAN has been used
successfully in a medical setting, for translating positron
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FIGURE 7. Validation setup: an XR-RF imaging process in a simple room (top left), where the 3D object is a set of randomly rotated rectangular reflectors
placed on a wall. Three RF transmitters (yellow horn antennas) emit 5 GHz waves upon the 3D object which scatter around it, and an antenna array with
100 elements gets a corresponding reading. Two standard cameras–(L)eft and (R)ight–take visual snapshots of the 3D object. The process is repeated
1000 times, each time rotating the 3D object randomly, thus, creating a dataset for training a GAN [83], which then translates an RF reading to a visual
outcome. Once the training is complete, a second room is added to the layout with all walls covered with metasurfaces (top right). The original wavefront
is copied from room 1 to another place in room 2. The trained GAN recreates the visual snapshot (bottom).

emission tomography (PET) scans to magnetic reso-
nance imaging (MRI) [84].

• The 3D object (randomly rotated rectangular metallic
reflectors) constitutes a very challenging case, given that
this object has no coherent structure. If the object had
coherence (e.g., if the system targeted specific object
types, like humans, robotic arms, furniture, etc.), then
a ‘‘forward correction’’ could have been performed as
a final part of the GAN structure to provide a more
accurate output. Another promising approach would be
to employ a GNeRF type of GAN [90], which requires
multiple RF readings, but i) directly yields the 3D object
as output, and ii) offers noise resilience owed to the
assembly of the multiple RF readings.

We note that this example does not incorporate a real XR
application or an actual SDN controller, while also operating
on the premise of ideally performing metasurfaces.

The target functionality is based on the emerging technol-
ogy of SDM and PWEs developed in recent years [35], [91].
In particular:
• With regards to the metasurface part we assume a unique
SDM design and prototype operating at 5 GHz, cover-
ing the complete process: from EM analysis, to PCB
design, to integration of electronics, and to final proto-
type assembly [12].

• Additionally, we assume first of its class software fam-
ily to interact with metasurfaces in a physics-agnostic
manner [57]. Firstly, the EM wave manipulation types
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FIGURE 8. Boxplots of the attained SSIM and PSNR image comparison
values over 100 object reconstructions via iCOPYWAVES.

FIGURE 9. Indicative iCOPYWAVES outcomes spanning the corresponding
PSNR boxplot range of Fig. 8.

and their parameters are organized in the form of a
software library of callbacks, denoted as the intelligent

FIGURE 10. Indicative iCOPYWAVES outcomes spanning the
corresponding SSIM boxplot range of Fig. 8.

surface application programming interface (API). This
allows computer networking experts to invoke the intel-
ligent surface functionalities without specialized knowl-
edge in physics. Second ly, the translation of such
software callbacks into embedded circuit states in real-
time was achieved via the offline creation of a lookup
database (DB), via extensive measurements and simula-
tions performed during the intelligent surface manufac-
turing phase. This enabled the real-time operation and
re-adaptation of PWEs, while also accounting for unin-
tended effects (e.g., sidelobes), and imprecision stem-
ming from factors such as unintended directions of wave
arrivals over SDMs.

Finally, a complete implementation can take advantage of a
completely automated testbed combining SDM prototypes,
dynamically positioned transmitters/receivers, RF measure-
ment devices, and an implementation of the aforementioned
software, all controlled via a central computer (shown in
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FIGURE 11. The contributed testbed for realizing an XR copying
wavefronts/wavevolumes system. Clockwise, from top left: Close-up
photo of a metasurface loaded on an automated positioner and
illuminated by a fixed source; screenshots from the developed software
that calculates and assigns configurations to a metasurface, and directs
the measurement setup.

Fig. 11-top) [82]. The implemented testbed consists of a
bistatic setup inside an anechoic chamber, configured for the
measurement of 3D scattering patterns. The testbed employs
an automated positioner with a rotating mast and head; a
metasurface and a transmitter (Tx) antenna are mounted on
the rotating head while a receiving (Rx) antenna is placed on
a tripod; the forward transmission of the system is measured
with the help of a vector network analyzer (VNA); The
entire testbed is controlled by the aforementioned software
running on a laptop from the outside of the anechoic chamber;
essentially, the software must connect to the VNA and the
positioner mast (and head), for the acquisition of a 2D or
3D scattering pattern, and to the SDM for passing different
commands.

V. RESEARCH DIRECTIONS
We proceed to discuss the research challenges towards
the implementation of the various components required for
iCOPYWAVES system.

A. PORTABLE HARDWARE FOR XR-RF IMAGING BASED
ON MACHINE LEARNING
A crucial and integral part of the complete system is that of
the XR headset, which is going to incorporate a technology
that ensures real-time visual representation of electromag-
netic stimuli from the original room at a minimal energy-
consumption footprint.

The purpose is to process the information arriving from the
source at a very high speed and the concept is to do so by
using a GAN. (Other promising machine learning approaches
can be evaluated, posing a separate but secondary challenge).
On that topic, FPGA technology has proven to be a highly
attractive candidate for such tasks and applications. This is
owed to the fact that FPGAs can facilitate parallelized exe-
cution, which is suitable for implementing neural networks
such as the ones employed within the context of GANs.
FPGAs contain hardware resources that can be designed and

structured in a multitude of ways in order to implement all
sorts of architectures. Hence, FPGAs can also accommodate
machine learning inference models, offering the potential for
full parallelization at the same-layer neuron execution while
accelerating intra-layer execution by pipelining the machine
learning computations.

Moreover, FPGAs offer a quantity of hardware resources
and this leads to the ability to select the optimum tradeoff
between scaling and performance, i.e., given a target through-
put, the designer canwork towards the dedication of the corre-
sponding hardware resources that will lead to the satisfaction
of that particular throughput specification. Overall, the appli-
cation specifications will pose a set of target specifications
such as minimum throughput, maximum area overhead and
maximum power consumption, and FPGAs offer the ability to
investigate different architectural implementations that yield
the best results.

On top of that, it is possible to customize designs to the
precise arithmetic required by the neural network and, in fact,
design for the particular ones required by the different layers
of the network. For instance, it could be that, overall, a given
neural network requires INT8 arithmetic to complete. This
however, does not mean that the INT8 requirement is posed
by all of the network’s layers. It is possible, therefore, with
FPGAs to attribute the INT8 arithmetic requirement, to the
particular layer that requires it and design the other layers
with less demanding requirements such as INT2 and INT4.
This has the inherent potential for power saving through
hardware minimization.

Finally, it must be noted that FPGAs come in a wide variety
of packages with a highly diverse range of characteristics
(e.g., thermal dissipation, power consumption) making them
suitable for cloud as well as edge implementations. Hence,
they fit seamlessly to the present concept that requires the
integration of FPGA-processing into a XR headset. The head-
set will contain a custom packaging that will host the FPGA,
catering for proper thermal management. This board will
contain all the necessary electronics that will facilitate the
FPGA utilization such as the conditioning circuitry, which
will ensure that the electromagnetic signals received by a
MIMO antenna are appropriate for introducing them to the
FPGA GAN model.

B. XR PLATFORM FOR XR-RF IMAGING AND XR MERGE
This challenge refers to the translation of the outputs of
the XR-RF imaging system (GAN output signals) to an
immersive XR setting, providing the necessary software plat-
form for developing applications such as teleconferences and
education.

The mitigation pathway for this challenge is twofold, one
more experimental and one following a more common norm,
which also acts as a failover strategy. The first approach is to
translate the GAN outputs directly into a video stream that is
merged with the XR visual stream, with as little preprocess-
ing as possible. This approach has the potential of a highly
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simplified operational workflow, resulting into a simplified
XR headset hardware in the future as well.

The second approach follows a model-driven approach.
Having an array of possible object templates, it uses the
GAN outputs to deduce the best matching choice, ensuring
that a coherent and artifact-free object is finally rendered.
An additional experimental direction is to take into account
the XR-RF imaging capability in providing insights about the
internal composition and material structure of a remote 3D
object, enabling applications such as remote medical imaging
or inaccessible material telemetry.

C. WIRELESS CHANNEL ENGINEERING OPTIMIZATION
FOR XR-RF IMAGING
A major challenge is the microscopic wireless channel mod-
eling, deducing its behavior while copying wavefronts and
wavevolumes. This challenge requires a mature electromag-
netic design and characterization process as a prerequi-
site, building upon the previously described challenge, and
extending it as follows.

1) TOPOLOGY
In far-field imaging, EM waves impinge as plane waves, thus
a small difference in distance does not affect significantly
the amplitude of echo signals resulting from the distance
between each point of the target object and the “radar” being
approximately the same [92]. Since passive localization is
utilized, it is important to evaluate as many as possible signal
routes from the transmitter to each receiver through the mon-
itored object. A distributed or a cascaded architecture can be
utilized to cover the space with either transceivers or SDMs
to guarantee the tracking of each path. Possible overlaps
between coverage areas of the APs can be resolved based
on the angle of arrival measurements when multiple antenna
elements are available [93]. To control the transmission and
to reach beyond possible blockages a number of SDMs has
to be deployed in the physical space. In this case, ideally, the
whole indoor environment should be covered with SDMs in
order to achieve full control and nearly-deterministic sensing,
however, with simulations, an ideal number of SDMs can
be extracted that accomplishes an acceptable performance in
terms of imaging of the indoor environment.

2) DEVELOPMENT OF APPROPRIATE CHANNEL MODELS
The SDM channel modeling accounts for a variety of possible
EM/SDM interaction types, including beam steering, beam-
forming, focusing, modulation, and joint modulation and
encodingwith the transmitter [9], [94]. Depending on the spe-
cific application and wave transformation applied, the path
loss and fading models will be extracted via physics-level
simulations and theoretically. (Approaches exist for SRE/RIS
systems as well, e.g. [95]. For the PWE/SDM case, i.e., the
designated approach for iCOPYWAVES, there exist open
physics simulation platforms that enable this approach by the
scientific community in general [96]). An all-electromagnetic
architecture that prescribes PWE-user interaction in the

radiative near field should be followed. To this end, it is nec-
essary to rely upon physics-based models for the propagation
of EM fields in the proximity of metasurfaces and/or extract
circuit models for the problem formulation [64]. Accurate
path-loss models for link budget analysis, as well as fading
models for sub-wavelength structures, both at the micro-
scopic level, should be developed based on the extension
of mathematical physics methods that capture the electro-
magnetic properties of wave propagation in complex envi-
ronments [97]. Eventually, the developed models will allow
for a quick and scalable study of the PWE control impact
on the XR-RF imaging system, without the need for time-
consuming precise simulations. Subsequently, the optimized
algorithms are integrated for the implementation of the SDN
controller and the PWE control algorithms [55].

3) DYNAMIC IMAGING CONTROLLER
In smart XR-RF imaging, RF waves are emitted toward the
objects under examination to detect their structure [98]. One
or a set of transmitters emit waves upon a 3D scene, and the
scattered waves are collected by an array of programmable
metasurfaces. Depending on the electromagnetic function
applied at these metasurfaces by the image controller, such
as beam-steering, diffusion, etc., it is possible to dynamically
adjust the captured wavefront which is subsequently mapped
to the visual representation of the object through analyt-
ical expressions and recent advances in machine learning
[9], [94]. The image controller should be able to adjust the
scattering diagrams, in order to capture instantly the differ-
ences in moving objects. Therefore, it is imperative to explore
the combination of these functions that can be applied to the
programmable metasurfaces and investigate their effects on
detection accuracy.

4) QUANTIFICATION OF REPLICATION ACCURACY
Regarding the impact of the wireless channel on the
object detection accuracy, multi-carrier waveforms with
advanced peak-to-average power ratio (PAPR) reduction
techniques and single-carrier waveforms with advancedmod-
ulation techniques are promising research directions, offering
reduced PAPR without sacrificing the spectrum efficiency.
Moreover, the design of waveforms for narrowband scenar-
ios, characterized by low processing complexity, could be
explored to enable power saving. Also, robustness to the
restrictions posed by low-cost hardware, e.g., time and fre-
quency offsets, should be examined. For example, on-off
modulation is simple to implement and can be useful if the
target data and access rate meet the specific scenario require-
ments. In addition, the geometry of the environment can affect
the accuracy of object detection and replication. Complex
geometries need high resolution to detect fine details. High
resolution can only be obtained with high bandwidth, which
would increase the cost of the total system. In this direc-
tion, SDMs can assist in creating LoS links increasing the
resolution. Finally, predicting accurately the behavior of the
physical assets is another challenge. To address this issue,
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advanced AI tools can be utilized, which are capable of
learning general and complex patterns of the environment by
exploiting historical information and exploring future actions
and decisions as well. Similarly, AI-optimized constellations
and demodulators can assist in decreasing PAPR.

5) WAVEFORM DESIGN
Waveform design can start by implementing known signal
forms, such as chirp, and by utilizing reinforcement learning
(RL) methods the waveforms can evolve to adapt to each
environment [99], [100]. The key challenge in this research
direction is that sensing should be performed simultaneously
with communication, which facilitates the efficient utilization
of so valuable system resources such as bandwidth and power.
Waveform design through AI is an area of interest in the
research community lately, as AI can design unconventional
waveforms that better handle the deteriorations of the chan-
nel. In this case, reflectivity and scattering of materials should
be showcased [101]. At first, supervised learning could be
implemented to evaluate the use of AI for ISAC and then a
complete RL framework can be implemented where no prior
learning or knowledge of the environment is necessary. The
complexity of such a systemwould be higher, but once a good
model of the physical space is created, little changes to the
waveforms will be required based only on the mobility and
the dynamic changes in the environment.

D. PWE CONTROLLER IMPLEMENTATION AND SYSTEM
COMPONENT NETWORKING
This challenge pertains to the modeling of the PWE at a
macroscopic level, designing algorithms for the orchestra-
tion of multiple SDMs for wavefront/wavevolume copy-
ing, as detailed recently [55]. It integrates the outcomes of
the channel engineering challenge, and seeks to create the
iCOPYWAVES SDN controller implementation.

Towards this end, this challenge needs to account for the
network architecture interconnecting the controller to the
SDM in the same or remote locations, from the latency per-
spective. As intermediate steps, the challenge can be tackled
by SDM studying a PWE graphmodel to abstract the underly-
ing physics at an algorithmic development level. Then, it can
proceed to produce resource orchestration algorithms based
on this graph model, targeting the creation of wireless prop-
agation paths that perform the wavefront and wavevolume
replication from one location to another. Fault tolerance must
also be studied, e.g., in terms of system hardware imperfec-
tions, system component synchronization irregularities, and
user mobility.

In parallel, meeting this challenge also entails taking into
account the component integration, i.e., the experimentally
verified wireless channel models, as well as the networking
infrastructure required to interconnect the PWE system con-
troller to the SDM units. The implementation of the PWE
controller culminates this challenge, which completes the
infrastructure that iCOPYWAVES requires, apart from the
user headset.

FIGURE 12. (a) Perspective top-side view of a unit cell composed of a
2 × 2 array of square patches; this cell topology allows independent
control of reflection amplitude and phase in both polarizations. (b) Side
view of the unit cell, showing the through vias connecting the patches at
the top side to the actuators embedded in the bottom side. (c) Bottom
side view of the unit cell, where the actuators here correspond to
varactors, i.e., DC-voltage controlled variable capacitors; an IC embedded
in the cell receives commands from the gateway and applies voltages to
each of the four varactors effectively setting the cell response; note that
microwave engineering is required here, e.g., RF chokes to isolate the
DC/RF lines.

E. DESIGN AND MANUFACTURING OF SDM UNITS
FOR XR IMAGING
Regarding the SDM technology required for iCOPYWAVES,
challenges concern the design, development and low-level
characterization at the physical layer.

This initially entails (a) the design of the SDM that will
efficiently perform the advanced wave control required for
XR-RF imaging within the PWE; (b) the electronic design of
the control circuits and components for the embedded SDM
control, and (c) the advanced manufacturing of patterned
PCBs as SDM.

Regarding the electromagnetic design of the SDM, we rely
on solid physical conclusions derived in our previous
works [12], [25], [50]. More specifically, to be able to per-
form arbitrary wavefront manipulation with the SDM units,
we require local control over the complex surface impedance
of the metasurface. This requires individually-controlled unit
cells equipped with voltage-driven electronic actuators that
control both the reactive and resistive part of the surface
impedance. In the GHz regime, such actuators can be imple-
mented with MOSFETs configured as varactor (variable
capacitance) and varistor (variable resistor) elements. To be
able to control the two linear polarizations separately (and
thus additionally perform arbitrary wave, it is also desirable
to electrically rotate the “principal axes” of the unit cell; this
can be achieved by a composite unit cell design, e.g., based
on four patches (see Fig. 12), where individual patches can
be connected vertically, horizontally, or diagonally [82].

The fabrication requirements of the proposed SDMs
involve the capability of manufacturing high-quality
multiple-metallization boards using high-frequency, low-loss
specialty substrates. In addition, we need high-aspect ratio
through vias and blind vias with uniform metal plating
and good electrical conductivity characteristics in order to
minimize the resistive loss experienced by the loop currents
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excited in the unit cell [102]. Finally, the assembly of the con-
troller chips is based on closely-space solder balls to enable
the dense packing of unit-cells/controllers. The feasibility of
all the above enabling capabilities has been demonstrated in
earlier work [103].

Following the electromagnetic/electronic co-design of
the PCBs/SDMs and the manufacturing of the designed
PCB/SDMs, a formal performance characterization process
should be completed. This involves all advanced PCB pro-
cessing workflows, microfabrication/micropatterning, com-
ponent assembly on PCB/SDMs according to electromag-
netic designs, PCB quality control and lastly, their electrical
characterization and wave control performance assessment.
Notably, the aforementioned processes are non-standard in
the emerging SDM field in general, and need to be further
specialized separately for SDM with and without impinging
wavefront capabilities.

VI. CONCLUSION
Modern XR faces critical scalability, cost and complex-
ity issues, hindering its wide adoption. These shortcomings
stem from the multitude of involved devices that need to
cooperate tightly across all layers of the OSI stack. This
present paper presented a new approach to XR denoted as
iCOPYWAVES, which dictates an end-to-end operation that
is bounded at the physical-layer, thereby yielding minimal
system latency and architectural simplicity. iCOPYWAVES is
based on precise RX imaging (denoted as XR-RF imaging),
recent advances in 6G programmable wireless propagation
environments, and machine learning. We leverage PWEs to
selectively copy RF imaging wavefronts and wavevolumes
from one location in space to another, where a machine
learning module, accelerated by FPGAs, translates it to
visual input for an XR headset. The overarching ambition
of iCOPYWAVES is to create a complete platform for:
i) creating RF wavefront representations of 3D objects, and
ii) manipulating these RF wavefronts with the ease of a
“copy-paste” functionality–and no requirements for under-
standing the complex underlying physics–thereby virtually
transferring the original objects to remote locations. The
present study detailed the architecture and end-to-end work-
flow of the iCOPYWAVES approach, and validated its oper-
ation via simulations combining ray-tracing and generative
adversarial networks. Research challenges towards its imple-
mentation and new applications enabled by iCOPYWAVES
have been highlighted.
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