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Abstract This research focuses on implementing the low cost and rapid front face synchronous flu-

orescence (SyFS) in order to ensure the quality assurance of Greek milk. Specifically, samples orig-

inated from the Greek domestic production of goat, sheep, cow, as well as foreign cow milk samples

and adulterated cow milk samples. SyFS spectra were acquired in the excitation area of 250–500 nm

with (Dk)= 100 nm. Greek and foreign cow milk samples were differentiated based on intensity

variations at wavelengths 350–515 nm, 540–579 nm, and 580–600 nm. The emissions at these wave-

length positions correspond to tryptophan, vitamin A, and riboflavin. The supervised model with 94

samples exhibited p-value = 7,98E-11, RMSEE= 0,29171, RMSEcv= 0,29284 and

RMSEP= 0,98013, AUROC for Greek samples= 0,61 and AUROC for foreign= 0,85. We differ-

entiated milk samples according to the animal type with PCA and OPLS-DA models of 107 samples

exhibiting RMSEE= 0,225842, RMSEcv= 0,228054 and RMSEP= 0,518635, AUROC for sheep

samples= 0,99, AUROC for goat samples= 0,98 and AUROC for cow samples= 0,96. In fact, the

emission band 350–591 nm characterized sheep milk and corresponds to aminoacids and fatty acids,

cow milk was related to the 350–600 nm emission band related to the b-carotene and to the goat

milk the emission bands 350–505 nm and 520–600 nm were attributed to tryptophan, NADH

and Rivoflabin. Finally, we investigated whether SyFS coupled with chemometrics may provide
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preliminary evidence on adulterated cow milk samples. All models were validated with permutation

testing, p-values and ROC curves.

� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The current research focuses on two emerging topics within the

dairy sector that concern product’s quality assurance and
fraud detection. For this purpose we utilized front face fluores-
cence to investigate whether this low cost and rapid analytical
technique could deliver palpable evidence on milk’s quality

assurance.
Milk constitutes a complex mixture of carbohydrates,

lipids, proteins, vitamins, minerals and various other com-

pounds dispersed in water (Kaminarides and Moatchou,
2009; Ahmad et al., 2008; Ozrenk and Inci, 2008). The nutri-
tional and economic value of a dairy product is directly related

to the lactation period, the environmental conditions, the sea-
son, the food ration, the dietary, the reproduction process, the
race of the animal and the processing technology (Kittivachra
et al., 2007; Mungkarndee et al., 2016).

Today consumers and food supply chain companies have a
propensity for expressing concerns regarding the consistency
and origin of a food item. Fraudulent attempts towards a food

item involve adulteration and deliberate mislabeling of a prod-
uct. Specifically, cases of milk adulteration include the addi-
tion of compounds that alter its natural content, such as the

dilution with water, mixing milk of different animal species
or the addition of milk powder, (Handford et al., 2016;
Moncayo et al., 2017). In Greece, milk is a prime commodity

product and its adulteration bears a significant negative eco-
nomic impact on the dairy industry.

Spectroscopic techniques are gaining popularity in food
chemistry as they facilitate rapid analytical methods for var-

ious products (Mousdis and Mellou, 2017). Fluorescence
spectroscopy exhibits various advantages over other spectro-
scopic methods, since it is rapid, may acquire multidimen-

sional information in a single measurement and is much
more sensitive than other spectroscopic methods because flu-
orescent compounds are highly sensitive to their environment

(Karoui and Blecker, 2011; Lohumi et al., 2015; Poiana et al.,
2012). On the other hand, molecular fluorescence spec-
troscopy is a well-established analytical technique, with sensi-

tivity (Valeur, 2001) that normal modes of vibrational
techniques cannot compete with. However, methods based
on fluorescence spectroscopy are not well suited for the anal-
ysis of complex multi-component samples without prior sep-

aration, due to severe overlaps of excitation and emission
bands.

In such cases, SyFS techniques or total luminescence (TL)

spectroscopy improve the analytical potential of fluorescence
spectroscopy (Poulli et al., 2009a, 2009b). In SyFS the excita-
tion and emission monochromators are scanned simultane-

ously in such a manner that a constant wavelength interval is
kept between emission and excitation wavelengths (Patra and
Mishra, 2002). SyFS spectroscopy reduces spectral overlaps
by narrowing spectral bands and simplifies spectra by preferen-

tially amplifying some fluorescence bands. It has several
advantages over conventional fluorescence spectroscopy, such
as simple spectra, high selectivity and low interference (Patra
and Mishra, 2002). By using suitable offset values (Dk), we
can enhance some bands and use it as a very simple and effec-
tive method of obtaining data for quantitative determination
in a single measurement.

A series of valuable information about milk or dairy prod-
ucts can be extracted from chemometric analysis of fluores-
cence spectra based on small changes in protein and lipid

structure due to high sensitivity to the molecular environment
(Andersen and Mortensen, 2008; Shaikh and O’ Donnell, 2017;
Kumar and Mishra, 2012; Kumar et al., 2014). In fact, the con-
cept of PCA and OPLS-DA methods and their applications

have been extensively discussed (Trygg et al., 2007; Eriksson
et al., 2006; Fotakis, et al., 2013).

In this work we investigated the ability of front face SyFS

complemented with chemometrics to address rapidly and with
low cost, consumer issues regarding the quality assurance of
Greek milk. We differentiated cow milk samples between

Greek and foreign. Then we investigated the impact of the pro-
duction area and the dairy animal species

Finally, we attempted to gather preliminary evidence on
whether front face SyFS complemented by chemometrics

may pinpoint adulterated samples among a sample pool of
cow samples. To the best of our knowledge, this is the first time
that front face SyFS was implemented for the study of Greek

dairy products, such as milk.

2. Material and methods

2.1. Milk samples

2.1.1. Greek samples

Fifty (50) commercial milk samples from cows of the Holstein

breed, forty (40) goats of the Karagouniko breed and thirty
five (35) sheep of the Chios breed were collected from different
farms in Greece, stemming from the regions of Attiki Viotias,
Ilia, North Greece:

Ksanthi, Larissa, Serres and Thessaloniki. All the afore-
mentioned samples were provided by the Delta Foods S.A.

2.1.2. Foreign samples

Forty four (44) commercial cow milk samples were analyzed in
parallel, originating from (14) Czech Republic, (14) Slovakia
and (16) Hungary. All the aforementioned samples were pro-

vided by the Delta Foods S.A.

2.1.3. Adulterated samples

Finally, Delta Foods S.A, Ag Stefanos, Greece, provided six
(6) cow milk samples with milk powder of unknown composi-
tion. The adulteration was conducted by the company Delta
Foods S.A by adding milk powder of unknown composition

to six samples.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The milk powder is a plant derived product diluted in water
for different and then added to cow milk.

Two samples (skonh & skonh1) consisted only of milk pow-

der, and four cow milk samples (2 = 5% addition, 3 = 10%
addition, 4 = 15% addition, 5 = 20% addition) 1e.

2.1.4. Samples treatment

All samples were labeled, frozen and transported to a labora-
tory from the company Delta Foods S.A. Specifically, all sam-
ples were stored in plastic containers of 20 ml capacity.

The cow milk samples were treated with sodium azide
(NaN3) 0,1% (Sinaga, et al., 2018) as antimicrobial agent
and all milk samples were stored at �20 �C. Samples were

transported in isothermal boxes with ice bags to the laboratory
where they were further stored at �20 �C until analysis.

2.2. Synchronous fluorescence analysis

The Fluorolog of Jobin Yvon is a fully computer-controlled
instrument using a double-grating monochromator for excita-
tion and a single-grating emission monochromator using a

450 W xenon lamp for excitation. Excitation and emission slit
widths were set at 2 nm. The acquisition interval and integra-
tion time were set at 1 nm and 0,3 s respectively.

Three acquisitions per cow milk sample were performed.
All SyFS spectra were collected by simultaneously scanning
the excitation and emission monochromator in the excitation

wavelength range 250–500 nm and with Dk varying from 10
to 100 nm. The spectra were corrected for the excitation lamp
and the photomultiplier detector spectral response. All the

measurements were done using the front face technique. All
the wavelength numbers refer to the emission.

2.3. Statistical analysis

2.3.1. Data-processing

The fluorescent data set was converted to ASCII format and

imported into the SIMCA-P version 15.02 (Umetrics, Umeå,
Sweden) for statistical analysis. The data was log transformed,
mean centered and UV scaled. Scaling to unit variance (UV)

and mean centering ensures that large relative alterations in
low abundance biomolecules exert the same influence as high
abundance biomolecules. The Log Transformation alleviates

the effect of a significant bunching of data in one area with
a few more disperse points elsewhere.

All models were extracted at a confidence level of 95%.
A Table with explanations of the abbreviations used in the

statistical analysis was added to the supplementary material,
Table S1.

2.3.2. Model interpretation

The quality of models (PCA/OPLS-DA) was described by the
goodness-of-fit R2 (0 � R 2 � 1) and the predictive ability Q2

(0 � Q2 � 1) values. The R2 indicates how well the model

explains the dataset, thus constituting a quantitative measure
of how well the data of the training set was mathematically
reproduced.

The overall predictive ability of the model is assessed by the
cumulative Q2, referred as the cross-validated correlation in
the SIMCA-P software. Cross-validation involves partitioning
the subjects into subsets, and fitting the model after randomly
excluding one subset at a time from the analysis. Q2 is the cor-
relation based on averaging the results from repeated iterations

of cross-validation, and represents a measure of the predictive
power of the model (i.e., how well the model is expected to fit
additional cohorts). In an ideal model the R2 and Q2 should be

similar, meaning that each of the subjects contribute equally
and uniformly to the observed group separation. In reality
Q2 is always lower than R2; however, if Q2 is substantially

lower than R2 then the robustness of the model is poor, imply-
ing overfitting (Eriksson et al., 2006).

2.3.3. Exploratory analysis

The exploratory principal component analysis (PCA) was
applied to acquire a general insight and visualize any relation
(trends, outliers among the observations (samples). First, we

utilized the milk’s SyFS fingerprint to extract PCA models
with various Dk varying from 10 to 100 nm. A first screening
showed that the optimal and most reliable results from the
extracted statistical models, can be obtained with the Dk =

100, since this PCA model exhibited the highest R2 and Q2 val-
ues, the lowest R2 - Q2 and high values of eigenvalues of the
first two components (Supplementary material Table S2). This

means that this model explains the highest percentage of the
variation and is more robust than the others. Therefore, the
difference between emission and excitation remains constant

at 100 nm (Dk = 100 nm).

2.3.4. Classification analysis

Data sets were further subjected to Orthogonal Projections to

Latent structures Discriminant Analysis (OPLS-DA) in order
to increase the quality of the classification model. Specifically,
OPLS-DA facilitates the separation of the systematic variation

in X into two parts, one that is linearly related to Y (predictive
information) and one that is unrelated to Y (orthogonal infor-
mation). The predictive information of Y in X is concentrated
in the first predictive component and is associated with the

between groups variation while the variation in X which is
unrelated to Y is put in the second and orthogonal component
and is linked to the within groups variation. The cognition of

the orthogonal variation improves model visualization and
interpretation (Trygg et al., 2007; Eriksson et al., 2006;
Fotakis et al., 2013).

2.3.5. Important feature selection

Contribution, and volcano shaped plots were extracted to
reveal the spectral areas mostly affecting the samples’

differentiation.
A contribution plot displays the differences, in scaled units,

for all the terms in the model, between an outlying observation

or a group and the normal (or average) observation or another
group,multipliedby theabsolutevalueof thenormalizedweight.

The loading plots display the correlation structure of the

variables. That is, they show the importance of the x-
variables in the approximation of the X matrix.

Variable selection using a combination of Variable Influ-
ence in Projection (VIP) and p(corr) was performed in terms

of a volcano shaped plot. Based on the resulting Q2 (predictive
power) and CV-ANOVA values, iterations of variable
selection using VIP > 0,75 and |p(corr)| > 0,2 as inclusion
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criteria were applied. VIP is a metric that summarizes the
importance of each variable in driving the observed group sep-
aration. A complementary parameter is the p(corr) value, rep-

resenting the loadings scaled as a correlation coefficient,
thereby standardizing the range from �1,0 to 1,0 (Eriksson
et al., 2006; Fotakis and Zervou, 2016).

The SIMCA-P version 15.02 (Umetrics, Umeå, Sweden)
was used to extract the above plots from the acquired data.

2.3.6. Internal validation

Regression models have been validated using cross validation-
analysis of variance (CV-ANOVA), with a P-value < 0,05.

Permutation testing was applied (900 permutations) to

check the validity and the degree of overfit for all OPLS-DA
models and thus evaluate whether the specific classification
of two classes in a model are significantly better than any other

models obtained by randomly permuting the original groups
attribution.

An additional measure of PLS-DA model validity included
the extraction of receiver–operator characteristic (ROC)

curves to assess the ability of the PLS latent variable Tpred
to correctly classify the test set. The area under the ROC
(AUROC) was calculated. A perfect discrimination corre-

sponded to an AUROC equal to 1.

2.3.7. External validation

Also, for validation purposes, and the RootMean Square Error

of Estimation (RMSEE), root mean squared error from cross-
validation (RMSECV) model, and root mean square error of
prediction (RMSEP) were estimated for each supervised model.

All this information is summarized in the supplementary
material Table S3.

3. Results & discussion

Milk and dairy products contain several intrinsic fluorophores
that may prove useful as markers in the identification of milk
Fig. 1 Indicative SyFS spectrum for Dk= 100 nm of cow, sheep, goa

fluorescent areas.
origin, since these compounds are affected by the animal
breed and the geographic location. In fact, aromatic amino
acids and nucleic acids, tryptophan residues of proteins, vita-

min A and riboflavin are the best known fluorescent mole-
cules in dairy products (Herbert et al., 2000; Karoui et al.,
2005).
3.1. Fluorescent profiles of milk products

Characteristic fluorescent spectra of samples are presented in

Fig. 1 (and in Fig. S1 with annotations on the fluorescent
molecules) exhibiting the different fluorescent profile of each
animal’s milk. At a glance there is a clear difference in fluores-

cence intensity between adulterated, sheep and goat milk at
363 nm attributed to vitamin A, tryptophan, aromatic amino
acids (AAA) and nucleic acid (NA). Also, variations related
to the type of animal can be observed at 419 nm and are prob-

ably attributed to the b-carotene (Raynal-Ljutovac et al., 2008;
Ullah et al., 2020).

These preliminary findings will be verified with the imple-

mentation of chemometrics.
Considering the vitamin A fluorescence spectra, the shape

of the spectra showed two maxima located at 305 and

322 nm and a shoulder at 295 nm (Karoui et al., 2007).
Recently, it has been reported that the shapes of the vitamin
A excitation spectrum is correlated with the physical state of
the triglycerides in the fat globules (Karoui et al., 2007).

Finally, it has been suggested that the changes in the shape
of vitamin A spectra may also result from fluorescence transfer
between tryptophan residues of proteins and vitamin A located

in the fat globule membrane (Kulmyrzaev et al., 2005).
The second region between 405 and 480 nm includes fluo-

rophores responsible for these special bands that have not

yet been identified. This region typically shows fluorescence
from stable oxidation products formed by aldehydes and
amino acids (Kikugawa and Beppu, 1987). In the same region,

lumichrome, a photo breakdown product from riboflavin,
t milk spectra and adulterated and foreign milk samples’ within the
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exhibits fluorescence in the 444–479 nm region (Fox and
Thayer, 1998). Finally, b-carotene can also absorb around
400–500 nm. Also b-carotene may undergo photodegradation

(Hansen and Skibsted, 2000), which could influence the fluo-
rescence spectra. broad peak at about 522 nm is attributed
to riboflavin, as has previously been suggested by Wold et al.

(2002). Riboflavin appears to be predominant in the emission
spectra with a maximum at 525 nm.

3.2. Authenticity of milk samples

We then implemented chemometrics to extract information
regarding the milk’s geographical and animal origin, as well

as to detect the ability of fluorescence to elucidate a possible
milk adulteration.
Fig. 2 Α. PCA model N = 69, A = 2, R2X(cum) = 0,84, Q2(cum

triangles = Hungary, diamond = Slovakia). B. Contribution plot

responsible for the differentiation between 51 Greek cow milk sample
3.2.1. Unsupervised comparison of Greek cow milk with foreign

cow milk

First, we put under the scope of exploratory analysis Greek
and foreign cow milk samples, to address the product’s geo-
graphical origin.

We started with a sample pool of 69 samples. For this pur-
pose we extracted a PCA model of two components (A= 2)
and 69 milk samples (N= 69) in Fig. 2.A that probed to the

differentiation of the samples in accordance to the provenance,
between those of Greek and foreign origin. PC1 explained
62,7% of the variation and PC2 explained 21,8%. The model
demonstrates very good fitness and high predictability as indi-

cated by the statistical values R2X(cum)= 0,84 and Q2(cum)
= 0,83. In particular, the excellent prediction of the model
with a Q2(cum) > 0,80 and R2X(cum) - Q2(cum) < 0,3
) = 0,83, (Greek: circles) (Foreign: squares = Czech Republic,

of Greek vs Foreign cow milk samples depicting the variables

s and 18 foreign cow samples.
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enhances the robustness and predictive response of this model
thus amplifying the reliability of the classification.

Moreover, the parameters that contribute to the prove-

nance differentiation are elucidated by the corresponding con-
tribution plot in Fig. 2.B. Specifically, the wavelengths 350–
516 nm and 580–600 nm bear high values in the foreign milk

samples while the wavelengths in 540–579 nm exhibit low val-
ues in the foreign samples. The emissions at these wavelength
positions correspond to tryptophan, vitamin A, and riboflavin.

The band in 516 nm includes the presence of riboflavin and is
probably affected by the origin. The content of riboflavin is
increased in the Greek samples in accordance to the contribu-
tion plot (Fig. 2.B). The band in 363 nm corresponds to vita-

min A, tryptophan, aromatic amino acids (AAA) and nucleic
acid (NA), exhibited a higher content in the foreign cow sam-
ples. This is an important finding that may be related to the cli-

mate of each country.
Another robust PCA model with all the samples is pre-

sented in the supplementary material, again verifying the pre-

sent trends (Fig. S2).
Other studies also demonstrated the ability of front face flu-

orescence spectroscopy (FFFS) to monitor changes in ewe’s

milk throughout the lactation period (Hammami et al.,
2010), or to differentiate between two genotypes of ewe’s milk
(Zaı̈di et al., 2008). In alignment to our results, the aforemen-
tioned studies also pinpointed as fluorescent fingerprints aro-

matic amino acids, nucleic acids (AAA + NA), tryptophan,
vitamin A and riboflavin.

3.2.2. Supervised comparison of Greek cow milk samples with
foreign

To a step further, we employed supervised analysis on samples
of specific Greek origin and random foreign samples in order

to verify the parameters responsible for the differentiation
and further validate our results.

Specifically, we implemented OPLS-DA with a small num-

ber of samples, (training set1: 18 Greek and 18 Foreign), as
depicted in Fig. 3.A. The model was constructed with 1 predic-
tive + 1 orthogonal component, N= 36, resulting in a clear

separation between the groups along the predictive compo-
nent. The model demonstrates very good fitness and high pre-
dictability as indicated by the statistical values R2X(cum)
= 0.87 and Q2(cum)= 0.72. In particular, the excellent predic-

tion of the model with a Q2(cum) > 0.80 and R2X(cum) -
Q2(cum) < 0.3 enhances the robustness and predictive
response of this model thus amplifying the reliability of the

classification.
We estimated p[CV-ANOVA]= 2,91E-08, RMSEE= 0,26,

RMSEcv= 0,26 and RMSEP= 0,60, evaluated the AUROC

(foreign 0,89, Greek 0,73) and Permutation tests (Table S3,
Fig. S3). All attesting to the reliability of the model and effac-
ing overfitting.

Another OPLS-DA model was produced with more Greek
samples (training set2: 50 Greek and 18 Foreign, Fig. 3.B). The
model was constructed with 1 predictive + 1 orthogonal com-
ponent, N = 50, resulting again in a clear separation between

the groups along the predictive component. The model demon-
strates very good fitness and high predictability as indicated by
the statistical values R2X(cum)= 0.83 and Q2(cum)= 0.70. In

particular, the excellent prediction of the model with a
Q2(cum) > 0.80 and R2X(cum) - Q2(cum) < 0.3 enhances
the robustness and predictive response of this model thus
amplifying the reliability of the classification. The OPLS-DA
model was validated with the same steps, summarized in the

supplementary material (Table S3, Fig. S4).
Then we encompassed an external validation set reaching

94 milk samples that resulted in another OPLS-DA model (ex-

ternal validation set 50 Greek and 44 Foreign, Fig. 3.C). The
model was constructed with 1 predictive + 1 orthogonal com-
ponent, N= 94, discriminating the Greek and foreign samples

along the first principal component. The model demonstrates
very good fitness and good predictability as indicated by the
statistical values R2X(cum)= 0.79 and Q2(cum)= 0.54. In
particular, the excellent prediction of the model with a

Q2(cum) > 0.80 and R2X(cum) - Q2(cum) < 0.3 enhances
the robustness and predictive response of this model thus
amplifying the reliability of the classification. Finally, the use

of aforementioned validation steps confirmed that the results
of this OPLS-DA model were unbiased and reliable as
described in the Supplementary (Table S3, Fig. S5).

The differences of all OPLS-DA models are highlighted in
corresponding volcano shaped plots (Fig. 3.D, E and F) with
variations mainly in the wavelength regions of 411–490 nm,

as well as 350–398 nm, 409–416 nm and 426–494 nm. In align-
ment to the unsupervised comparison of Greek cow milk with
foreign cow milk samples in the band 350 – 515 nm the latter
samples bear high values and can be attributed to vitamin A,

tryptophan, aromatic amino acids (AAA) and nucleic acid
(NA) and riboflavin.

The bands responsible for the differentiation are the same

for each volcano shaped plot. This postulates that the origin
is the dominant factor, while storage, feeding system or other
factors in this sample pool seems to contribute scarcely if at all

to the discrimination.
Evidently, SyFS may contribute to the differentiation of

cow milk samples into Greek or foreign.

3.3. Animal species differentiation

Fluorescence has been employed to detect if a milk sample
derives from a specific breed or a mix of several breeds

(Plachkova et al., 2016). In alignment, we implemented SyFS
to cow, goat and sheep milk samples in order to differentiate
them in relation to the animal species.

This information will prove useful for the Greek dairy
industry especially valorized for the fortification of the Greek
‘‘Feta” cheese. In particular, ‘‘Feta”must consist only of sheep

and goat milk, it must not contain any cow’s milk, and its con-
sistency in goat milk should not exceed 30%.

A PCA model with two components was computed on 107
samples and explained sufficiently the 80,2% of the dataset

variance, (PC1 explains 65,0% of the variation and PC2
explains 15,2% of the variation, Fig. 4). The model demon-
strates very good fitness and good predictability as indicated

by the statistical values R2X(cum)= 0,80 and Q2(cum)= 0,54.
In fact, the samples deriving from sheep have been located

in the 1st and 4th quadrants, the cow milk samples are mainly

localized in the 2nd and 3rd quadrants and the goat samples
localize among these two groups.

Contribution plots (Fig. S6) pinpointed the parameters that

characterize each group. Specifically the sheep samples
(Fig. S6.A) are characterized by increased intensity of the band



Fig. 3 A. OPLS-DA model, N = 36, A = 1 + 1, R2X(cum) = 0,87, Q2(cum) = 0,72. B. OPLS-DA model, N = 50, A = 1 + 1, R2X

(cum) = 0,83, Q2(cum) = 0,70. C. OPLS-DA model, N = 94, A = 1 + 1, R2X(cum) = 0,79, Q2(cum) = 0,54. D. Volcano plot of Greek

vs Foreign cow milk samples depicting the variables responsible for the discrimination of 36 samples. E. Volcano plot of Greek vs Foreign

cow milk samples depicting the variables responsible for the discrimination of 50 samples F. Volcano plot of Greek vs Foreign cow milk

samples depicting the variables responsible for the discrimination of 94 samples.
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350–591 nm, the cow milk samples (Fig. S6.B) are character-

ized by decreased intensity of the band 375–600 nm and
increased intensity of the band 350–375 nm. The contribution
plot (Fig. S6.C) attributed to the goat samples decreased inten-

sity of the band 350–435 nm, increased intensity of the band
435–505 nm and decreased intensity of the band 520 to
600 nm.

It has to be noted that the 405 and 480 nm region typically
shows fluorescence from stable oxidation products formed by
aldehydes and amino acids (Kikugawa and Beppu, 1987).

Also, variations related to the type of animal can be
observed at 419 nm and are attributed to the b-carotene.
The goat and sheep milk are white compared to the bovine

milk, which due to the presence of carotenoids tends to be
slightly yellow.

To further enhance the validity of our results we extracted

an OPLS-DA model on the 107 samples Particularly, a 3D
scatter plot (Fig. 5.A) utilizing three components (t(1), t(2),
t0(1)) classifies the samples on the basis of the animal species

with high goodness of fit R2Xcum) = 0,98 and a strong predic-
tive ability Q2(cum) = 0,76. The first predictive component
explains 44% of the variation, the second predictive compo-

nent explains 9,4% of the variation and the orthogonal com-
ponent describes 31,8% of the variation. The permutation



Fig. 4 PCA model comparing samples of different animal origin, N = 107, A = 2, R2X(cum) = 0,80, Q2(cum) = 0,54. The animal

species classification is depicted using different symbols: (Green box: Cow; Red circle: Goat; Yellow triangle: Sheep).

Fig. 5 OPLS-DA model comparing samples of different animal origin, A = 2 + 1, N = 107, R2Xcum) = 0,98, Q2(cum) = 0,76.
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tests and AUROC curves that were extracted probed to a high
classification rate since all portrayed values for each group
higher than 0,95 (Table S3, Fig. S7). The RMSEE, RMSEcv
and RMSEP were estimated to 0,225842, 0,27743 and 0,2826

respectively.
Species identification is an important issue also addressed

by a number of articles, either for authenticity or adulteration

purposes. For instance (Genis et al., 2020) applied on fluores-
cent data from yoghurt and cheese samples PLS-DA with
an100% EFR in order to discern the species (cow, buffalo,
ewe, and goat). This method even managed to identify more
complex adulteration types of binary mixture again with
100% EFR.

Another study (Ullah et al., 2020), implemented syn-

chronous front-face fluorescence spectroscopy with partial
least squares regression (PLSR) to predict the adulteration of
cow and buffalo milk. The detection limit was found 20%,

and determined RMSECV = 1,16 and RMSECP = 6,24.
Another research by (Velioglu et al., 2019) discriminated

samples and detected adulteration of buffalo milk with limit
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of detection value (LOD) of 6% with the models exhibiting
values of RMSEC = 2%, RMSECV = 7%, RMSEP = 4%.

When compared to our method, the results of the afore-

mentioned articles show that our chemometric approach deliv-
ered reliable results.

3.4. Comparison of cow milk to adulterated samples

The analytical methods for detecting the addition of powder in
milk and dairy products are based on alterations of the milk

constituents, mainly protein and lactose (Kaminarides and
Moatchou, 2009). Few studies have been conducted in which
SyF spectroscopy was used for detecting the level of adulter-

ation in dairy products.
In light of this, we attempted to examine whether front face

fluorescence complemented by chemometrics may pinpoint the
addition of powder to cow milk samples usually used to adul-

terate milk in Greece. A PCA model with two components was
computed on 52 samples and explained sufficiently the 75,8%
of the dataset variance, (PC1 explains 52,2% of the variation

and PC2 explains 23,6% of the variation, Fig. 6). The model
demonstrates very good fitness and good predictability as indi-
cated by the statistical values R2X(cum) = 0,76 and

Q2(cum) = 0,63.
The PCA provides an overview of these samples and allows

the highlighting of the milk powder samples located in the 2nd
quadrant, while the cow milk samples with milk powder were

traced from the rest of the cow samples. Interestingly, for the
latter samples a concentration trend was observed for their
localization in relation to the addition of milk powder. Specif-

ically, the PCA model includes two samples (skonh & skonh1)
consisting only of milk powder, 4 cow milk samples (2 = 5%
addition, 3 = 10% addition, 4 = 15% addition, 5 = 20%

addition) consisting of cow milk and various concentrations
of milk powder and 46 Greek cow samples.

Interestingly, only the sample 5 with 20% addition does not

overlap with the cow samples, so we can assume that our
Fig. 6 PCA model comparing cow milk samples with adulterated pro

Cow samples, circles: Cow milk samples with milk powder,
method is probably sensitive to 20% adulteration rates and
higher. A LOD = 20% has been reported by Ullah et al.
(2020), that investigated adulteration of cow and buffalo milk

with synchronous front-face fluorescence spectroscopy.
As presented in the loading plot in Fig. S8 the two milk

powder samples depicted decreased intensity in the wave-

lengths 350–460 nm, 510–600 nm, while increased intensity in
the wavelengths 460–500 nm. The samples with the addition
of milk powder to raw milk samples exhibited high intensity

in the wavelengths and decreased intensity in the wavelengths
350–360 nm, 410–434 nm and 490–600 nm.

An OPLS-DA model (Fig. 7) was constructed with 1 predic-
tive + 1 orthogonal component, N= 52. The adulterated sam-

ples localized mainly in the 1st quadrant, while the sample
skonh1 was a strong outlier. The model demonstrates very good
fitness but low predictability as indicated by the statistical values

R2X(cum) = 0,77 and Q2(cum) = 0,30. This was expected as
the two groups have different sizes. We estimated p[CV-ANO
VA] = 0,00714256, RMSEE = 0,26126, RMSEcv = 0,27743

and RMSEP = 0,2826, evaluated the AUROC (foreign 0,90,
Greek 0,75) and Permutation tests (Table S3, Fig. S9).

To enhance the predictability of our approach more adul-

terated samples must be incorporated but the preliminary
results show that samples with adulteration rates higher than
20% can be pinpointed.

Other studies have investigated the milk adulteration issue

but used other spectroscopic methods focusing on urea adul-
terations in milk samples. For instance, a preliminary study
(Khan et al., 2015) in milk samples added with urea at various

concentrations showed that Raman spectroscopy in combina-
tion with the PLS-based chemometric algorithm could detect
urea mixed in milk samples with an accuracy of >90%.

Another study implemented near-infrared spectroscopy cou-
pled with multivariate analysis for the same purpose and effi-
ciently discriminated adulterated milk samples with urea,

exhibiting excellent values in RMSE = 0,56 and
RMSEP = 0,48% (Mabood et al., 2019).
ducts, N = 52, A = 2, R2X(cum) = 0,87, Q2(cum) = 0,59 (boxes:



Fig. 7 OPLS-DA model comparing cow milk samples with adulterated products, N = 52, A = 2, R2X(cum) = 0,87, Q2(cum) = 0,59

(boxes: Cow samples, circles: Cow milk samples with milk powder, 2 = 5%, 3 = 10%, 4 = 15%, 5 = 20% , skonh & skonh1: Milk

Powder,
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4. Conclusions

This research assessed the fluorescent fingerprint of domesti-
cally produced Greek milk (goat, sheep, cow), thus highlight-
ing the ability of front face SyFS to address milk quality
assurance issues. In particular, the synchronous fluorescent

data of raw milk samples were incorporated into PCA and
OPLS-DA models and after their validation could serve as
low cost, rapid tools for authenticating Greek milk. Specifi-

cally, we attempted to ensure the quality assurance of milk
by delineating the geographical origin and the animal type.
We also performed preliminary experiments to gather first evi-

dence on detecting possible milk adulteration with the addition
of milk powder. From the analysis of three types of domesti-
cally produced milk, we concluded that cow milk is character-

ized by the highest concentration of tryptophan and
metabolites of plant pigments compared to the goat and sheep
milk. The discrimination of milk samples from different animal
types is an important issue for economic reasons, such as the

fortification of the Greek cheese ‘‘Feta”, since PDO (Protected
Denomination of Origin) cheeses are products of high com-
mercial value confined according to legislative and proper

labeling rules. Therefore, the results of our research contribute
to the production of authentic and competitive products.
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