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Ionization potentials and electron affinities from reduced-density-matrix functional theory
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In the recent work of S. Sharma et al. (e-print arXiv:0912.1118), a single-electron spectrum associated with
the natural orbitals was defined as the derivative of the total energy with respect to the occupation numbers
at half filling for the orbital of interest. This idea reproduces the bands of various periodic systems using the
appropriate functional quite accurately. In the present work we apply this approximation to the calculation
of the ionization potentials and electron affinities of molecular systems using various functionals within the
reduced-density-matrix functional theory. We demonstrate that this approximation is very successful in general
and in particular for certain functionals it performs better than the direct determination of the ionization potentials
and electron affinities through the calculation of positive and negative ions respectively. The reason for this is
identified to be the inaccuracy that arises from different handling of the open- and closed-shell systems.
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I. INTRODUCTION

It is generally accepted today that the Fermi surfaces
of metallic systems obtained with density functional theory
(DFT), even at the level of local density approximation (LDA),
are in good agreement with experiments. Unfortunately,
this is not the case with the band gaps of insulators and
semiconductors which are highly underestimated by most of
the exchange-correlation (xc) functionals within DFT. Even
with the exact xc functional of DFT, the Kohn-Sham (KS)
gap is not expected to reproduce the experimental gap [1].
This deviation from experiment is most dramatic for Mott
insulators, most of which are predicted by their KS spectrum
to be metallic while they are experimentally known to be
insulating in nature.

In this regard reduced-density-matrix functional theory
(RDMFT) has shown great promise in improving on DFT
results for a wide class of systems in that it not only improves
the KS band gaps for insulators in general but also predicts
the correct insulating nature for Mott insulators [2]. Within
RDMFT the total energy of a system of interacting electrons
is expressed in terms of the one-body reduced-density matrix
(1-RDM), γ (r,r′). This energy functional is then minimized
with respect to γ under the N -representability conditions [3]
which restrict the minimization to the domain of 1-RDMs
that correspond to ensembles of N -electron wave functions.
A major advantage of RDMFT comes from the fact that
the exact kinetic energy is easily expressed as a functional
of the 1-RDM of the ground state. In addition, due to the
departure from the idempotent single-determinant solution,
static electronic correlations are well described [4]. The total
ground-state energy as a functional of γ reads (atomic units
are used throughout):

E[γ ] = −1

2

∫
lim
r→r′

∇2
r γ (r,r′) d3r′ +

∫
ρ(r) Vext(r) d3r

+ 1

2

∫
ρ(r) ρ(r′)
|r − r′| d3r d3r′ + Exc[γ ], (1)

where ρ(r) = γ (r,r), Vext is a given external potential, and Exc

we call the xc energy functional. In practice, the xc functional

is an unknown functional of the 1-RDM and needs to be
approximated. A milestone in the development of approximate
functionals of the 1-RDM is the Müller functional [4,5], which
has the following form:

Exc[γ ] = Exc[{φj },{nj }] = −1

2

∫ ∫ |γ 1/2(r,r′)|2
|r − r′| d3r d3r′,

(2)

where 1/2 is an exponent in the operator sense. Diagonaliza-
tion of γ produces a set of natural orbitals (the eigenvectors of
γ ), φj , and occupation numbers (the eigenvalues of γ ), nj . The
Müller functional is known to overcorrelate [6–10]; however,
there exist several other approximations, most of which are
modifications of this functional and are known to improve
results for finite systems [8,10–29].

Several of these RDMFT functionals reproduce the discon-
tinuity of the chemical potential at integer number of electrons
which is a measure of the fundamental gap of the system
[2,16,30,31]. More precisely, it was demonstrated [16,30,31]
that the complete removal of the self-interaction (SI) terms
leads to discontinuities in the chemical potential that are in
good agreement with the fundamental gap for finite systems.
Unfortunately, this removal has no effect on the total energy
for infinitely extended natural orbitals in periodic systems
since their contribution vanishes in the limit of the size of
system going to infinity. To overcome this problem, Sharma
et al. [2] introduced the power functional [2,32] that reproduces
discontinuities without requiring the removal of SI terms. This
functional has the form

Exc[γ ] = Exc[{φj },{nj }] = −1

2

∫ ∫ |γ α(r,r′)|2
|r − r′| d3r d3r′,

(3)

where α is an exponent in the operator sense. The power
functional was applied in the calculation of the fundamental
gap of various systems [2,27], including transition metal
oxides [2]. An optimal value of α between 0.6 and 0.7 was
found to reproduce gaps of all systems in close agreement with
experiments. These gaps were obtained from the discontinuity
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of the chemical potential, μ(N ), at an integer total number
of electrons N . A problem of this method of predicting the
gap is that the shape of μ(N ) differs substantially from a step
function, leading to large error-bars in the prediction of the gap.
A second problem is that one needs to calculate the total energy
(and μ) for several values of N , making the calculation time
consuming. Finally, a third problem is that this method does
not allow for the calculation of quantities other than the gap,
for direct comparison with experiments, like, for example, the
density of states for extended systems and ionization potentials
(IPs) and electron affinities (EAs) for finite systems.

An advantage of DFT is that the KS eigenvalues can be used
as an approximate single-electron spectrum of the system.
Thus, quantities like the IP and EA can be easily estimated
using the KS spectrum. A fundamental difference between
RDMFT and DFT is the lack of a KS system within RDMFT
and the lack of eigenvalue equation makes it difficult to obtain
(even approximately) the IPs and the EAs. One way to calculate
IPs in RDMFT is to use extended Koopman’s theorem
(EKT), as was proposed by Pernal and Cioslowski [33].
They demonstrated that the Lagrangian matrix in RDMFT
is identical with the generalized Fock matrix entering EKT.
Thus, IPs can be calculated by diagonalization of this matrix.
They used this idea in the calculation of IPs for small molecular
systems using the so-called Buijse-Baerends Corrected (BBC)
[8] and Goedecker-Umrigar (GU) [11] functionals and showed
that the error in the obtained IPs is of the order of 4–6%.
The same idea was employed in combination with yet another
xc functional, namely the PNOF1 [13,14] functional, for the
calculation of the first IPs (FIPs) as well as higher IPs (HIPs)
of molecular systems yielding results of similar quality [34].
However, the application of this method is restricted to finite
systems, since, for solids, it would require the diagonalization
of a large matrix in wave-vector space.

Sharma et al. in Ref. [35] introduced an alternative
technique to obtain spectral information. We refer to this
technique as the “derivative” (DER) method as it entails for
each natural orbital, k, the associated energy, εk , be obtained as
the derivative of the total energy with respect to the occupation
number, nk , at nk = 1/2 and with the rest of the occupation
numbers set equal to their ground-state optimal values. This
technique has been applied for the calculation of densities of
states of transition-metal oxides (NiO, FeO, CoO, and MnO)
and the results were found to be in excellent agreement with
experiments [35] and other state-of-the-art many-body tech-
niques like dynamical mean-field theory and the GW method.

In the present work this technique is applied to finite
systems. We discuss the validity of the approximations
necessary for the accuracy of the method. We present results
for the FIP as well as HIP, for atoms and molecules as well
as the EAs of atoms, molecules, and radicals adopting several
present-day functionals of the 1-RDM. We compare the results
with EKT, QCI(T), and experiment.

II. THEORY

By definition, the ionization potential and electron affinity
are given by

IP = E(N − 1) − E(N )
(4)

EA = E(N ) − E(N + 1),

where E(N ) is the ground-state total energy of the charge-
neutral system and E(N − 1) (E(N + 1)) is the energy of
the system with one electron removed (added). In the rest
of the article we refer to this method of calculating the IP
and EA as the definition method (DEF). Due to Koopman’s
theorem, within the Hartree Fock (HF) theory, the IP in
Eq. (4) is well approximated by the eigenvalue of the highest
occupied molecular orbital (HOMO). On the other hand,
within DFT, the KS energy of the HOMO is exactly equal
to the IP in Eq. (4) for the exact xc functional. Likewise,
the exact EA equals the orbital energy of the HOMO of
the N + 1 electron system calculated with the exact xc
functional.

Within RDMFT, there is no effective single-particle KS sys-
tem reproducing the nonidempotent 1-RDM of the interacting
system and quantities like IP and EA cannot be obtained from
an eigenvalue equation. However, approximate but meaningful
single-particle energies associated with the natural orbitals can
be defined as in Ref. [35]:

εk = E({nj })|nk=1 − E({nj })|nk=0. (5)

The two energies on the right-hand side are the energies
of the system with all natural orbitals and occupation num-
bers having the optimal ground-state values except for the
natural orbital of interest, k, for which occupation numbers
are set to either nk = 1 or nk = 0. In this way, these
energies are approximate electron addition and/or removal
energies for the natural orbital k. We refer to this method
for calculating IPs and EAs as the “energy-difference”
method (DIF).

It has been shown that, for extended systems [35], the total
energy is almost linear if a particular occupation, nk , is varied
between zero and 1. If it was exactly linear, then the energy
difference in Eq. (5) would be given by the tangent of E({nj }).
In absence of this linearity a good choice is to use the Slater
trick and approximate εk by

εk = ∂E[{φj },{nj }]
∂nk

∣∣∣∣
nk=1/2

, (6)

where the derivative is calculated at the ground-state natural
orbitals {φj } and occupations {nj }, except for k, which is set to
nk = 1/2. This is a good approximation because if one expands
E({nj }) at nj = 1/2, the term in Eq. (6) is the leading-order
term with the second-order term being identically equal to
zero. At first sight Eq. (6) looks similar to the Janak’s theorem
[47], which gives the eigenenergies of the Kohn-Sham system
within DFT. However, it is important to note that within
RDMFT lack of single-particle eigenvalue equations does not
permit the direct use of Janak’s theorem—Janak’s theorem
would lead to all orbital energies, for fractionally occupied
states, to be degenerate with value equal to the chemical
potential

III. METHODOLOGY

We calculate the IPs and EAs of a set of atoms and
molecules using DEF, DIF, and DER methods [i.e., using
the Eqs. (4)–(6). For comparison, results are also calculated
using the EKT method. Our implementation is included in
a computer code for finite systems [48] which minimizes

032504-2



IONIZATION POTENTIALS AND ELECTRON AFFINITIES . . . PHYSICAL REVIEW A 85, 032504 (2012)

1-RDM functionals with respect to occupation numbers and
natural orbitals and is based on the expansion of the orbitals
in Gaussian basis sets. The one- and two-electron integrals are
calculated by use of the GAMESS program [49]. Addition or
removal of an electron requires the extension of the theory to
open shells. In the present work, like in Refs. [16,30,31,50] we
use the simple extension proposed in Ref. [12]. In other words,
we assume that orbitals are spin independent while occupation
numbers are spin dependent.

For the calculation of IPs we adopt the cc-pVDZ basis
set [37] for all elements. EAs are calculated as the IPs of
negative ions, i.e., of N + 1 electrons. In other words, for
both IPs and EAs, the orbital energy of the HOMO (for
either the neutral or ionic system) is calculated. Since the
HOMOs of the negative ions are relatively diffuse states,
the aug-cc-pVDZ basis set is used [37]. We should mention
that a lot of neutral systems do not bind an extra electron.
In that case, EA is equal to zero, i.e., the extra electron is
completely delocalized. However, for small positive EA, the
state of the extra electron can be delocalized and impossible to
describe with localized basis sets. To ensure fair comparison
with experiments a set of atoms, molecules, and radicals which
are known experimentally to have relatively large and positive
EA is used.

Calculation of IPs and EAs with DEF method requires
the difference of two energies, one for a closed-shell and
another for an open shell-system. The broken spin symmetry
in open-shell systems leads to twice as many variational
parameters as there are in a closed-shell system. This extra
variational freedom overcorrelates the open-shell systems,
leading to systematic errors in IPs and EAs. Given the exact
xc functional, the DEF method would be exact; however, for
an approximate functional the DEF method would show these
systematic errors in IPs and EAs. DIF and DER methods, on
the other hand, do not suffer from this error since only one
minimization, for the charge-neutral system, is performed. In
addition, it should not come as a surprise if the DER method
performs better than DEF and DIF in many cases as it suffers
less from possible inaccuracies introduced by the functional
and its nonunique extension to the case of open shells, mainly
because only the 1/2 electron is present in the open shell.
One could also consider DER method in conjunction with
orbital relaxation (at fixed nj = 1/2). However, this procedure
requires full orbital minimization for each j , making it
computationally very demanding, while the aim of the present
work is to define a computationally inexpensive single-electron
spectrum in terms of the optimal 1RDM of the charge-neutral
system.

Another point to be considered is that the application of
the DER method requires the total energy functional to be
continuous at nk = 1/2. However, there are functionals that
introduce a discontinuity at nk = 1/2 to distinguish between
strongly and weakly occupied orbitals [34]. In all cases studied
here, we do not find optimal occupation numbers equal to 1/2.
Thus, the step function can be safely shifted slightly away
from nk = 1/2 without affecting the results. However, this
procedure cannot be used in cases with optimal occupations
equal to 1/2, like H2 at the dissociation limit or when they
vary continuously from 1 to zero.

IV. RESULTS

Our results for the average absolute errors in the calculation
of IPs with the three methods are included in Table I. Average
errors in the results obtained with EKT method are also
included in the table. The actual values for IPs obtained using
the DER method are compiled in Table II. (Full results for all
methods as well as EKT can be found in the Supplemental
Material [44].) It is clear from Table I that all functionals
in combination with the DER method give reasonable results
for IPs with errors ranging from 4 to 13%. ML, AC3, and
power functionals perform slightly better by giving an average
error of only 4–6%. For the systems considered here, the ML
functional with the DER method is the most accurate for the
FIPs (with an error of only 2%). It is important to note that
the errors from the DER and EKT method are of the same
order (using the same functionals and basis set), while there
is less computational effort involved in the DER method. The
comparison of the DIF and DER methods allows us to assess
the validity of the linear approximation—the linearity of the
total energy with respect to variation of one occupation number
while keeping the rest of the occupation numbers as well as
natural orbitals frozen (this was demonstrated for solids in
Ref. [35]). As we see in Table II, the DER method gives
good results also for finite systems and for the best performing
functionals the average difference between the DIF and DER
methods’ results is in the range of 2–7%. This percentage may
be regarded as the magnitude of nonlinearity of the total energy
with respect to variation of a single occupation number.

As mentioned in Sec. III, the DEF method suffers from
the overcorrelation error due to the approximate nature of
the xc functional and the difference in variational freedom
between closed and open-shell systems. Since the DER method
is less prone to this error, it is not a surprise that for the power
and ML functionals the DER method improves the results
over the DEF method. This indicates that the dependence of
the total energy on a particular occupation number deviates
from linearity but this deviation works in favor of the DER
method by further improving the results. In order to understand
this, in Fig. 1 (top), we show the tangents at 1/2 of the total
energy as a function of the occupation number of the HOMO,
while keeping the rest frozen. The plots are made for various
functionals. It is clear from Fig. 1 that although the total energy
functional itself deviates from linearity the tangent at 1/2 is
very close to the one that reproduces the experimental results.

TABLE I. Average absolute errors �DEF, �DIF, and �DER, in the
calculation of IP, FIPs, and HIPs, for a set of atoms and molecules with
calculations performed using various xc functionals in conjunction
with DEF, DIF, DER methods, respectively.

Funct. �DEF(%) �DIF(%) �DER(%)

Müller [5] 13.24 12.82 10.03
GU [11] 5.90 10.19 9.19
Power [2] 12.51 8.68 6.08
AC3 [22] 5.98 9.33 6.33
PNOF1 [13,14] 6.27 11.05 7.21
BBC3 [8] 6.24 10.19 8.79
ML [19] 6.15 9.22 4.17
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TABLE II. Ionization potentials (FIPs and HIPs), in eV, for various molecules calculated with different functionals using DER method.
These results are compared with Hartree-Fock, QCI(T), and the experimental data. QCI(T) values were calculated with the GAUSSIAN09
program [36] using the same basis set through Eq. (4). In the bottom row are included the percentage absolute average errors �FIP, �HIP, and
� in the calculation of the FIPs, HIPs, and all IPs, respectively. For comparison, the errors �

(EKT)
FIP , �

(EKT)
HIP , and �(EKT) using the EKT are also

included.

System Müller GU Power AC3 PNOF1 BBC3 ML HFa QCI(T) Expt.

He FIP 25.361 25.252 25.579 24.953 24.254 25.307 24.626 24.871 24.327 24.59b

H2 FIP 16.490 16.463 16.599 16.136 16.419 16.436 16.028 16.109 16.245 15.43c

LiH FIP 8.191 8.381 8.490 8.136 8.307 8.408 8.027 8.109 7.782 7.78d

H2O FIP 10.259 11.592 11.864 13.007 11.614 13.415 12.844 13.415 11.919 12.78e

HIP 1 16.436 15.619 15.674 16.871 14.116 17.361 15.266 15.402 14.83e

HIP 2 19.075 17.769 18.994 18.721 17.609 19.266 18.640 18.857 18.72e

HF FIP 15.783 15.130 16.245 16.925 15.199 17.769 16.463 17.116 15.429 16.19e

HIP 1 20.381 18.803 20.055 19.647 18.591 21.415 20.055 20.327 19.90e

CH4 FIP 13.578 12.817 14.123 14.449 12.960 15.592 14.395 14.776 14.177 14.40e

HIP 1 24.028 23.538 24.191 25.497 22.508 20.300 25.089 25.633 23.00e

CO2 FIP 9.796 9.415 11.320 13.143 10.664 15.483 13.633 14.558 13.225 13.78f

HIP 1 16.735 16.789 17.524 19.102 15.389 19.429 18.667 19.075 17.30f

NH3 FIP 8.626 9.878 10.150 10.966 9.999 11.510 10.966 11.429 10.340 10.80e

HIP 1 17.116 16.136 16.626 17.062 15.611 17.551 16.599 16.708 16.80e

Ne FIP 20.898 20.272 21.443 22.585 20.319 23.347 21.824 22.640 20.871 21.60g

HIP 1 48.028 47.484 48.980 52.600 46.629 52.899 51.130 52.219 48.47g

C2H4 FIP 6.748 8.218 8.299 9.361 9.674 9.796 9.714 10.177 10.422 10.68h

HIP 1 11.674 14.068 12.708 14.232 13.642 14.340 13.660 13.660 12.80h

C2H2 FIP 11.048 10.721 10.966 10.939 9.821 11.538 11.402 10.966 11.184 11.49e

HIP 1 21.198 19.701 19.783 19.130 16.751 20.136 20.028 18.340 16.70e

HIP 2 21.143 22.041 20.653 21.633 18.302 20.653 20.626 20.789 18.70e

�FIP (%) 12.38 10.91 7.42 4.10 9.19 6.93 2.07 4.43 2.91 0.00
�HIP (%) 7.45 7.29 4.61 8.78 5.04 10.83 6.48 6.43 0.00
� (%) 10.03 9.19 6.08 6.33 7.21 8.79 4.17 4.45 0.00

�
(EKT)
FIP (%) 12.22 2.47 6.26 2.82 2.99 5.16 5.11

�
(EKT)
HIP (%) 10.56 5.69 11.80 6.45 5.15 4.21 12.02

�(EKT) (%) 11.43 4.00 8.90 4.55 4.02 4.71 8.40

awith Koopman’s theorem (IP = −EHOMO).
bReference [38].
cReference [39].
dReference [40].
eReference [34].
fReference [41].
gReference [42].
hReference [43].

One reason for this improvement over the DIF method might
be that the extension of the theory to open shells in the case
DER method is minimal—since only half of an electron is
unpaired—and the DER method reduces the error introduced
by the extension of functionals to open shells.

The average percentage errors and the values of HIPs for
various atoms and molecules are also presented in Table I and
Table II, respectively. The average error in HIPs obtained using
the Müller, GU, power, and PNOF1 functionals is substantially
lower (4–7%) than for the FIPs. The rest of the functionals are
less accurate for HIPs with average absolute errors slightly
higher than those for the FIPs (5–10%).

The average absolute errors in the calculation of EAs with
the DEF, DIF, and DER methods are shown in Table III.
The actual values for EAs obtained using the DER method
are included in Table IV. As already mentioned, EAs are

more difficult quantities to calculate; the errors are introduced
by describing negative ions with localized basis which are
usually optimized for the description of the ground states
of neutral systems. In addition, being a small quantity, EAs
are more prone to errors in the differences of total energies
corresponding to two different shell structures (for example,
the difference in energy between a doublet and a singlet state).
Thus, it is not surprising that the errors in Tables III and IV
are substantially higher than for the IPs. However, state-of-the
art quantum chemical methods like QCI(T) also exhibit large
errors within the adopted basis set. Under these considerations,
the AC3, PNOF1, and ML functionals perform surprisingly
well for EAs with average errors of 21.4%, 28.6%, and 21.5%,
respectively. These errors are close to that of QCI(T) (17.3%).
It is interesting to note that (see Table IV) there are only
a few cases (5 of 60) for which Müller, GU, BBC3, and
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FIG. 1. (Color online) The total energy, E, as a function of the occupation number, n, of the HOMO, for Ne atom and CH4 (top) and the
negative ions F− and Cl− (bottom). The line giving the correct experimental values for IP/EA is also shown. Curves are shifted to coincide at
n = 1/2 in order to compare the tangents with the straight line reproducing the experimental results. The values at the two ends are used in
DIF for the calculation of IP for Ne, CH4 and the affinity of F, Cl. The derivatives at n = 1/2 are used for the calculation of the same quantities
with the DER method.

power functionals give a zero EA [E(N + 1) > E(N )], i.e.,
the system is not predicted by the corresponding functional to
bind an extra electron. For the best performers, like the AC3,
PNOF1, and ML functionals, no such case exists.

In order to compare the DIF and DER methods for the
determination of EAs, Fig. 1 (bottom) shows the tangents at
1/2 to the dependence of the total energy on the occupation of
the HOMO of the negative ions F− and Cl−. The exact tangent
that reproduces the experimental EAs is also shown in the
figure. Again, as in the case of IPs, the DER method not only
looks like a reasonable approximation but it also improves on
the results of the DEF method (for the functionals considered

TABLE III. Average absolute errors �DEF, �DIF, and �DER, in
the calculation of EAs for a set of atoms, molecules, and radicals
calculated with various xc functionals using DEF, DIF, and DER,
respectively.

Functional �DEF(%) �DIF(%) �DER(%)

Müller 69.85 88.55 63.24
GU 44.91 65.96 70.81
Power 64.69 63.57 48.73
AC3 42.40 31.17 21.39
PNOF1 39.68 61.44 28.63
BBC3 30.00 55.33 52.00
ML 39.32 47.81 21.53
HF 55.00
CI/QCI(T) 17.28

and in all cases studied in the present work). In particular, for
the case of Cl− [see Fig. 1 (bottom)] the tangents at 1/2 are
in very good agreement with the exact tangent that reproduces
experimental EA, although the dependence of the total energy
on the HOMO occupation number deviates significantly from
linearity.

A striking example of the pathological behavior mentioned
in Sec. III is the negative ion F−. This system is found
experimentally to be energetically lower than the neutral F
atom by 3.34 eV (see Table IV). All functionals underestimate
this energy substantially (see Supplemental Material [44]), as
a result of the enhanced variational freedom of the open-shell,
neutral F atom compared to the closed-shell F−. In two extreme
cases (ML and AC3 functionals) F− is found energetically
above the neutral F atom.

V. SUMMARY

In summary, we examined the performance of the derivative
method proposed in Ref. [35] for calculation of the IPs and
EAs of finite systems. The accuracy of IPs and EAs calculated
using the derivative method are compared to the IPs and
EAs calculated using the definition of these quantities [which
involves two total energy minimizations for the system and
the positive (for IP) or negative ion (for EA)]. In order to have
a complete analysis we have also considered an intermediate
method (difference method), in which the IPs and EAs are
determined by the difference of the total energies with fixing
one occupation number to 1 and/or zero. All these results are
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TABLE IV. Electron affinities, in eV, for various atoms, molecules, and radicals calculated as the IP of the system of N + 1 electrons with
different functionals using the DER method. For systems where N + 1 electrons energy is found higher than the N electron energy, zero affinity
is assumed. The results are compared with QCI(T) and experiments. QCI(T) values were calculated with the GAUSSIAN09 program [36].

System Müller GU Power AC3 PNOF1 BBC3 ML QCI(T) Expt.

LiH 0 0.192 0 0.219 0.317 0.106 0.264 0.317 0.34a

OH 3.157 6.735 3.456 2.626 1.784 3.157 2.441 1.645 1.83b

F 5.651 3.297 5.040 3.196 3.552 5.539 4.363 3.241 3.34b

Li 0 0.403 0.139 0.275 0.400 0 0.212 0.601 0.62b

Cl 3.687 2.190 3.632 3.678 2.660 4.186 3.623 3.430 3.61b

CN 1.807 2.328 2.332 4.264 2.470 4.873 4.585 3.627 3.77b

C2 1.044 1.419 1.298 3.386 4.416 4.560 3.722 3.055 3.54b

BO 1.243 1.326 1.982 3.252 2.076 3.222 3.252 2.359 2.83c

SH 1.386 0.706 1.908 1.968 1.352 2.454 2.168 2.119 2.32b

PH 0.304 0 1.200 1.252 0.186 2.192 1.145 2.023 1.00c

� (%) 63.24 70.81 48.73 21.39 28.63 52.00 21.53 17.28

aReference [45].
bReference [46].
cReference [15].

further compared to the state-of-the-art CI method as well as
experiments.

We find that for IPs both the difference and derivative
methods are good approximations to the definition of this
quantity. Furthermore, it was found that the derivative method
results, obtained using Müller, power, and ML functionals, are
better than the values obtained using the definition method
itself (with errors of the order of 4–8% only). Among these
functionals, the ML functional in conjunction with derivative
method is most accurate with errors of only up to 2%. For the

EAs the errors are significantly larger, with the ML functional
in conjunction with the derivative method being the most
accurate (with an error of 21%). The errors in EAs were found
to be comparable to the errors in the CI results.

From the present study we conclude that the results of the
derivative method for IPs and EAs are in good agreement with
experiments and this method is a promising technique to obtain
the single-electron spectrum for systems where state-of-the-art
quantum chemical methods cannot be applied and DFT results
deviate significantly from experiment.
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