

Open BioMedical Data for Integrative Analysis

Ioannis Tsamardinos

Associate Professor, Computer Science Department, University of Crete Founder & CEO, Gnosis Data Analysis PC
Affiliated Faculty, ICS-FORTH

Data Repositories in Biomedicine

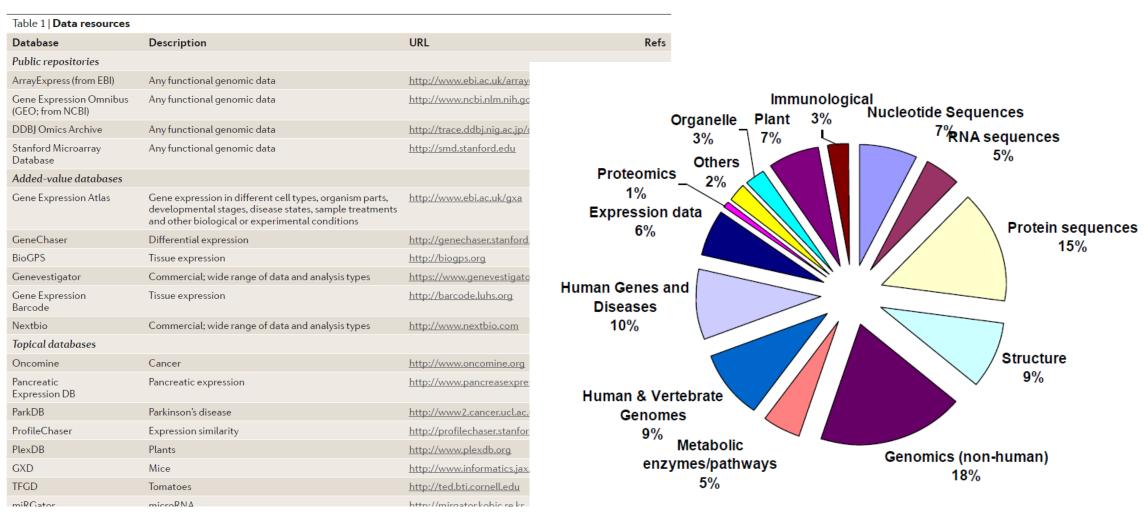


Figure 1. Subject matter of biological databases (2005)

Source: Elixir strategy for data resources report

Constructing a Statistical Model

Rule-Based Model (Decision Tree)

If AFFX-BloC-5 is Overexpressed and

AFFX-BloDn-5 is Underexpressed

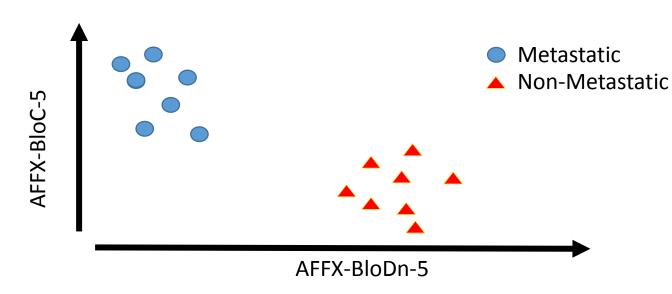
Then

Classify as Metastatic

Else

Classify as **Non-Metastatic**

Metastatic = sign ($0.5 \times AFFX-BloC-5 - 0.5 \times AFFX-BloDn-5 + 3$)



Metastatic

Expression Values

Sample

								Wietastatic
	Genes / Probe Sets							?
	AFFX-BloB-5_at	AFFX-BloB-M_at	AFFX-Blob-3_at	AFFX-BloC-5_at	•••	Affx-Bloc-3_at	AFFX-BloDn-5_at	
1	123.00	1.00	2,3	12.00		23.00	34.00	Yes
2	323.00	23.00	4,54	2.00		21.00	65.00	No
								No
								No
Ν	232.00	4,5	23.00	0,55		75.00	343.00	Yes

Constructing a Statistical Model

Rule-Based Model (Decision Tree)

If AFFX-BloC-5 is Overexpressed and

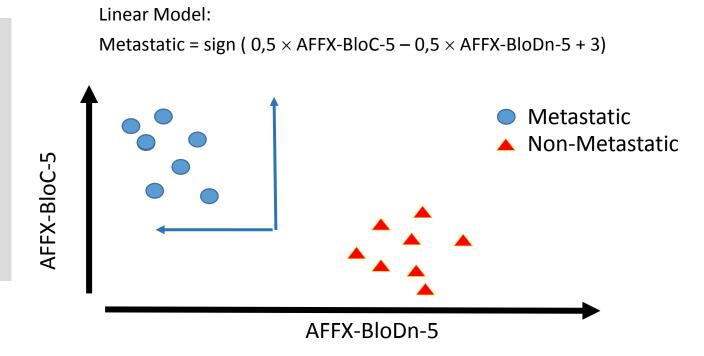
AFFX-BloDn-5 is Underexpressed

Then

Classify as Metastatic

Else

Classify as **Non-Metastatic**



Metastatic

Expression Values

Sa	m	pl	е

	Genes / Probe Sets							?
	AFFX-BloB-5_at	AFFX-BloB-M_at	AFFX-Blob-3_at	AFFX-BloC-5_at	•••	Affx-Bloc-3_at	AFFX-BloDn-5_at	
1	123.00	1.00	2,3	12.00		23.00	34.00	Yes
2	323.00	23.00	4,54	2.00		21.00	65.00	No
								No
								No
N	232.00	4,5	23.00	0,55		75.00	343.00	Yes

Constructing a Statistical Model

Rule-Based Model (Decision Tree)

If AFFX-BloC-5 is Overexpressed and

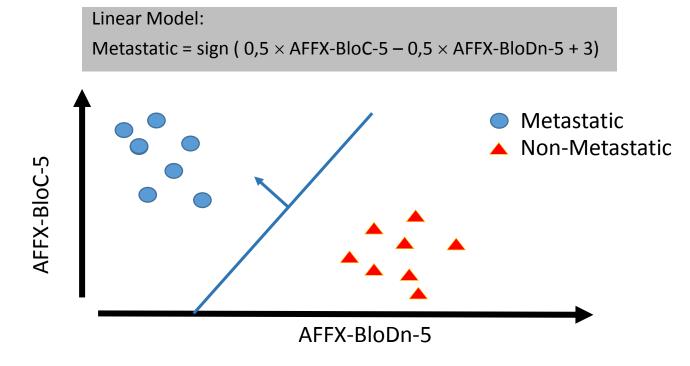
AFFX-BloDn-5 is Underexpressed

Then

Classify as Metastatic

Else

Classify as **Non-Metastatic**



Metastatic

Expression Values

_		
Sam	nla	
Jaiii	$\mathbf{p}_{\mathbf{i}}\mathbf{c}$	

	Genes / Probe Sets							?
	AFFX-BloB-5_at	AFFX-BloB-M_at	AFFX-Blob-3_at	AFFX-BloC-5_at	•••	Affx-Bloc-3_at	AFFX-BloDn-5_at	
1	123.00	1.00	2,3	12.00		23.00	34.00	Yes
2	323.00	23.00	4,54	2.00		21.00	65.00	No
								No
								No
N	232.00	4,5	23.00	0,55		75.00	343.00	Yes

Reproducibility of Statistical Analysis

ANALYSIS

genetics generation

Repeatability of published mi analyses

John P A Ioannidis^{1–3}, David B Allison⁴, Catherine A Ball⁵, Issa Mario Falchi^{8,9}, Cesare Furlanello¹⁰, Laurence Game¹¹, Giusep Michael Nitzberg⁵, Grier P Page^{4,12}, Enrico Petretto^{11,13} & Vera

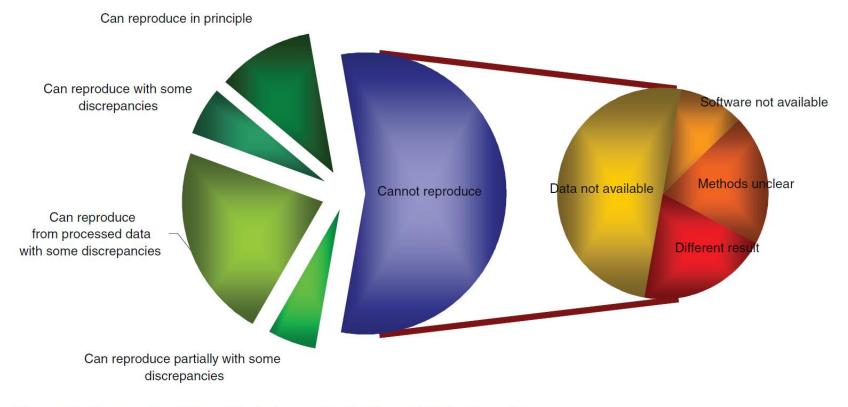


Figure 1 Summary of the efforts to replicate the published analyses.

Development of Novel Methods

Journal of Machine Learning Research 13 (2012) 1097-1157

Submitted 3/11: Revised 11/11: Published 4/12

Towards Integrative Causal Analysis of Heterogeneous Data Sets and Studies

Ioannis Tsamardinos* Sofia Triantafillou* Vincenzo Lagani

Institute of Computer Science
Foundation for Research and Technology - Hellas (FORTH)
N. Plastira 100 Vassilika Vouton
GR-700 13 Heraklion, Crete, Greece

Editor: Chris Meek

TSAMARD@ICS.FORTH.C STRIANT@ICS.FORTH.C VLAGANI@ICS.FORTH.C

Name	Reference	# istances	# vars	Group Size	Vars type	Scient. domain
Covtype	Blackard and Dean (1999)	581012	55	55	N/O	Agricultural
Read	Guvenir and Uysal (2000)	681	26	26	N/C/O	Business
Infant-mortality	Mani and Cooper (2004)	5337	83	83	N	Clinical study
Compactiv	Alcalá-Fdez et al. (2009)	8192	22	22	C	Computer science
Gisette	Guyon et al. (2006a)	7000	5000	50	C	Digit recognition
Hiva	Guyon et al. (2006b)	4229	1617	50	N	Drug discovering
Breast-Cancer	Wang (2005)	286	17816	50	C	Gene expression
Lymphoma	Rosenwald et al. (2002)	237	7399	50	C	Gene expression
Wine	Cortez et al. (2009)	4898	12	12	C	Industrial
Insurance-C	Elkan (2001)	9000	84	84	N/O	Insurance
Insurance-N	Elkan (2001)	9000	86	86	N/O	Insurance
p53	Danziger et al. (2009)	16772	5408	50	C	Protein activity
Ovarian	Conrads (2004)	216	2190	50	C	Proteomics
C&C	Frank and Asuncion (2010)	1994	128	128	C	Social science
ACPJ	Aphinyanaphongs et al. (2006)	15779	28228	50	C	Text mining
Bibtex	Tsoumakas et al. (2010)	7395	1995	50	N	Text mining
Delicious	Tsoumakas et al. (2010)	16105	1483	50	N	Text mining
Dexter	Guyon et al. (2006a)	600	11035	50	N	Text mining
Nova	Guyon et al. (2006b)	1929	12709	50	N	Text mining
Ohsumed	Joachims (2002)	5000	14373	50	C	Text mining

Table 1: Data Sets included in empirical evaluation of Section 6.3. N- Nominal, O - Ordinal, C - Continuous.

Gene expression

A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis

Alexander Statnikov^{1,*}, Constantin F. Aliferis¹, Ioannis Tsamardinos¹, Douglas Hardin² and Shawn Levy¹

Nashville, TN, USA

Received on January 21, 2004; revised on July 29, 2004; accepted on September 10, 2004 Advance Access publication September 16, 2004

Table 1. Cancer-related human gene expression datasets used in this study

Dataset name	Diagnostic task	Number of				Max.	Reference	
		Samples	Variables (genes)	Categories	Variables/ samples	prior (%)		
11_Tumors	11 various human tumor types	174	12 533	11	72	15.5	Su et al. (2001)	
14_Tumors	14 various human tumor types and 12 normal tissue types	308	15 009	26	49	9.7	Ramaswamy et al. (2001)	
9_Tumors	9 various human tumor types	60	5726	9	95	15.0	Stuanton et al. (2001)	
Brain_Tumor1	5 human brain tumor types	90	5920	5	66	66.7	Pomeroy et al. (2002)	
Brain_Tumor2	4 malignant glioma types	50	10 367	4	207	30.0	Nutt et al. (2003)	
Leukemia1	Acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL) B-cell and ALL T-cell	72	5327	3	74	52.8	Golub <i>et al.</i> (1999)	
Leukemia2	AML, ALL and mixed-lineage leukemia (MLL)	72	11 225	3	156	38.9	Armstrong et al. (2002)	
Lung_Cancer	4 lung cancer types and normal tissues	203	12 600	5	62	68.5	Bhattacherjee et al. (2001)	
SRBCT	Small, round blue cell tumors (SRBCT) of childhood	83	2308	4	28	34.9	Khan et al. (2001)	
Prostate_Tumor	Prostate tumor and normal tissues	102	10 509	2	103	51.0	Singh et al. (2002)	
DLBCL	Diffuse large B-cell lymphomas (DLBCL) and follicular lymphomas	77	5469	2	71	75.3	Shipp et al. (2002)	

¹Department of Biomedical Informatics and ²Department of Mathematics, Vanderbilt University,

Challenges and Competitions

Cause-Effect Pairs challenge (IJCNN 2013 and NIPS 2013)

Given samples of pairs of variables $\{A, B\}$, find whether A is a cause of B.

Consider for instance a target variable B, like occurence of "lung cancer" in patients. The goal would be to find whether a factor A, like "smoking", might cause B. The objective of the challenge is to rank

pairs of variables {A, B} to prioritize experimental verifications of the conjecture that A causes B.

[www] Challenge web site (data available)

[Wsp] IJCNN 2013 and NIPS 2013

[Resu] Results

[Code] Sample code (Python). Winner1: ProtoML, Winner2: Jarfo, Winner3: FirFID.

[JMLR]

[CiML]

Multi-Modal Gesture Challenge (ICMI 2013)

Gestures accompany speech, can they help improving speech recognition?

Kinect is revolutionizing the field of gesture recognition given the set of input data modalities it provides, including RGB image, depth image (using an infrared sensor), and audio. Gesture recognition is genuinely important in many multi-modal interaction and computer vision applications, including

image/video indexing, video surveillance, computer interfaces, and gaming. It also provides excellent benchmarks for algorithms.

[www] Challenge web site (data available)

[Wsp] ICMI 2013

[Resu] Results

[Code] Sample code (Matlab)

[JMLR] Special topic on gesture recognition

[CiML]

Neural Connectomics Challenge (WCCI 2014, ECML 2014)

Discover the structure of a neural network from fluorescence imaging of the neural activity. Recovering the exact wiring of the brain (connectome) including nearly 100 billion neurons, having on average 7000 synaptic connections to other neurons, is a daunting task. Using neuro imaging techniques and methods of network reconstruction, including causal discovery algorithms promises to greatly help neuroanatomy research.

[www] Challenge web site

[Wsp] ECML 2014

[Resu] Draft paper

[Code] Sample code

[CiML]

ChaLearn Looking at People (ECCV 2014)

Three tracks of challenging computer vision tasks promising to advance how machines look at people:

Track 1: Human Pose Recovery.

Track 2: Action/Interaction Recognition

Track 3: Gesture Recognition.

[www] Challenge web site

[Wsp] ECCV 2014

[Resu] Results

[Code] Data and sample code

[JMLR] [CiML]

ChaLearn Fast Causation Coefficient (MS Faculty Summit 2014)

Similar to the cause-effect pairs challenge, but this time, you get to submit code to the challenge platform. Your challenge is to build a fast causation coefficient. The proceedings are shared with the cause-effect paris challenge.

[www] Challenge web site

[Wsp] Microsoft Faculty Summit 2014

[Resu] Slides

[Code] Directly on platform!

Higgs Boson Challenge (NIPS 2014)

The ATLAS experiment has recently observed a signal of the Higgs boson decaying into two tau particles, but this decay is a small signal buried in background noise.

The goal of the Higgs Boson Machine Learning Challenge is to explore the potential of advanced machine learning methods to improve the discovery significance of the experiment. [www] Challenge web site

[Wsp] Workshop at NIPS 2014

[Resu]

[Code] Directly on platform!

[Data] Released from CERN!

AutoML challenge (IJCNN 2015)

The goal of the AutoML challenge is to create a machine capable of learning from examples without any human intervention. This challenge is concerned with regression and classification problems (binary, multiclass, or multi-label) from data already formatted in fixed-length feature-vector representations. The domains include biology and medicine, ecology, energy and sustainability management, image, text, audio, speech, video and other sensor data processing, internet social media management and advertising, market analysis and financial prediction.

[www] Challenge web site

[Wsp] Workshop at NIPS 2014

[Resu]

[Code] Directly on platform!

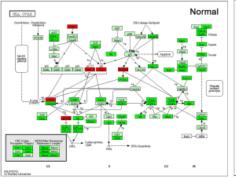
Re-Using and Revisiting

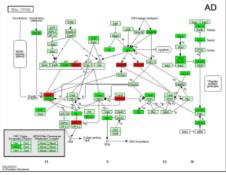
Hidden treasures in "ancient" microarrays: gene-expression portrays biology and potential resistance pathways of major lung cancer subtypes and normal tissue

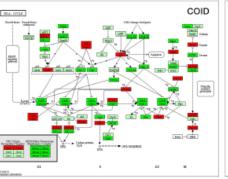
Konstantinos Kerkentzes^{1,2}, Vincenzo Lagani², Ioannis Tsamardinos^{1,2}, Mogens Vyberg³ and Oluf Dimitri Røe^{4,5,6}*

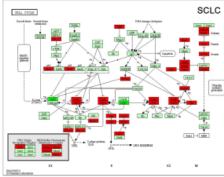
- ¹ Department of Computer Science, University of Crete, Heraklion, Greece
- ² Institute of Computer Science, Foundation of Research and Technology Hellas, Heraklion, Greece
- ³ Institute of Pathology, Aalborg University Hospital, Aalborg, Denmark
- Department of Cancer Research and Molecular Medicine. Norwegian University of Science and Technology, Trondheim. Norway
- Department of Oncology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- ⁶ Cancer Clinic, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway

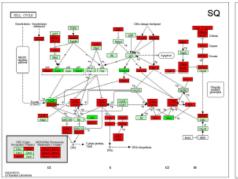
Kerkentzes et al. Hidden treasures in "ancient" microarrays











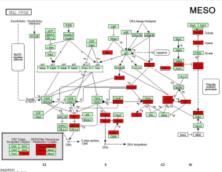


FIGURE 6 | Cell cycle pathway. Tumor suppressor genes (CDKN1A/p21, CDKN1C/p57, RBL2/p130) and the cyclin D family were overexpressed in normal lung tissue while there was type-specific overexpression of oncogenes, cyclins, cyclin dependent kinases, and other cell cycle driving genes in tumors. Genes belonging to the mini-drivomosome maintenance complex were overexpressed in squamous and small-cell lung cancer, as well as in mesothelioma. The same genes were not differentially expressed in AD

and downregulated in COID. Fifty-six out of 63 genes in the Cell Cycle pathway were overexpressed in SQ, including CCNE/CDK2, CCNA/CDK2, CCNA/CDK1, CCNB/CDK1 complexes, BUB1, BUB1B, BUB3, and MYC oncogenes, damage response genes (ATR, CHEK12) and five genes of the 14-3-3 family. Red is overexpressed, dark green downregulated. SQ, squamous type; AD, adenocarionioms; SCLC, small-cell lung cancer; COID, carcinoid: MESQ mesothelioma.

www.frontiersin.org September 2014 | Volume 4 | Article 251 | 9

Meta-Analysis

- Does psychotherapy reduce depression?
- 375 studies were included
- 2 years of collecting the papers (!)

Gene V Glass

Meta-Analysis on the Raw Data

- One research hypothesis for each gene!
- Raw data allow more sophisticated statistical methods
 - Batch-Effect Removal

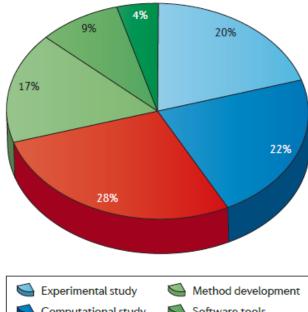
Reuse of public genome-wide gene expression data

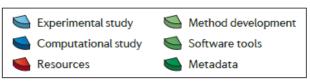
Johan Rung and Alvis Brazma

Abstract | Our understanding of gene expression has changed dramatically over the past decade, largely catalysed by technological developments. High-throughput experiments microarrays and next-generation sequencing — have generated large amounts of genome-wide gene expression data that are collected in public archives. Added-value databases process, analyse and annotate these data further to make them accessible to every biologist. In this Review, we discuss the utility of the gene expression data that are in the public domain and how researchers are making use of these data. Reuse of public data can be very powerful, but there are many obstacles in data preparation and analysis and in the interpretation of the results. We will discuss these challenges and provide recommendations that we believe can improve the utility of such data.

Туре	Use	Count
Biological	Experimental study	18
Biological	Computational study	20
Technical	Method development	15
Technical	Software tools	8
Technical	Metadata	4
Databases	Resources	25
Other	Reviews	20
Other	Data submission	8
Other	Other context	10

'Other' not included in graph because these do not reanalyse or process data



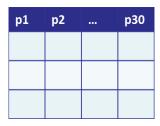




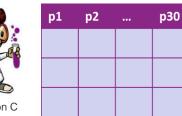
Motivation: Heterogeneous data sets measuring the same system under study

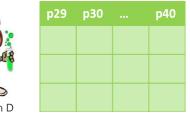
$\overline{}$	Variables	Thrombosis	Contraceptives	Protein C	Cancer	Protein Y	Protein Z		
		(Yes/No)	(Yes/No)	(numerical)	(Yes/No)	(numerical)	(numerical)		
Study									
	1	Yes	No	10.5	Yes	-	-		
	•	No	Yes	5.3	No	-	-		
	rvational					-	-		
	data	No	Yes	0.01	No	-	-		
		No	No	0 (Control)	No	-	-		
	2	Yes	No	0 (Control)	Yes	-	-		
expe	rimental					-	-		
-	data	Yes	Yes	5.0 (Treat.)	Yes	-	-		
		No	Yes	5.0 (Treat.)	No	-	-		
	3	-	-	-	Yes	0.03	9.3		
dif	fferent	-	-	-					
	riables	-	-	-	No	3.4	22.2		
	4		Use of contraceptives cause thrombosis:						
	prior		Contraceptives→→ Thrombosis						
kno	wledge			Contraceptives		ა 			

Co-analyzing data sets from different experimental conditions with overlapping variable sets



- Different experimental conditions
- Different variable sets



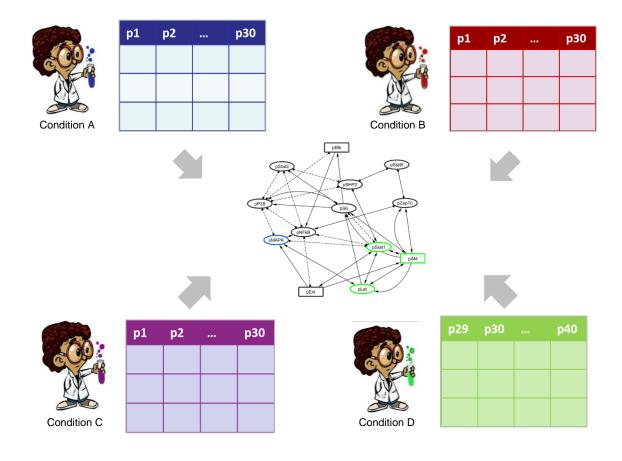


 Data <u>can not be pulled</u> <u>together</u> because they come from **different distributions**

Key point:

- Data come from the same causal mechanism
- Principles of causality links them to the underlying causal graph

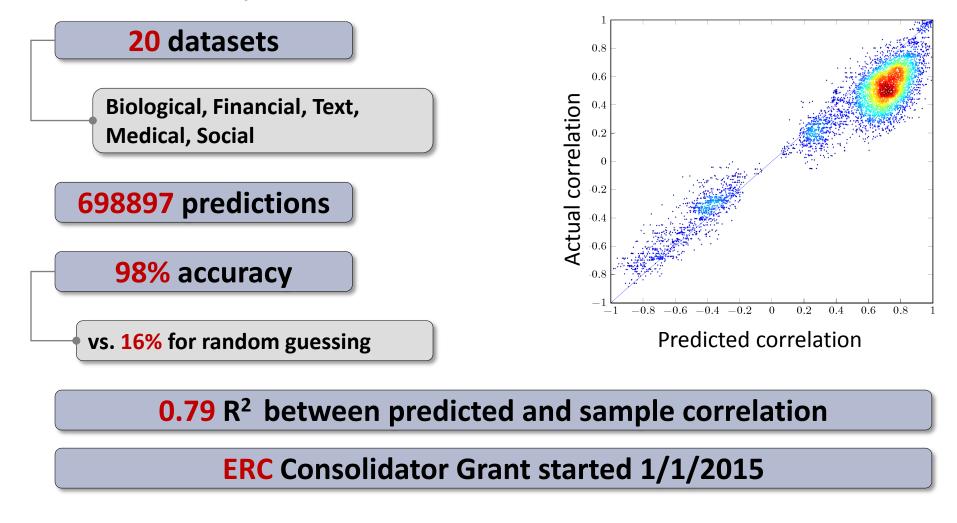
Co-analyzing data sets from different experimental conditions with overlapping variable sets



Key point:

Identify the causal graphs that simultaneously fit all data

Predicting Correlations between Quantities Never Jointly Measured [JMLR 2012]



Being Scientific About Science

- NASA lost the original Moon Landing Tapes!
- Beliefs and Knowledge based on Evidence
- Which evidence (data)?
- Which analysis methods?
- Which implementation of software?
- Combine with which knowledge?

Challenges: Culture

Barriers to Data and Code Sharing in Computational Science

Survey of Machine Learning Community, NIPS (Stodden, 2010):

Code		Data
77%	Time to document and clean up	54%
52%	Dealing with questions from users	34%
44%	Not receiving attribution	42%
40%	Possibility of patents	
34%	Legal Barriers (ie. copyright)	41%
	Time to verify release with admin	38%
30%	Potential loss of future publications	35%
30%	Competitors may get an advantage	33%
20%	Web/disk space limitations	29%

Challenge: Lack of Policies and Regulations

- Suppose the cure for cancer is found as follows
 - Multiple pharmaceuticals shared their data
 - With several data analysts
 - Who employed several data analysis software products
 - That were run on several computing infrastructures and clouds
 - Initiated by the request of an oncologist

Who owns the IPR? What's the liability of each one for security leaks?
 What is the liability on the quality of service? What if entities involved are sited in different countries?

Challenge: Anonymization

- Dropping the name, tax id, etc. from patient data does not ensure anonymity due to cross correlation with other public data (deidentification)
- Solution 1: Distort the original data in order to reduce the reidentification risks while also preserving the statistical utility of the data
- Share the analysis code not the data; Distributed analysis

Conclusions

- Public data invaluable in biomedicine
 - Reproducibility
 - Testing new methods
 - External validation of results
 - Meta-Analysis
 - Integrative Analysis
- Open Data necessary for being Scientific About Science
- Still great cultural but also technical challenges