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I. INTRODUCTION

Density-functional theory �DFT� �1,2� is a powerful tool
to calculate the electronic structure of atoms, molecules, and
solids. Within DFT, observables are given as functionals of
the particle density. In reduced-density-matrix-functional
theory �RDMFT� the one-body reduced density matrix �1-
RDM� is used as the basic variable. RDMFT is based on
Gilbert’s theorem �3� which proves that each ground-state
observable can, in principle, be written as a functional of the
1-RDM. First-generation functionals �4–6� perform very
well in the description of the dissociation of small molecules.
Second-generation functionals were introduced recently
�7–10�, showing improved performance both for small mol-
ecules �7–11� and for the homogeneous electron gas �12�.

A key quantity in electronic structure calculations is the
band gap for semiconductors and insulators. It is defined as
the difference between the ionization potential I and the elec-
tron affinity A,

� = I − A , �1�

where

I = Etot�N − 1� − Etot�N� , �2�

A = Etot�N� − Etot�N + 1� . �3�

Etot�N� denotes the ground-state energy of an N-electron sys-
tem. In the chemistry literature, � /2 is called the chemical
hardness if the system is finite. For simplicity, we use the
term fundamental gap for both finite and extended systems
throughout this paper. We wish to point out that the funda-
mental gap differs from what is known as the optical gap.
The optical gap is given as the energy necessary to excite the
system from the ground state to the first excited state. There-
fore, its size is reduced by the binding energy of the created
exciton compared to the fundamental gap.

Within DFT, it can be shown �13,14� that the fundamental
gap is exactly given by

� = �KS + �xc, �4�

where �KS is the energy difference between the lowest un-
occupied and the highest occupied Kohn-Sham states and
�xc is the discontinuity of the exchange-correlation potential
upon adding and subtracting a fractional charge. This discon-
tinuity is zero for the local density approximation �LDA� and
generalized gradient approximations �GGAs�, so �KS is the
prediction for the gap within these approximations. However,
this prediction deviates strongly from the experimental val-
ues. For semiconductors the calculated gap underestimates
the experimental value by typically 50%. In extreme cases,
such as germanium, the gap vanishes within the LDA. Inter-
estingly, �KS for the exact exchange functional is very close
to the experimental gap for several systems �15,16�. Unfor-
tunately, in the case of exact exchange �xc is not zero and, in
fact, was found to be much larger than �KS. Thus, if properly
calculated, the band gaps within exact exchange are highly
overestimated compared to the experimental values �15–18�.
Exact exchange combined with random-phase approximation
correlation was recently shown to yield results very close to
the experimental values for Si, LiF, and solid Ar �18� �pro-
vided the discontinuity �xc is properly included�. Finally, a
recently introduced hybrid functional �19,20� is reported to
give gaps in satisfactory agreement with experimental values
for a set of 40 simple and binary semiconductors �21�. In
particular, germanium is predicted a semiconductor with a
gap of 0.56 eV.

An alternative formula to �4�, for the fundamental gap in
DFT, reads �22�

� = lim
�→0+

���N + �� − ��N − ��� , �5�

where � is the chemical potential, and N is the particle num-
ber of the system. As Eq. �5� suggests, the chemical potential
has a discontinuity at integer particle number N. In a recent
paper �23�, we presented the analogous equation within
reduced-density-matrix-functional theory. In particular, we
proved that the Lagrange multiplier used to enforce the con-
servation of particle number is equal to the chemical poten-
tial. This theoretical development was applied to small finite

PHYSICAL REVIEW A 79, 022504 �2009�

1050-2947/2009/79�2�/022504�9� ©2009 The American Physical Society022504-1

http://dx.doi.org/10.1103/PhysRevA.79.022504


and prototype periodic systems with very promising results.
We wish to emphasize that the analogy between DFT and
RDMFT is not at all trivial because of the N-representability
condition in RDMFT. The occupation numbers are restricted
to the interval �0, 1� which leads to border minima. For this
reason, the generalization of the proof of Eq. �5� from DFT
to RDMFT is not straightforward.

In the present work, we deduce a relationship similar to
Eq. �5� for open-shell systems. The difficulty in generalizing
Eq. �5� to the open-shell case arises from the fact that adding
�subtracting� a spin-up electron to �from� an open-shell
ground state is not equivalent to adding �subtracting� a spin-
down electron. Open-shell systems were recently addressed
in Ref. �24�, where it was demonstrated that it is reasonable
to introduce two Lagrange multipliers to keep the number of
electrons in each spin channel fixed seperately. An alterna-
tive description of open-shell systems was introduced by
Leiva and Piris �25�. In that description, however, spin-up
and spin-down occupations are equal for all orbitals except
the open-shell ones which are fully occupied by the majority
spin. The Lagrange multiplier is then spin independent. Here,
we employ the treatment suggested in Ref. �24�, where each
of the two Lagrange multipliers is a function of the two
particle numbers corresponding to the two spin components.
In the present work, these particle numbers are assumed to
be fractional. We show that a proper extension of Eq. �5� is
possible, with the resulting equation involving the disconti-
nuities of both Lagrange multipliers. The derivation is pre-
sented in Sec. II. Section III contains results for a set of
open-shell atoms and a comparison of the closed- and open-
shell treatments for systems where the neutral system is ac-
tually a closed shell. We also investigate the performance of
different functionals in the calculation of the fundamental
gap.

II. THE FUNDAMENTAL GAP IN RDMFT

Reduced-density-matrix-functional theory uses the one-
body reduced density matrix

��x,x�� = N� dx2 ¯ dxN�*�x�,x2, . . . ,xN���x,x2, . . . ,xN� ,

�6�

where � denotes the many-body wave function and x
= �r ,��. Integration over dx means integration over space
and summation over spin. Throughout this paper, we restrict
ourselves, for simplicity, to the “collinear” case, where
��x ,x��=��r� ,r���� is diagonal in spin space, i.e.,

��r�,r���� = 	����
��r,r�� . �7�

By diagonalizing ���r ,r�� one obtains the natural orbitals

 j� and the occupation numbers nj�, i.e.,

���r,r�� = �
j=1

�

nj�

j�
* �r��
 j��r� . �8�

To ensure the N-representability of �, the occupation num-
bers are restricted to the interval �0, 1� and sum up to the

total number of particles, N. In closed-shell systems the two
spin directions are identical, i.e.,

nj↑ = nj↓, �9�


 j↑ = 
 j↓. �10�

Within the spin-dependent formalism, one can define
spin-dependent electron affinities and ionization potentials
by adding or removing an electron with specific spin,

I� = Etot�N� − 1,N�̄� − Etot�N�,N�̄� , �11�

A� = Etot�N�,N�̄� − Etot�N� + 1,N�̄� . �12�

Here, Etot�N� ,N�̄� representes the ground-state energy of a
system with N=N�+N�̄ electrons, where N� is the number of
electrons with spin � and N�̄ is the number of electrons with
the opposite spin, �̄. Consequently, the ionization potential
and electron affinity defined in Eq. �3� are given by

I = min
�

�I↑,I↓� , �13�

A = max
�

�A↑,A↓� , �14�

i.e., they are respectively the smallest necessary energy for
taking away an electron and the maximum energy gained by
adding an electron to the neutral system. The fundamental
gap then reads

� = min
�

�I↑,I↓� − max
�

�A↑,A↓� . �15�

In order to derive a formula analogous to Eq. �5� for the
fundamental gap �1� within RDMFT, we follow the same
path as in DFT �14,26,27� and extend the definition of the
total-energy functional Etot��� to systems with fractional par-
ticle number M. Throughout this paper, we use the conven-
tion that N denotes an integer number of particles and M a
fractional. Such systems can be described as an ensemble
consisting of an N- and an �N+1�-particle state for N�M
�N+1. Let �N�,N�̄ denote an N-particle wave function with
N=N�+N�̄, where, as before, N� is the number of electrons
with spin � and N�̄ the number of particles with the opposite
spin, �̄. We consider an ensemble where, compared to the
charge-neutral �N� ,N�̄� system, the number of spin-� par-
ticles is increased by ��. The statistical operator describing
such an ensemble is given by

D̂N�+��,N�̄ = �1 − ���	�N�,N�̄
��N�,N�̄	

+ ��	�N�+1,N�̄
��N�+1,N�̄	 . �16�

The expectation value of an operator Ô is then given by

O = tr�D̂N�+��,N�̄Ô� . �17�

In particular, for Ô= �̂�1�r ,r��, i.e., the operator representing
the 1-RDM of spin-�1 particles, we obtain
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�N�+��,N�̄
�1 �r,r�� = �1 − ����N�,N�̄

�1 �r,r�� + ���N�+1,N�̄
�1 �r,r�� ,

�18�

and for Ô= Ĥ, i.e., the Hamiltonian, we get the total en-
semble energy

Etot�N� + ��,N�̄� = �1 − ���Etot�N�,N�̄� + ��Etot�N� + 1,N�̄� .

�19�

We note, in passing, that the ensemble weights in Eq. �16�
are such that the correct normalization of spin-up and spin-
down densities is achieved, i.e.,

� d3r �N�+��,N�̄
� �r,r� = N� + ��, �20�

� d3r �N�+��,N�̄
�̄ �r,r� = N�̄. �21�

Reformulating �19�, one obtains

Etot�M�,N�̄� = Etot�N�,N�̄� + ���Etot�N� + 1,N�̄�

− Etot�N�,N�̄�� �22�

for N�
M�=N�+��
N�+1. In analogy, for N�−1
M�

=N�−1+��
N� the total energy is given by

Etot�M�,N�̄� = Etot�N� − 1,N�̄� + ���Etot�N�,N�̄�

− Etot�N� − 1,N�̄�� . �23�

In other words, the total energy depends linearly on �� with
slope −A� for N��M��N�+1 and slope −I� for N�−1
�M��N�. Since A� and I� are in general not the same, the
derivative �Etot�M� ,N�̄� /�M� has a discontinuity at integer
particle number N�. From Eqs. �11�–�15�, one can conclude
that the fundamental gap is given by

� = min
�
�
 lim

��→0+

�Etot�M↑,M↓�
�M� 


N�+��,N�̄
�

− max
�
�
 lim

��→0+

�Etot�M↑,M↓�
�M� 


N�−��,N�̄
� . �24�

In Ref. �24�, we argued that, for open-shell systems, the fol-
lowing functional should be minimized:

F��� = Etot��� − �↑��
j=1

�

nj↑ − M↑� − �↓��
j=1

�

nj↓ − M↓� .

�25�

The Lagrange multipliers �↑ and �↓ are introduced to
achieve given particle numbers M↑ and M↓. To prove the
formula for the fundamental gap we first show that these
Lagrange multipliers are nothing but the chemical potentials,
i.e.,

���M1
↑,M1

↓� = 
 �Etot�M↑,M↓�
�M� 


M1
↑,M1

↓
. �26�

The derivation of this formula differs significantly from the
derivation of its counterpart in DFT due to the above-
mentioned N-representability constraint. In order for the
1-RDM to be connected to an antisymmetric N-particle wave
function, its occupation numbers have to be restricted to the
interval �0,1� �28�. One can show that the same constraint
ensures ensemble N-representability for fractional particle
number. As a result of this additional constraint, 	F /	� need
not vanish at the minimum energy. It is possible that certain
occupation numbers are pinned at the border of the interval
while the true minimum is obtained for values of nj� outside
this interval. The functional F then has a border minimum,
and therefore nonvanishing derivative, in all directions
where occupation numbers are pinned at zero or one.

We investigate the total energy difference

	Etot = Etot�M� + ��,M�̄� − Etot�M�,M�̄�

= E��M�+��,M�̄� − E��M�,M�̄� . �27�

As the total energy is a functional of the occupation numbers
and natural orbitals, this energy difference is given by

	Etot = �
�1=↑↓

�
j=1

� � d3r� 	Etot

	
 j�1
�r�

	
 j�1
�r�

+
	Etot

	

j�1

* �r�
	


j�1

* �r�� + �
�1=↑↓

�
j=1

�
	Etot

	nj�1

	nj�1
.

�28�

Using Eq. �25� we can rewrite this change in the total energy
as

	Etot = �
�1=↑↓

�
j=1

� � d3r� 	F

	
 j�1
�r�

	
 j�1
�r�

+
	F

	

j�1

* �r�
	


j�1

* �r�� + �
�1=↑↓

�
j=1

� � 	F

	nj�1

+ ��1�	nj�1
.

�29�

At the solution point, the variation with respect to the natural
orbitals vanishes such that the first term on the right is zero.
The variation with respect to the occupation numbers, how-
ever, need not vanish due to the N-representability constraint.
The sum over all changes 	nj�1

has to give �� for the spin
channel whose particle number is changed and zero for the
other spin channel in order for the new occupation numbers
to sum up to the correct particle numbers. Hence, we obtain

Etot�M� + ��,M�̄� − Etot�M�,M�̄�

= ���� + �
�1=↑↓

�
p

	F

	np�1

	np�1
. �30�

Finally, we discuss the contribution of the pinned states. As
stated before, for these states 	F /	np is different from zero
and the true minimum of the functional lies outside the in-
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terval �0,1�. More specifically, it lies at a finite distance from
the border of the interval such that the addition or subtraction
of an infinitesimal fraction �� of a particle cannot move the
minimum into the interval. Therefore, these particle numbers

remain pinned upon adding or subtracting an infinitesimal
��, i.e., 	np�1

is zero in the limit ��→0. We, therefore,
conclude that

���M1
↑,M1

↓� = lim
��→0+


�Etot�M� + ��,M�̄� − Etot�M�,M�̄�
�� �


M1
↑,M1

↓
= 
 �Etot�M↑,M↓�

�M� 

M1

↑,M1
↓
. �31�

Using Eq. �24� we obtain the final result for the fundamental
gap,

� = min
�

� lim
��→0+

���M� + ��,M�̄��

− max
�

� lim
��→0+

���M� − ��,M�̄�� . �32�

The derivation of Eq. �32� concerns the exact exchange-
correlation energy functional of the 1-RDM. Since only ap-
proximations are available, the question is whether Eq. �32�
is still useful. This question is the main subject of the next
section.

In Ref. �23�, a single, spin-independent � �for closed-shell
systems� was shown to have a discontinuity as a function of
a fractional total number of electrons which is equally dis-
tributed in the two spin channels. The application of that
theory to an open-shell system would give the spin resolved
�� as a function of a unique M. In the present work, we add
�subtract� a fractional part of an electron to �from� a specific
spin channel. Consequently, the system becomes an open-
shell system even if the neutral system is closed shell. Thus,
we have four functions �↑�M↑ ,N↓�, �↓�N↑ ,M↓�, �↑�N↑ ,M↓�,
and �↓�M↑ ,N↓�, where N↑, N↓ are fixed to the integer values
of the neutral system. Of these four, only the first two show

a discontinuity. The correct gap is then given by Eq. �32�,
where the min and max functions take care of the selection
of the smallest I� and the largest A�. Alternatively, one can
employ Eqs. �1�–�3� for the calculation of the fundamental
gap. Both approaches are exact, in the sense that, given the
exact functional of �, they both reproduce the fundamental
gap. It is interesting to see if they give the same numbers for
approximate functionals as well. This is also one of the ques-
tions we address in the next section.

To answer the above questions, one needs to minimize the
approximate functionals for fractional number of particles to
get �↑,↓�M� ,N�̄�. The extension of the minimization proce-
dure to fractional particle numbers, which is in complete
accordance with the proof we presented above, requires us to
perform the minimization in the domain of �N�+��,N�̄

�1 , which
are given by Eq. �18�. In principle, one then has to minimize
the total energy with respect to �N�,N�̄

�1 and �N�+1,N�̄
�1 under the

known N-representability constraints that their occupation
numbers are between 0 and 1 and sum up to the correct
particle numbers. However, this procedure, involving the
density matrices for N and N+1 particles, is not very practi-
cal. On the contrary, it is desirable to minimize with respect
to �N�+��,N�̄

�1 directly under the appropriate constraints. We
prove elsewhere �29� that the appropriate constraints for such
a minimization are

FIG. 1. �Color online� Behavior of � as a function of a fractional electron number M for the LiH molecule in a closed-shell treatment �a�
and �↑,↓�M↑ ,N↓� for an open-shell treatment �b�. For comparison, the experimental and configuration interaction �CI� values �see Table I� of
the fundamental gap are included.
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0 � nj�1

�M�,M�̄� � 1, ∀ j, �
j

nj�1

�M�,M�̄� = M�1. �33�

In other words, the domain of �N�+��,N�̄
�1 which can be repre-

sented as the weighted average Eq. �18� is identical to the
domain of �N�+��,N�̄

�1 whose eigenvalues satisfy Eq. �33�. The
above statement is quite significant since the constraint of
Eq. �33� is much simpler and completely analogous to the
case of integer particle numbers. The implementation is,
therefore, a rather simple extension of the case of integer
particle numbers.

III. NUMERICAL RESULTS

In this section, we study the behavior of � as a function of
the fractional particle number for some atoms and molecules
using approximate functionals of the 1-RDM. Our aim is to
investigate whether there exists a discontinuity in ��M� and
how it compares to the fundamental gap. The implementa-
tion we use for finite systems can be applied to both closed-
and open-shell �24� configurations. Some results for closed-
shell systems were presented in Ref. �23�. Here, we give an
extended analysis for both closed- and open-shell systems.

For the open-shell treatment, we use the extension of the
functional of Goedecker-Umrigar �5� �GU� described in Ref.
�24�. We also investigate whether other functionals repro-
duce a discontinuity in a closed-shell treatment. For this pur-
pose, we consider the functionals of Piris �8,9�, where the
self-interaction �SI� terms are explicitly removed, and the
Müller �4� functional and the most recent BBC �from correc-
tions to Buijse-Baerends� functionals of Gritsenko et al. �7�
which contain self-interaction terms.

The implementation is based on the GAMESS program �30�
which we use for the calculation of the one- and two-electron
integrals. The minimization with respect to the occupation
numbers and natural orbitals is then performed using the
conjugate gradient method. Our program treats both closed
as well as open-shell systems using the restricted open-shell

RDMFT �24�. In short, we assume spin-dependent occupa-
tion numbers �and chemical potentials� but spin-independent
natural orbitals. In that way, our method is in complete anal-
ogy to spin-restricted open-shell Hartree-Fock.

In Fig. 1�a�, we show ��M� for the LiH molecule using
the GU functional in the closed-shell treatment, i.e., the extra
charge is equally distributed over the two spin channels. Fig-
ure 1�b� shows �↑�M↑ ,N↓� and �↓�M↑ ,N↓� for the open-shell
treatment of the LiH molecule, using again the GU func-
tional. In the open-shell treatment, the additional charge is
exclusively added to one spin channel, and here we choose
the spin-up channel. Clearly, ��M� in Fig. 1�a� and
�↑�M↑ ,N↓� in Fig. 1�b� show a pronounced step which re-
sembles the discontinuity that one expects for the exact func-
tional. This step has two important features: the first is that it
occurs not exactly at M =4, i.e., the exact, integer number of
electrons. It is rather shifted slightly to the right. The shift is
of the order of 0.05 of an electron in Fig. 1�a� and is reduced
to 0.02 in Fig. 1�b�. In Fig. 2, we plot the change in the
occupation numbers �compared to their values at N=4� as a
function of the total number of electrons for the closed-shell
treatment. Comparison of Figs. 1�a� and 2 reveals that the
bottom of the step for the GU functional appears exactly at
the point where the largest fractional occupation number be-
comes equal to 1. After that point it has to remain 1, due to
the N-representability constraints, Eq. �33�. The occupation
number n3 is almost constant for M 
4.05 and increases sig-
nificantly after n2 gets pinned. We can also see that no pin-
ning occurs for the Müller functional where no step is ob-
served, as we discuss later. The pinning of the largest
fractional occupation number to 1 results in the rapid in-
crease of �. Since adding charge to one spin channel only
results in faster pinning of this state, it is not surprising that
the step in the open-shell treatment is shifted to the left.
Upon increasing the extra charge further, � is a smooth func-
tion, i.e., the upper edge of the step is rounded off. In the
closed-shell treatment, ��M� shows a linear dependence out-

TABLE I. The prediction for the fundamental gap �in hartree�
for several atoms and small molecules using the size of the step of
��M�, and a direct calculation through Eqs. �1�–�3� for the GU
functional compared with experimental and other theoretical values.
For the direct application of Eqs. �1�–�3�, the total energies of the
positive and negative ions were calculated.

System
RDMFT

��M� step
RDMFT

Eqs. �1�–�3�
Other

theoretical Experiment

Li 0.18 0.202 0.175a 0.175b

Na 0.18 0.198 0.169c 0.169b

F 0.54 0.549 0.514b

LiH 0.27,d 0.29e 0.271 0.286f 0.271g

aQuadratic configuration interaction from Ref. �31�.
bFrom Ref. �32�.
cIonization potential from �31�, electron affinity from �33�.
dClosed-shell treatment.
eOpen-shell treatment.
fConfiguration interaction with singles and doubles, using the same
basis set as in RDMFT.
gIonization potential from �34�, electron affinity from �35�.
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FIG. 2. �Color online� Change �nj in the second and third oc-
cupation numbers for a closed-shell treatment of the LiH molecule.
For the neutral system n1=1, n2=0.98�0.79�, n3=3�10−5�0.09� for
the GU �Müller� functional. For the GU functional n2 gets pinned at
M �4.05.
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side the step region, which is significantly reduced in �↑ in
closer resemblance to the exact behavior. A more detailed
investigation reveals that the slope of ��M� is the average of
the slopes of �↑�M↑ ,N↓� and �↓�M↑ ,N↓�. To extract a value
for the discontinuity, we use a backward projection as shown
in Fig. 1. This method reduces to the exact discontinuity if �
is a true step function. The extracted values, as well as the
gaps of other finite systems are given in Table I. We should
also keep in mind that DFT methods, like the LDA and
GGA, underestimate the gap by typically 50%. Although the
procedure of backward projection might seem rather crude
and arbitrary, we should mention that the agreement with
experiment is rather satisfactory for both closed- and open-
shell treatments. As one can see, for LiH, the quantitative
agreement is slightly better for a closed-shell treatment. Nev-
ertheless, the open-shell treatment should be preferred be-
cause � then resembles the exact step function much closer,
making the backward projection less ambiguous.

For open-shell systems, varying M↑ or M↓ is no longer
equivalent. Thus, we can study the behavior of both �↑ and

�↓ as functions of M↑ or M↓. We investigate the open-shell
atoms Li, Na, and F, varying M↑ or M↓ away from the neutral
configurations. In the following, we use the convention that
spin up is always the majority spin channel. In Fig. 3, we
show the results for �� for the Li atom. Only the chemical
potential corresponding to the spin direction whose particle
number is changed shows a discontinuity as already ob-
served for the LiH molecule. Therefore, we plot only
�↑�M↑ ,N↓� and �↓�N↑ ,M↓�. Again, pronounced steps resem-
bling the discontinuity of the exact theory are present. The
prediction for the gap is then selected using Eq. �32� and the
backward extrapolation procedure described earlier. The val-
ues obtained for the gaps are listed in Table I. According to
Eq. �32�, the gap for the Li atom is given by the difference
between the backward-projected upper part of �↓�N↑ ,M↓�
and the lower part of �↑�M↑ ,N↓�. In Fig. 4, we show the
analogous results for the Na and F atoms. The picture for the
Na atom is very similar to Li. On the other hand, for the F
atom, the gap is given by �↓�N↑ ,M↓� alone. It is interesting
that the position of the upper and lower parts of the ��

corresponds to the actual process of adding �removing� elec-
trons to �from� the system. Thus, for Li and Na atoms, it is
favorable to remove an electron from the majority spin chan-
nel �up� and add an extra electron to the minority spin chan-
nel �down�. As a consequence, the gap is given by the dif-
ference between the upper part of �↓�N↑ ,M↓� and the lower
part of �↑�M↑ ,N↓�. For a F atom, on the other hand, it is
favorable to add an electron to, or remove from, the minority
spin channel. Thus, the gap is given by �↓�N↑ ,M↓� alone.

In Table I, we give the results obtained by the backward
extrapolation for the systems discussed in this paper. As one
can see, they agree very well with experimental values for
the fundamental gap as well as other theoretical calculations.
For finite systems, one can also calculate the gap by perform-
ing three total energy calculations, for the N-, the �N+1�-,
and �N−1�-particle systems and use Eqs. �1�–�3�. The values
for the gap obtained in this way are given in Table I for
comparison. One should keep in mind that, for solid state
systems, this procedure does not apply because the addition
or the removal of a single electron in an infinite solid is
meaningless. For such systems, the recipe introduced in this
work is expected to be valuable �36�.

FIG. 3. �Color online� Behavior of �� as a function of an elec-
tron fraction �� added to �subtracted from� the neutral system for
the Li atom. In the inset, we show an enlargement of the region
where we extract the value for the gap from the difference of the
upper level of �↓�N↑ ,M↓� and the lower level of �↑�M↑ ,N↓�.

FIG. 4. �Color online� Behavior of �� as a function of an electron fraction �� added to �subtracted from� the neutral system for Na and
F atoms. For Na, we show only the regions from which the values of the gap are extracted.
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Of course, the question arises whether the system with
excess charge is correctly described by the basis set we used.
Usually, atomic basis sets are optimized to correctly describe
the neutral system, resulting in basis functions which are all
localized. Therefore, the charged system might be predicted
to have a localized bound state despite the fact that the con-
figuration of a neutral atom and a free completely delocal-
ized electron is energetically favorable. A prominent example
of a system not having a negative ion is the He atom. We
study the behavior of ��M� with two different basis sets: the
correlation consistent polarized valence quadruple zeta �cc-
PVQZ� basis set and cc-PVQZ enlarged by a very diffuse
s-type function. As one can see in Fig. 5, the state of the
additional fractional electron is better described by the en-
larged basis set. In this case, the electron affinity is zero and
the gap is given by the ionization potential alone. Interest-
ingly, the inclusion of a diffuse function leads to a sharper
step of ��M� in close resemblance to the discontinuity of the
exact functional. We also add extra diffuse functions in the
basis sets of both Li and H in the calculation of ��M� for the
LiH molecule. We do not observe any effect on ��M�, which
is clear evidence for the fact that LiH binds an extra electron

and that the localized basis set is appropriate for describing
the state of the charged system.

In order to investigate the importance of the variation of
the natural orbitals for the discontinuity of �, we perform,
apart from the full variation described so far, a calculation
where only the occupation numbers are optimized, while for
the natural orbitals we keep the initial Hartree-Fock orbitals.
In Fig. 6, we compare these two procedures for both a
closed- and an open-shell calculation. As one can see from
the plots, the main contribution to the discontinuity arises
from the variation of the occupation numbers. In the closed-
shell calculation, we obtain a discontinuity of 0.27 hartree
for the full variation, compared to 0.26 hartree if we vary the
occupation numbers only. In other words, only about 4% of
the discontinuity is due to the optimization of the natural
orbitals. This picture remains unchanged if we use the open-
shell procedure, where we obtain 0.31 hartree for the full
variation and 0.29 hartree for the variation of the occupation
numbers alone.

In all the calculations presented so far, we have used the
functional of Goedecker and Umrigar, which involves the
complete removal of the self-interaction terms. It is interest-
ing to study the behavior of ��M� using different function-
als, like, for instance, the recent BBC functionals of Grit-
senko et al. �7� and the Piris natural orbital functional
�PNOF� of Piris �8,9�. In the BBC1 and BBC2 functionals,
the SI terms are present while in the BBC3, they are partially
removed. However, the SI terms for the bonding and the
antibonding orbitals remain. In the PNOF functional, they
are fully removed, as in the GU one. In Fig. 7, we plot ��M�
for LiH using the closed-shell treatment, for all these func-
tionals. In consistence with earlier findings �23�, only the GU
and PNOF functionals show a pronounced step, which com-
pares well with the fundamental gap. The other functionals
show either a completely smooth behavior or, in the case of
BBC3, a small kink in the wrong direction. Therefore, we
conclude that the complete removal of the SI terms is essen-
tial for obtaining the correct behavior of ��M�. The size of
the step of ��M� for the PNOF functional is 0.30 hartree and
compares well with experiment �see Table I�. As a test, we
also tried a modified version of BBC3, where we removed

FIG. 5. �Color online� Function ��M� for the He atom using the
cc-PVQZ basis set without and with an additional very diffuse
s-type basis function.

FIG. 6. �Color online� Function ��M� ��↑�M↑ ,N↓�� for the LiH molecule using the closed-shell �a� and the open-shell treatment �b�, with
occupation number variation �using the Hartree-Fock orbitals� and with full variation �both occupation numbers and the orbitals�.
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the SI terms completely. Consistent with the above conclu-
sion, it also produces a step which is almost identical to that
of PNOF. Additionally, this modified BBC3, like the GU
functional, gives an accurate measure of the correlation en-
ergy at the equilibrium distance, but fails completely at the
dissociation limit.

IV. CONCLUSION

We have presented a formalism to calculate the funda-
mental gap within RDMFT for both open as well as closed-
shell systems. Our numerical results show that, even for sys-
tems where the neutral system is a closed shell, the results
for the chemical potential are closer to the exact step func-
tion if an open-shell treatment is employed because addition
of the charge of a specific spin to the system makes it open
shell. The application to several open-shell systems gives a

very good agreement with experimental values in all cases.
Also, the steps in the chemical potentials are such that they
resemble the spin dependence of the ionization potential and
the electron affinity of the real system. Our investigation of a
possible basis set dependence reveals that it is necessary to
include very diffuse states in the basis set in case the system
does not bind extra charge. Whenever the system does bind
extra charge, the results are independent of the inclusion of
the diffuse state in the basis set. To estimate the contribution
of the occupation numbers and the natural orbitals to the
fundamental gap we compared the results for the LiH mol-
ecule using a full variation and a variation of the occupation
numbers only. We found that over 90% of the fundamental
gap is due to the occupation numbers. This finding was con-
firmed for several other systems so far, and we believe that it
shows a general feature of RDMFT calculations. Finally, we
investigated the behavior of several different functionals for
the calculation of the fundamental gap. From our results we
conclude that the exclusion of the self-interaction for all
natural orbitals is essential to obtain reasonable results.
Functionals without any removal of self-interaction simply
yield a continuous chemical potential.

The present work is a contribution to the subject of cal-
culating the fundamental gap of materials within RDMFT.
The hope is that this theory gives results closer to experiment
than does DFT for this fundamental problem. It is our belief
that the theoretical development presented in this work will
have a significant impact in the application of RDMFT to
periodic systems.

ACKNOWLEDGMENTS

We would like to thank A. Zacarias for valuable discus-
sions on experimental and different theoretical results. This
work was supported in part by the Deutsche Forschungsge-
meinschaft within the program SPP 1145, and by EU’s Sixth
Framework Program through the Nanoquanta Network of
Excellence �Grant No. NMP4-CT-2004-500198�.

�1� P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
�2� W. Kohn and L. Sham, Phys. Rev. 140, A1133 �1965�.
�3� T. Gilbert, Phys. Rev. B 12, 2111 �1975�.
�4� A. Müller, Phys. Lett. 105A, 446 �1984�.
�5� S. Goedecker and C. J. Umrigar, Phys. Rev. Lett. 81, 866

�1998�.
�6� M. Buijse and E. J. Baerends, Mol. Phys. 100, 401 �2002�.
�7� O. Gritsenko, K. Pernal, and E. J. Baerends, J. Chem. Phys.

122, 204102 �2005�.
�8� M. Piris, Int. J. Quantum Chem. 106, 1093 �2006�.
�9� P. Leiva and M. Piris, J. Chem. Phys. 123, 214102 �2005�.

�10� M. A. L. Marques and N. N. Lathiotakis, Phys. Rev. A 77,
032509 �2008�.

�11� N. N. Lathiotakis and M. A. L. Marques, J. Chem. Phys. 128,
184103 �2008�.

�12� N. N. Lathiotakis, N. Helbig, and E. K. U. Gross, Phys. Rev. B

75, 195120 �2007�.
�13� J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884 �1983�.
�14� L. J. Sham and M. Schlüter, Phys. Rev. B 32, 3883 �1985�.
�15� M. Städele, J. A. Majewski, P. Vogl, and A. Görling, Phys.

Rev. Lett. 79, 2089 �1997�.
�16� M. Städele, M. Moukara, J. A. Majewski, P. Vogl, and A. Gör-

ling, Phys. Rev. B 59, 10031 �1999�.
�17� S. Sharma, J. K. Dewhurst, and C. Ambrosch-Draxl, Phys.

Rev. Lett. 95, 136402 �2005�.
�18� M. Grüning, A. Marini, and A. Rubio, J. Chem. Phys. 124,

154108 �2006�.
�19� J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys.

118, 8207 �2003�.
�20� J. Heyd and G. E. Scuseria, J. Chem. Phys. 120, 7274 �2004�.
�21� J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, J.

Chem. Phys. 123, 174101 �2005�.

FIG. 7. �Color online� Function ��M� for the LiH molecule
using the closed-shell treatment for the Goedecker-Umrigar, Müller,
BBC1, BBC2, BBC3, and PNOF functionals. The first and the last
involve a complete removal of the SI terms. Only these two repro-
duce a pronounced step in resemblance to the discontinuity of the
exact theory.

HELBIG, LATHIOTAKIS, AND GROSS PHYSICAL REVIEW A 79, 022504 �2009�

022504-8



�22� J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys.
Rev. Lett. 49, 1691 �1982�.

�23� N. Helbig, N. N. Lathiotakis, M. Albrecht, and E. K. U. Gross,
Europhys. Lett. 77, 67003 �2007�.

�24� N. N. Lathiotakis, N. Helbig, and E. K. U. Gross, Phys. Rev. A
72, 030501�R� �2005�.

�25� P. Leiva and M. Piris, Int. J. Quantum Chem. 107, 1 �2007�.
�26� L. J. Sham and M. Schlüter, Phys. Rev. Lett. 51, 1888 �1983�.
�27� W. Kohn, Phys. Rev. B 33, 4331 �1986�.
�28� A. Coleman, Rev. Mod. Phys. 35, 668 �1963�.
�29� S. Sharma et al. �unpublished�.
�30� M. W. Schmidt et al., J. Comput. Chem. 14, 1347 �1993�.

�31� J. A. Montgomery, Jr., J. W. Ochterski, and G. A. Petersson, J.
Chem. Phys. 101, 5900 �1994�.

�32� A. A. Radzig and B. M. Smirnov, Reference Data on Atoms
and Molecules �Springer-Verlag, Berlin, 1985�.

�33� J. J. De Groote and M. Masili, J. Chem. Phys. 120, 2767
�2004�.

�34� H. R. Ihle and C. H. Wu, J. Chem. Phys. 63, 1605 �1975�.
�35� S. B. Sharp and G. I. Gellene, J. Chem. Phys. 113, 6122

�2000�.
�36� S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U.

Gross, Phys. Rev. B 78, 201103�R� �2008�.

DISCONTINUITY OF THE CHEMICAL POTENTIAL IN… PHYSICAL REVIEW A 79, 022504 �2009�

022504-9


