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1H NMR-based metabolomics 
reveals the effect of maternal 
habitual dietary patterns on human 
amniotic fluid profile
Maria Fotiou1, Charalambos Fotakis   2, Foteini Tsakoumaki1, Elpiniki Athanasiadou3, 
Charikleia Kyrkou1, Aristea Dimitropoulou1, Thalia Tsiaka2, Anastasia Chrysovalantou 
Chatziioannou4, Kosmas Sarafidis5, George Menexes6, Georgios Theodoridis   4,  
Costas G. Biliaderis1, Panagiotis Zoumpoulakis2, Apostolos P. Athanasiadis7 &  
Alexandra-Maria Michaelidou1

Maternal diet may influence offspring’s health, even within well-nourished populations. Amniotic 
fluid (AF) provides a rational compartment for studies on fetal metabolism. Evidence in animal models 
indicates that maternal diet affects AF metabolic profile; however, data from human studies are scarce. 
Therefore, we have explored whether AF content may be influenced by maternal diet, using a validated 
food-frequency questionnaire and implementing NMR-based metabolomics. Sixty-five AF specimens, 
from women undergoing second-trimester amniocentesis for prenatal diagnosis, were analysed. 
Complementary, maternal serum and urine samples were profiled. Hierarchical cluster analysis 
identified 2 dietary patterns, cluster 1 (C1, n = 33) and cluster 2 (C2, n = 32). C1 was characterized by 
significantly higher percentages of energy derived from refined cereals, yellow cheese, red meat, 
poultry, and “ready-to-eat” foods, while C2 by higher (P < 0.05) whole cereals, vegetables, fruits, 
legumes, and nuts. 1H NMR spectra allowed the identification of metabolites associated with these 
dietary patterns; glucose, alanine, tyrosine, valine, citrate, cis-acotinate, and formate were the key 
discriminatory metabolites elevated in C1 AF specimens. This is the first evidence to suggest that the 
composition of AF is influenced by maternal habitual dietary patterns. Our results highlight the need to 
broaden the knowledge on the importance of maternal nutrition during pregnancy.

Over the past decades, the field of nutritional epidemiology has generated a large body of evidence indicating that 
maternal nutrition plays a critical role in fetal growth1–4 and pregnancy outcome5. Research regarding the phe-
nomenon termed “fetal programming” and the theory of “fetal origins of adult disease” has initially focused on 
the impact of maternal overnutrition or undernutrition on the growth potential in utero1–4. However, emerging 
data6–9 indicate that even small alterations in dietary quality or quantity may be associated with significant shifts 
in the fetal environment, probably related to increased vulnerability to chronic diseases in adult life.

Amniotic fluid (AF) provides a rational compartment for studies on fetal nutrition and metabolism, since its 
composition reflects both maternal health and fetal status10–13. Scientific evidence10 indicates that this biofluid 
is a complex and dynamic milieu containing nutrients essential for fetal growth; its composition is changing, as 
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pregnancy progresses, and, at the second half of gestation, its content and volume are affected by several factors 
including fetal urination and swallowing, as well as, fetal skin keratinisation10.

The potential effect of maternal diet on the nutrient composition of AF has been demonstrated in animal 
studies14–19. In particular, pregnant rats exhibited a significant increase in AF glucose and decrease in uric acid, as 
the level of carbohydrate increased in the maternal diet14. On the contrary, maternal dietary glucose restriction 
in rats resulted in the reduction of AF methionine and phenylalanine15. Similarly, maternal nutrient restriction in 
ewes markedly reduced total amino acids and polyamines concentration in AF16, while, a “famine diet” in rats also 
influenced AF composition17. Furthermore, Friesen and Innis18 demonstrated that maternal fat intake alters AF 
and fetal intestinal membrane essential n-6 and n-3 fatty acids in rats. In addition, in a very recent study in sows19, 
chitosan oligosaccharide supplementation induced AF metabolic profile modifications.

To the best of our knowledge, published data on the effect of maternal nutrition on human AF composition 
are only limited to the study by Felig et al.20, reporting changes in AF, after 84–90 hours of fasting. Nevertheless, 
it should be highlighted that the effect of maternal habitual diet on the composition of human AF has not been 
yet explored.

Metabolomics is a bio-analytical approach that allows the identification of a large number of metabolites in bio-
logical matrices, essentially reflecting biological processes of the organism21–23. In prenatal medicine, metabolomics 
of human blood, urine, and AF have been used for the evaluation/prognostication of fetal malformations, preterm 
delivery, and other pregnancy complications12,24–40. Furthermore, within the same research field, Wan et al.19  
reported that AF metabolomics provides novel insights into the diet-regulated fetal survival and growth in a pig 
model study.

Hence, the challenge for us was to explore whether maternal habitual dietary patterns influence the compo-
sition of human AF. To accomplish this task, we used a validated food-frequency questionnaire41 and applied 
1H NMR-based metabolomics. It is of interest to note that, although amniocentesis is an invasive procedure 
employed only under specific indications, the realization that AF content may be influenced by maternal diet 
would advance the knowledge on the importance of maternal nutrition during pregnancy.

Results
Identification of dietary clusters.  Sixty-five women were included in the present study, as shown in the 
flow diagram (Fig. 1). Two interpretable and statistically significant (upper tail rule: t = 39.85, df = 63, P < 0.001) 
dietary patterns were identified through Hierarchical Cluster Analysis (HCA). Thirty-three women were grouped 
in cluster 1 (C1), while 32 in cluster 2 (C2). The Discriminant Analysis indicated good classification ability of 
the selected cluster solution, since the agreement between actual and predicted cluster allocation was 93.8%. C1 
and C2 differed (P < 0.05) in the percentages of energy contributed by 10 out of the 20 predefined food groups 
(Table 1). C1 had higher intakes of refined cereals, yellow cheese, red meat, poultry, and “ready-to-eat” foods 
(P < 0.05). The macro- and micro- nutrient intakes, as well as selected dietary indices, reflecting these dietary 
preferences, are given in Table 2. As indicated, C1 had significantly higher energy contributions from total pro-
tein, animal protein, and saturated fatty acids. Additionally, the intake of heme iron was elevated compared to that 
of C2 (P < 0.05). Dietary glycaemic index (GI) was also higher in C1 (P < 0.05). Instead, C2 was characterized 
by significantly higher percentages of energy derived from plant protein, monounsaturated and polyunsaturated 

Figure 1.  Flow diagram of the study.
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fatty acids (P < 0.05) (Table 2). These differences in energy generating nutrients, in combination with the higher 
intake of fibre, folate, vitamin C, vitamin E, magnesium, potassium, and non heme iron (P < 0.05) in C2 (Table 2) 
may ensue from the significantly higher energy contributions from whole cereals, vegetables, fruits, legumes, and 
nuts (Table 1).

The demographic/anthropometric and clinical characteristics of the two dietary clusters are presented in 
Table 3; a borderline statistically significant difference was recorded for ponderal index (P = 0.076).

Analysis of 1H NMR Spectroscopic Data.  Typical standard 1H NMR spectra of human AF, urine, and 
serum with annotations on the identified metabolites are depicted in Fig. 2, Supplementary Figs S1 and S2, 
respectively. Principal Component Analysis (PCA) was implemented to provide an overview on the samples’ 
clustering (Fig. 3 for AF, Supplementary Fig. S3 for urine and serum). Interestingly, a clear trend for clustering 
of the samples was observed along the first component, which explained 58.1% of the metabolic variance in AF, 
60% in urine, and 48% in serum. This clustering indicates that these unsupervised models highlighted metabolic 
differences in relation to the dietary patterns.

Then, we embedded the class information from the dietary clusters into Orthogonal Partial Least 
Squared-Discriminant Analysis (OPLS-DA) models in order to pinpoint the metabolites responsible for the dis-
criminations. The extracted OPLS-DA models classified correctly 89% of the AF samples, 79% of the urine sam-
ples, and 83% of the serum samples.

For AF, the discrimination between the two clusters was evident along the first component (Fig. 4a) and the 
key metabolites, which exhibited a strong correlation with C1 as depicted in the S-line plot, are presented in 
Fig. 4b. We extracted Receiver Operating Characteristic (ROC) curves for each metabolite, in order to elucidate 
the markers that express the impact of habitual diet between the two clusters and avoid false selection. In fact, 
glucose, alanine, tyrosine, valine, citrate, cis-acotinate, and formate exhibited Area Under the curve of the ROC 
(AUROC) > 0.7 (Table 4). These should be considered as the most fitting markers of habitual diet in the AF sam-
ples and their trends framed in box plots are presented in the Supplementary Fig. S4. Metabolites exhibiting an 
0.5 < AUROC < 0.7 and AUROC < 0.5 are, also, presented in Table 4.

For urine samples, the clear separation along the first component (Supplementary Fig. S5a), based on the cor-
responding S-line plot (Supplementary Fig. S5b), was attributed to the metabolites presented in Table 4.

For maternal serum, the extracted OPLS-DA model (Supplementary Fig. S5c) clearly discriminated the sam-
ples along the first component and indicated that the samples belonging to C2 were characterized by higher levels 
of lipoproteins, as depicted in the corresponding S-line plot (Supplementary Fig. S5d). These lipoproteins are 
presented in Table 4.

Finally, the use of validation steps (P < 0.05, Permutation testing, and ROC curves) confirmed that the results 
of all OPLS-DA models for each substrate were unbiased and reliable as described in the Supplementary Figs S6, 
S7, and S8.

Food group

Energy contribution

C1 (n = 33) 
Mean ± SD

C2 (n = 32) 
Mean ± SD P-value*

Refined cereals 13 ± 6 3.9 ± 4.0 <0.001

Whole cereals 2.1 ± 3.3 6.6 ± 4.8 <0.001†

Pasta 6.7 ± 2.8 5.5 ± 2.5 0.082

Rice 4.5 ± 2.4 4.2 ± 2.1 0.595

Vegetables 11 ± 4 16 ± 4 <0.001

Fruits 6.3 ± 3.8 9.7 ± 4.6 0.002

Dairy (milk/yogurt) low fat 2.5 ± 3.3 4.0 ± 4.8 0.296†

Dairy (milk/yogurt) full fat 4.9 ± 6.0 2.6 ± 3.8 0.129†

Feta cheese 5.1 ± 3.3 6.0 ± 3.9 0.305

Yellow cheese 3.3 ± 2.5 2.1 ± 2.3 0.049

Red meat 8.4 ± 3.9 6.6 ± 3.0 0.019

Poultry 3.2 ± 1.8 2.2 ± 1.2 0.011

High fat processed meat 0.5 ± 1.2 0.2 ± 0.4 0.117†

Low fat processed meat 0.4 ± 0.6 0.4 ± 0.7 0.501†

Eggs 0.9 ± 1.1 0.9 ± 0.9 0.999†

Fish 2.1 ± 1.5 2.2 ± 1.6 0.715

Legumes 2.7 ± 2.0 4.1 ± 2.7 0.029

Nuts 0.7 ± 1.4 4.2 ± 3.9 <0.001†

Sweets 8.4 ± 5.0 7.5 ± 5.1 0.467

“Ready-to-eat” foods 2.2 ± 1.9 1.3 ± 1.1 0.035

Table 1.  Percentages of energy contribution of food groups between the two dietary clusters, cluster 1 (C1) and 
cluster 2 (C2). *P-value < 0.05 represents significant differences in mean values according to the results of t-test 
or Mann-Whitney test indicated by †. SD: standard deviation.
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Metabolite pathway analysis.  After feature selection, metabolites exhibiting AUROC > 0.7 in AF samples 
were subjected to pathway analysis in order to relate the framed metabolic patterns to the most relevant pathways. 
The result of the pathway analysis for AF samples is depicted in Supplementary Fig. S9. Specifically, the pathways 
of importance containing at least 2 compounds involve the aminoacyl-tRNA and the citric acid cycle.

Metabolite Set Enrichment Analysis (MSEA), using Metaboanalyst 3.042, was performed for the metabolites 
in AF exhibiting AUROC > 0.7. MSEA monitors whether these metabolites are represented more often than 
expected by chance and in an attempt to identify biologically meaningful patterns. The results pointed to protein 
biosynthesis as the only statistically significant pathway (P < 0.05) (Supplementary Fig. S10).

Discussion
The present study is the first report attempting to probe the effects of maternal habitual diet on human AF com-
position, suggesting that the nutritional environment of AF is sensitive to female diet in the 2nd trimester of preg-
nancy. The metabolic modifications in AF induced by different maternal dietary habits could be linked to amino 
acid metabolism, glucose metabolism, and citric acid cycle.

C1 (n = 33) Mean ± SD C2 (n = 32) Mean ± SD P-value*

Energy (kcal) 1775 ± 289 1810 ± 283 0.622

% Energy from total protein 16 ± 2 14 ± 2 0.001

% Energy from plant protein 4.8 ± 0.6 5.2 ± 0.8 0.011

% Energy from animal protein 11 ± 2 8.9 ± 1.6 <0.001

% Energy from total lipids 45 ± 4 46 ± 4 0.058

% Energy from MUFA 22 ± 2 24 ± 2 0.003

% Energy from PUFA 5.6 ± 0.8 6.7 ± 1.5 <0.001

% Energy from SFA 14 ± 2 13 ± 2 0.015

% Energy from carbohydrates 38 ± 4 37 ± 4 0.516

Fibre (g) 14 ± 4 20 ± 4 <0.001

Cholesterol (mg) 240 ± 78 210 ± 58 0.086

Folate (mcg) 172 ± 50 235 ± 47 <0.001

Vitamin C (mg) 84 ± 42 124 ± 60 0.002

Vitamin E (mg) 12 ± 5 17 ± 6 <0.001

Calcium (mg) 909 ± 222 887 ± 300 0.732

Magnesium (mg) 206 ± 40 259 ± 63 <0.001

Potassium (mg) 2068 ± 446 2448 ± 532 0.003

Sodium (mg) 2073 ± 380 1886 ± 489 0.089

Iron heme (mg) 1.4 ± 0.4 1.2 ± 0.4 0.025

Iron non heme (mg) 6.2 ± 1.7 7.1 ± 1.5 0.028

Dietary Glycaemic Index 76 ± 6 71 ± 7 0.004

Dietary Glycaemic Load 128 ± 35 119 ± 24 0.216

Time since last meal (hour) 2.9 ± 1.2 3.1 ± 1.2 0.520

Table 2.  Nutritional profile (energy, macro- and micro- nutrient intakes, dietary indices) of the two dietary 
clusters, cluster 1 (C1) and cluster 2 (C2). *P-value < 0.05 represents significant differences in mean values 
according to the results of t-test. SD: standard deviation; SFA: Saturated fatty acids; MUFA: Monounsaturated 
fatty acids; PUFA: Polyunsaturated fatty acids.

Characteristics C1 (n = 33) Mean ± SD C2 (n = 32) Mean ± SD P-value*

Maternal age (year) 36 ± 5 37 ± 4 0.332

Pre-pregnancy BMI (kg/m2) 25.8 ± 6.6 24.2 ± 4.9 0.274

Women weight change until amniocentesis (kg) 3.8 ± 4.4 4.8 ± 2.5 0.265

Amniocentesis age (week) 19 ± 2 19 ± 1 0.751

Estimated fetal weight (g) 300 ± 100 301 ± 99 0.996

Gestational age at birth (week) 38 ± 1 39 ± 2 0.769

Birthweight (g) 3129 ± 424 3144 ± 642 0.914

Neonatal length (cm) 50.2 ± 2.1 49.7 ± 2.2 0.385

Birth weight centile 42 ± 23 41 ± 27 0.946

Ponderal index (100*g/cm3) 2.5 ± 0.2 2.6 ± 0.3 0.076

Table 3.  Demographic/anthropometric and clinical characteristics of the 65 participants and their offspring for 
the two dietary clusters, cluster 1 (C1) and cluster 2 (C2). *P-value < 0.05 represents significant differences in 
mean values according to the results of t-test. SD: standard deviation; BMI: body mass index.
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A detailed comparative analysis of our results against published literature is not feasible due to the limited data 
available in this area. To the best of our knowledge, there is only one relevant study in humans by Felig et al.20, 
where paralleling changes were reported in maternal plasma and AF, i.e. increase in branched-chain amino acids 
and decrease in alanine levels, after 84–90 hours of fasting, at 16–22 weeks of gestation. Evidence from animal 
models indicates, also, that maternal diet can affect the complex nutrient matrix of AF14–19.

Figure 2.  1H NMR spectra of amniotic fluid sample with annotation on the identified metabolites. 1:valine; 
2:leucine; 3:isoleucine; 4:isobutyrate; 5:2-hydroxy-3-methylbutyrate; 6:2-hydroxybutyrate; 7:lactate; 
8:3-hydroxybutyrate; 9:alanine; 10:lysine; 11:arginine; 12:acetate; 13:acetone; 14:acetoacetate; 15:glutamine; 
16:glutamate; 17:citrate; 18:methylamine; 19:aspartate; 20:dimethylamine; 21:creatine; 22:creatinine; 23:choline; 
24:phosphocholine; 25:betaine; 26:methanol; 27:α-D-glucose; 28:β-D-glucose; 29:glycine; 30:glycerol; 31:myo-
inositol; 32:threonine; 33:tyrosine; 34:histidine; 35:phenylalanine; 36:formate.

Figure 3.  PCA model of amniotic fluid samples. A = 5; N = 58; R2(cum) = 0.82; Q2(cum) = 0.70.  Cluster 1 
(C1)  Cluster 2 (C2).
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To facilitate the interpretation of our results, perturbed metabolites identified in AF, as well as their associ-
ated metabolic pathways, are depicted in Fig. 5. As shown in Fig. 5a, higher AF glucose levels were recorded for 
C1, although no difference in maternal serum glucose was found between the two dietary clusters. Koski and 
Fergusson14 reported – in rats being in a post-absorptive (fed) state – no significant changes in maternal blood 
glucose concentrations, but increases in AF glucose with increases in maternal dietary carbohydrate intake levels. 
Considering that there was no statistically significant difference between C1 and C2 either for the time since 
last meal, or for carbohydrate intake, a plausible explanation for our finding may be related to the quality of 
carbohydrate. The latter can be linked to the higher dietary GI of C1 which may, in turn, alter the rate of glucose 
flux. It is important to note that glucose is the major energy substrate for fetal development and may be utilized, 
through conversion to other compounds, for protein synthesis and new tissue growth43. Commensurate with 
the higher AF glucose in C1, the higher levels of the essential amino acids histidine, phenylalanine, valine, and 
of the non-essential ones, alanine and tyrosine (Fig. 5a), may simply indicate either a differential rate to meet 
the requirements for elementary building blocks or a comparative under-use in gluconeogenesis. Furthermore, 
the increased levels of valine in AF of C1 may contribute to the balance between the branched chain amino 
acids44, known to be the major source of nitrogen for the ureogenic amino acids, alanine and glutamine45. At this 
point it is tempting to hypothesize that the relative increases in AF metabolites of C1 might reflect an increased 
energy availability ensuing from the increased fluxes of substrates, as echoed by the different combination of 
dietary factors characterizing this cluster. This is further supported by the fact that citrate is also elevated in C1, 
exhibiting a similar trend with glucose; a finding that is in agreement with the results found by Wan et al.19, who 
reported that citrate fluctuation in AF corresponds to glucose level fluctuations. The relative abundance of citrate 
in tandem with cis-acotinate in C1 may, thus, also suggest a differential management of the metabolic pool, since 
citric acid cycle may, also, provide building blocks for important biomolecules (Fig. 5a). Whether these changes 
direct/promote a metabolic switch that affects fetal development/growth, as well as the risk to develop chronic 
diseases in adult life, remains an open question. Accordingly, the relative higher AF levels of fumarate, observed 
in C1, could be related to a distinct intermediary metabolic rate, given that fumarate is situated at an important 
metabolic junction, performing key physiological functions; i.e. (i) its synthesis links the urea and the citric acid 
cycles (Fig. 5a); (ii) fumarate is involved in the cataplerotic pathway of phenylalanine and tyrosine (Fig. 5a); (iii) 
fumarate is generated during purine biosynthesis (Fig. 5b), where formate – increased in AF of C1, as well – acts 
as a potential alternative single-carbon source. We dare to speculate that formate in AF may be a marker of the 
biological consequences of the quality of dietary intake, since it is suggested in the literature46 that formate is 
excreted as a secondary metabolite in the case of high GI diets. The above speculation is further supported by the 
fact that, in the last decade, important evidence has shown that during pregnancy, maternal gut microbiota or its 
metabolic products may be transferred to the fetus through the placenta47,48.

With respect to pregnancy and fetal nutrition, it was of interest to explore how the habitual dietary patterns 
would be reflected in the metabolomic data of maternal compartments, i.e. urine and serum. As expected, 1H 
NMR spectra of maternal urine allowed the identification of metabolites associated with the two dietary patterns. 
Urine is the biofluid most frequently used to study nutrient intake49–51, since it is the body’s liquid waste repos-
itory21. At this point it is worth mentioning that during pregnancy the urine metabolome is also influenced by 
the remarkable physiological forces set in motion by conception52. Within this frame, the excretion of alanine 
increases rapidly in early pregnancy and continues to increase as pregnancy proceeds53. However, since the two 
clusters did not differ in gestational age, the increased alanine excretion in C1 could be attributed to dietary 
intake. Holmes et al.54 reported that urinary excretion of alanine is higher in people consuming a predominantly 
animal diet, proposing a direct association between excreted alanine and blood pressure. Furthermore, Bertram 
et al.55 and Dragsted56 ascribed the higher levels of excreted urea to the higher red meat consumption and higher 
animal protein intake. In line with our observation, in the study conducted by O’Sullivan et al.57, higher urinary 

Figure 4.  (a) OPLS-DA model of amniotic fluid samples. A = 1 + 1; N = 54; R2X(cum) = 0.66; R2Y(cum) = 0.76; 
Q2(cum) = 0.64.  Cluster 1 (C1)  Cluster 2 (C2). (b) S-Line plot (1:valine; 2:alanine; 3:acetate; 4:citrate; 
5:glutamine; 6:cis-acotinate; 7:glucose; 8:tyrosine; 9:formate, higher in C1).
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dimethylglycine and trimethylamine N-oxide (TMAO) were identified in a dietary cluster characterized by 
higher habitual intakes of white bread, sugars/preserves, red meat, red-meat dishes, and meat products, and a 
lower contribution from vegetables. Interestingly, dimethylglycine, TMAO, creatine, and creatinine, as well as 
choline, betaine, and formate – increased in C1 - are metabolically linked in two different pathways of “choline 
metabolism” (Fig. 5c); (i) choline oxidation into betaine and (ii) bacterial degradation of choline into TMAO 
by the gut microbiome. Regarding formate excretion, it has been reported to be elevated in a group of adults 
following a high GI diet46. Moreover, the presence of bile acids in maternal urine during pregnancy has been 

Substrate Metabolites
δ (1H shift) 
ppm Assignment

Multi-
plicity AUROC

Higher in 
cluster

Amniotic fluid

glucose 5.18, 4.55, 
3.4–4.0 various, H1 d, d, m >0.7 C1

alanine 1.42 CH3 d >0.7 C1

glutamine 2.44 half γ-CH2 m <0.5 C1

tyrosine 6.8, 7.13 CH, CH d, d >0.7 C1

valine 0.94, 1.03 CH3, CH3 d, d >0.7 C1

acetate 1.87 CH3 s <0.5 C1

citrate 2.53, 2.63 half CH2, half CH2 d, d >0.7 C1

cis-acotinate 3.45 CH2 d >0.7 C1

formate 8.4 CH s >0.7 C1

histidine 7.03, 7.84 H4, H2 s, s 0.5–0.7 C1

mannose 5.18 H6 d 0.5–0.7 C1

phenylalanine 7.22, 7.33 H2 + H6, H3 + H5 m, m 0.5–0.7 C1

1-methyl-histidine 7.07, 7.80 4-CH, 2-CH s, s 0.5–0.7 C1

fumarate 6.81 CH3 s 0.5–0.7 C1

hippurate 7.59, 7.87 H3/H5, H2/H6 t, d 0.5–0.7 C1

Maternal urine

alanine 1.42 CH3 d >0.7 C1

glutamine 2.44 half γ-CH2 m 0.5–0.7 C1

isoleucine 0.95, 1.04 δ-CH3, β-CH3 t, d 0.5–0.7 C1

leucine 0.95 δ-CH3 d 0.5–0.7 C1

lysine 1.66–1.88 δ-CH2, β-CH2 m, m 0.5–0.7 C1

valine 0.94, 1.03 CH3, CH3 d, d >0.7 C1

citrate 2.53, 2.63 half CH2, half CH2 d, d >0.7 C1

formate 8.4 CH s 0.5–0.7 C1

isobutyrate 1.05, 2.41 CH3, CH d, dd >0.7 C1

methyl-succinate 1.08 CH3 d <0.5 C1

pyroglutamate 2.39 CH2 m <0.5 C1

2-hydroxyisobutyrate 1.36 CH3 s 0.5–0.7 C1

2-hydroxyglutarate 2.42 CH2 t 0.5–0.7 C1

3-hydroxyisovalerate 1.26 CH3 s 0.5–0.7 C1

betaine 3.21 CH3 s >0.7 C1

choline 3.14 N(CH3)3 s >0.7 C1

dimethylglycine 2.93 CH3 s >0.7 C1

creatine 2.98 CH3 s >0.7 C1

creatinine 3 CH3 s >0.7 C1

trimethylamine N-oxide 3.19 CH3 s >0.7 C1

urea 5.78 NH2 + NH2 m 0.5–0.7 C1

bile acids 0.6–0.7 — m <0.5 C1

imidazole 7.27 CH s <0.5 C1

Maternal serum

cholesterol-VLDL 0.7 C18-CH3 m 0.5–0.7 C2

LDL1/VLDL1 0.74–0.85 CH3(CH2)n/ CH3CH2CH2C= m >0.7 C2

LDL2/VLDL2 1.16–1.25 (CH2)n/CH2CH2CH2CO m >0.7 C2

lipids mainly VLDL 1.88 CH=CHCH2 m 0.5–0.7 C2

lipids 2.24 CH2CO m >0.7 C2

lipids 3.17 C=CCH2C=C m >0.7 C2

polyunsaturated fatty acids 5.34–5.44 CH=CHCH2CH=CH, =CHCH2CH2 m >0.7 C2

Table 4.  List of metabolite changes in amniotic fluid, maternal urine, and maternal serum corresponding 
to the two dietary clusters, cluster 1 (C1) and cluster 2 (C2). δ (1H shift) ppm corresponds to signals used for 
integration; s: singlet; d: doublet; t: triplet; dd: doublet of doublets; m: multiplet; AUROC: Area under the curve 
of the receiver operating characteristic.
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suggested in the literature31,38; however, the higher levels of these important signalling biomolecules in C1 merit 
further investigation, preferably by quantitative LC-MS/MS analysis.

Regarding the maternal circulatory metabolome, it was dominated by signals from lipids and lipoproteins. 
Hyperlipidemia of normal pregnancy results in high blood HDL, LDL, VLDL, and triglycerides, accompanied 
by increases in the length of fatty acid chain and the degree of unsaturation38,58–60. The present study showed 
that this expected increase in maternal lipids was, further, promoted in women of C2, whose dietary preferences 
were associated with higher total lipid, monounsaturated and polyunsaturated fatty acids intakes, compared to 
C1. It is of interest to mention that in a very recent study61, higher blood total cholesterol levels were recorded in 
pregnant women following a dietary pattern characterized, among others, by higher intakes of fruits, vegetables, 
whole grains, and low-fat dairy. However, due to the strong influence of pre-pregnancy lipid levels and maternal 
hormonal status during pregnancy on lipid metabolism59,62, no clear biochemical interpretation may be advanced 
at least at this stage.

Our results express the potential prospects of using metabolomics in the quest for habitual diet induced met-
abolic signals in AF, in spite of existing limitations related to genetic background information. Furthermore, to 
obtain a more accurate picture of the overall metabolic changes, confounding factors, such as maternal hormonal 
status have to be assessed. Nevertheless, the results of the current study have to be interpreted in the light of its 
strengths, concerning the experimental approaches undertaken. Firstly, the fact that in the present study we ana-
lysed AF after excluding samples from pregnancies that (i) were complicated by structural malformations and/
or chromosomal abnormalities of the fetus, (ii) were characterised by obstetrical or medical disorders, or (iii) 
ended in delivering a small or large for gestational age infant, eliminated the potential overlapping with metabolic 
effects attributable to these aforementioned fetal/maternal disturbances12,24–27,29,30,33–35,40. Moreover, the parallel 
analyses of the three biological specimens (obtained at the time of genetic amniocentesis) provide complementary 
information of fetal metabolism, through AF analysis, and maternal metabolism, by the excretive and circulating 
characteristics of the mother. The great advantage of using untargeted metabolomics is that all metabolites (those 
present in detectable concentrations) are measured simultaneously. Thus, metabolic profiling of AF, as well as of 
maternal urine and serum, in conjunction with detailed recording of the maternal complex dietary preference 
background, does offer a more holistic approach that leads to a better description of the metabolic trajectory of 
the fetus, with respect to maternal nutrition.

Figure 5.  Schematic diagram illustrating the metabolic pathways that are possibly influenced by maternal 
habitual diet: (a) energy metabolism, amino acids metabolism, and urea cycle; (b) fumarate generation during 
purine biosynthesis; (c) choline metabolism.
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In conclusion, our data provide the first evidence to suggest that maternal habitual dietary patterns influence 
the metabolic profile of human AF. Notably, very recently, Kermack et al.63 reported that differences in women’s 
diet quality can alter the amino acid concentration of human uterine fluid. Taken together, these results highlight 
the need to raise nutritional awareness and provide a framework for further research on the effect of mater-
nal nutrition on pregnancy evolution and outcome, using a combination of biological matrices and analytical 
platforms.

Methods
Study population.  The present study was part of the Embryometabolomics project64. Women in the second 
trimester of pregnancy were invited to participate in the Embryometabolomics project, while visiting the 1st 
Department of Obstetrics and Gynecology, Papageorgiou General Hospital, Thessaloniki, Greece, to undergo 
amniocentesis for prenatal diagnosis. Indications for amniocentesis included maternal age, ultrasound markers, 
family history of genetic disorders, previous fetal aneuploidy, and maternal anxiety. Women were informed about 
the objectives of the Embryometabolomics project and gave their signed consents; women who agreed to partic-
ipate completed a structured interview concerning maternal demographic/anthropometric characteristics, while 
respective samples of AF were stored at −80 °C until further analysis.

The methodological strategy of the present study is depicted in Fig. 1. From those women who were enrolled 
in the Embryometabolomics project, dietary information was available from 72 women (Fig. 1) and, as such, they 
were recruited for the present study. Finally, 65 were included, as they met the following criteria: (a) singleton 
pregnancy, (b) absence of structural malformations and/or chromosomal abnormalities of the fetus, (c) delivery 
of an appropriate for gestational age infant (birth weight between the 10th and 90th centile), (d) absence of obstet-
rical or medical complications, such as preeclampsia or gestational diabetes mellitus, and (e) dietary energy intake 
within the allowable range for pregnant women65,66.

Ethical approval was obtained from the Bioethics Committee of the Medical School of the Aristotle University 
in Thessaloniki, Greece (A19479–26/2/08). All methods were performed in accordance with the relevant guide-
lines and regulations.

Biofluid collection.  All biological specimens were collected under non-fasting conditions, due to medi-
cal restrictions in controlling/limiting pregnant women’s diet. AF specimens were retrieved using a 20 G spinal 
needle under ultrasound guidance. Blood samples were collected, allowed to clot, and centrifuged at 3500 g for 
5 min; serum was, then, aliquoted. Spot urine samples were collected in sterile containers. Biofluids were stored 
at −80 °C until further preparation and analysis.

Dietary assessment.  Dietary assessment was carried out using a semi-quantitative Food Frequency 
Questionnaire (FFQ) validated for pregnant women41. All dietary information were collected prior the ante-
natal appointment via personal interview by a registered dietician or a well-trained interviewer (food 
scientist-nutritionist). For the conversion of women responses into dietary data, the Microsoft excel database was 
used as described by Athanasiadou et al.41.

Statistical Analyses for identification of dietary patterns.  HCA67,68 was used to identify groups of 
women consuming a similar dietary pattern. Prior to cluster analysis, the individual food items were categorized 
into 20 predefined food groups – as shown in Table 1 – based on similarities in their nutrient profiles and culinary 
usage/parameters with potential relevance to food culture69–79.

For entry into the cluster analysis, the percentage of energy contributed by each of the 20 food groups was 
selected as input variable. Cluster construction was based on Ward’s minimum variance criterion80, while the 
squared Euclidian distance was used as a dissimilarity measure67. The food-group data were transformed into 
standardized z scores, before clustering, so that they had equal weights when distances were computed72. The 
theoretical background for adopting the above mentioned methodological scheme for HCA is reported by Taxidis 
et al.81.

Runs of cluster formation were performed to establish the best cluster configuration. Criteria for cluster solu-
tions were nutritional meaningfulness and a reasonable sample size. The solution was confirmed by the tree dia-
gram resulting from the Ward method of cluster analysis. Furthermore, Discriminant Analysis was carried out to 
examine the classification ability of the cluster solution82. The statistical significance of the final cluster solution 
was evaluated with the upper-tailed rule, using the Clustan ver. 5.2783.

In order to compare normally and non-normally distributed parameters between the clusters, Student’s t test 
for independent samples and Mann-Whitney test were used, respectively. In Mann-Whitney test, the observed 
significance level (P-value) was computed with the Monte-Carlo simulation method84 utilizing 10000 random 
samples. All statistical analyses were performed with SPSS v.15.0 (SPSS Inc., Chicago, IL). The significance level 
was predetermined at P  < 0.05.

NMR spectroscopy.  Sample preparation.  All NMR spectra were acquired on a Varian-600MHz NMR 
spectrometer equipped with a triple resonance probe {HCN} at 25 °C. The Carr-Purcell-Meiboom-Gill (CPMG) 
pulse sequence was applied with 128 transients collected with 64 K data points to AF, urine, and serum samples. 
The samples were thawed at room temperature 60 min before performing the NMR experiments.

AF: 400 μL D2O and 150 μL phosphate buffer in D2O were added in lyophilized samples. After centrifugation 
(4500 g, 15 °C, 5 min), 50 μL sodium maleate was added as internal standard to 500 μL of the supernatant and the 
sample was transferred to 5 mm NMR tubes.
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Urine: Samples were prepared by adding 150 μL phosphate buffer in D2O to 400 μL urine. After centrifugation 
(10000 g, 4 °C, 10 min), 50 μL sodium trimethylsilyl propionate (TSP) was added as internal standard to 500 μL of 
the supernatant and transferred to 5 mm NMR tubes.

Serum: Samples were prepared by adding 140 μL phosphate buffer in D2O to 400 μL serum. After centrifuga-
tion (10000 g, 4 °C, 10 min), 50 μL sodium maleate was added as internal standard to 500 μL of the supernatant 
and transferred to 5 mm NMR tubes.

Sodium maleate was chosen as reference standard for serum and AF since it is suitable for CPMG pulse 
sequence and provides a distinct peak in the 1H NMR spectrum85. Relaxation delay was set to 6 s. Proton spectra 
were referenced at the resonance peak of sodium maleate (5.95 ppm). Receiver Gain was kept constant for all 
acquisitions.

A series of 2D experiments, gCOSY, zTOCSY, gHMBCad, gHSQCad were recorded at 25 °C and permit-
ted the assignment of metabolites. The acquisition parameters for 2D NMR experiments are described in the 
Supplementary Material. The interpretation of 2D spectra was performed with the use of MestReNova v.10.1 
software. The identification procedure was also assisted by literature data12,24,28,31,38, a reference metabolite 1H 
NMR database (Chenomx NMR Suite 7.0) and an in-house fully automated metabolite identification platform86.

All 1H NMR spectra were phase and baseline corrected.

Data reduction and spectral alignment.  The 1H NMR spectra were reduced into buckets of 0.0001 ppm and the 
D2O (4.6–4.8 ppm) region was removed. The spectra were aligned, normalized to the standardized area of the 
reference compound and converted to ASCII format using the Mnova processing template.

Statistical Analyses for 1H NMR data.  The SIMCA-P version 14.0 (Umetrics, Umeå, Sweden) was facil-
itated. The spectral data were mean-centered Pareto scaled (Par) and the PCA, as well as the OPLS-DA models 
were extracted at a confidence level of 95%. The mathematical background and applications of these methods 
have been extensively discussed elsewhere87.

The online software Metaboanalyst 3.0 was utilized42 for biomarker discovery, classification and pathway 
mapping. A hypergeometric test using over-representation analysis and pathway topology analysis related these 
metabolites to metabolic pathways.

Identification of important Features in the OPLS-DA models.  Feature selection for the OPLS-DA models was 
based on variable importance in projection (VIP) scores larger than 0.7 and P(corr) > 0.2 to reveal the variables 
which bear class discriminating power. S-line plots were facilitated to pinpoint those metabolites that contribute 
to the samples’ discrimination.

Model Validation.  The validation steps followed by Fotakis et al.85 were implemented in this work, as 
described in the Supplementary Material.

Data availability.  All data generated or analyzed during this study are included in this published article (and 
its Supplementary Information files).
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